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Abstract
The multi-dimensional assignment problem is universal for data association analysis such as data association-based visual 
multi-object tracking and multi-graph matching. In this paper, multi-dimensional assignment is formulated as a rank-1 ten-
sor approximation problem. A dual L1-normalized context/hyper-context aware tensor power iteration optimization method 
is proposed. The method is applied to multi-object tracking and multi-graph matching. In the optimization method, tensor 
power iteration with the dual unit norm enables the capture of information across multiple sample sets. Interactions between 
sample associations are modeled as contexts or hyper-contexts which are combined with the global affinity into a unified 
optimization. The optimization is flexible for accommodating various types of contextual models. In multi-object tracking, 
the global affinity is defined according to the appearance similarity between objects detected in different frames. Interactions 
between objects are modeled as motion contexts which are encoded into the global association optimization. The tracking 
method integrates high order motion information and high order appearance variation. The multi-graph matching method 
carries out matching over graph vertices and structure matching over graph edges simultaneously. The matching consistency 
across multi-graphs is based on the high-order tensor optimization. Various types of vertex affinities and edge/hyper-edge 
affinities are flexibly integrated. Experiments on several public datasets, such as the MOT16 challenge benchmark, validate 
the effectiveness of the proposed methods.

Keywords Multi-dimensional assignment · Context/hyper-context aware tensor power iteration · Multi-object tracking · 
Multi-graph matching

1 Introduction

Multi-dimensional assignment is an important problem in 
data association analysis. Its aim is to find a one-to-one 
mapping between data in multiple sets. Many tasks can be 
formulated as multi-dimensional assignment. For instance, 
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in data association-based multi-object tracking, a batch of 
evidence (Dalal and Triggs 2005; Felzenszwalb et al. 2010) 
is collected within a time span and tracking is treated as a 
multi-frame multi-object association problem. Multi-graph 
matching involves a search for correspondences across 
multi-sets of feature vectors where each feature vector is 
represented by a vertex and each set of feature vectors is 
represented by a graph.

In this paper, we propose a new multi-dimensional assign-
ment method and apply it to data association-based multi-
object tracking and multi-graph matching. In order to put 
our work into context, multi-dimensional assignment, data 
association-based multi-object tracking, and multi-graph 
matching are reviewed.

1.1  Related Work

1.1.1  Multi‑dimensional Assignment

The integer optimization for multi-dimensional assignment 
is NP-hard for three or higher dimensional association. Some 
methods handle the global association using hierarchical 
strategies (Brendel et al. 2011) in which the optimum local 
associations are carried out first and then are used to obtain 
longer tracks. There exist some approximate solutions, 
such as semi-definite programming (Shafique et al. 2008) 
and Lagrange relaxation (Deb et al. 1997), for the multi-
dimensional assignment problem. The existing methods can 
be classified into network flow-based, sampling-based, and 
iterative approximation-based:

• Network flow-based methods (Berclaz et al. 2011; Pir-
siavash et al. 2011; Zhang et al. 2008) decompose the 
global association affinity as the product of pairwise 
affinities between consecutive sample sets and then for-
mulate multi-dimensional assignment as a network flow 
problem, which can be solved using linear programming 
(Jiang et al. 2007), shortest path algorithms (Berclaz 
et al. 2011), the max-flow/min-cut optimization (Zhang 
et al. 2008), or greedy search (Pirsiavash et al. 2011; 
Zamir et al. 2012), etc. These methods yield optimal 
solutions with polynomial time complexity. Their limi-
tation is that only pairwise affinities are used and high 
order sequential information and longtime variation in 
sample features are not modeled.

• Sampling-based methods use probabilistic sampling 
strategies (e.g. Markov chain Monte Carlo sampling) 
(Benfold and Reid 2011; Oh et al. 2009) to find a global 
solution for data association. The limitations of these 
methods are that the high-dimensional state estimation in 
multi-dimensional assignment typically requires a large 
computational cost and tuning the parameters to obtain 
a convergence is always difficult.

• The iterative approximation-based methods (Collins 
2012) iteratively solve two-frame assignments to search 
for the global solution by using the global affinity. These 
methods model the high order affinity. The limitations of 
these methods are that the computational complexity is 
high and the contexts between samples are not modeled.

1.1.2  Data Association‑Based Multi‑object Tracking

Multi-object tracking methods can be roughly divided 
into Bayesian filtering-based and data association-based. 
Bayesian filtering-based methods use only observations in 
the current frame to estimate the current object states (Bre-
itenstein et al. 2010; Khan et al. 2005). Data association-
based methods use observations in the previous and current 
frames to estimate the states of the objects in these frames 
simultaneously, using the results of object detection in these 
frames. The association-based methods have become pop-
ular recently (Dalal and Triggs 2005; Felzenszwalb et al. 
2010). They are reliable, in general, for solving data associa-
tion jointly across multi-frames. This paper focuses on data 
association-based tracking.

Association-based multi-object tracking can be formu-
lated as a network flow problem (Berclaz et al. 2011; Pirs-
iavash et al. 2011; Zhang et al. 2008) by decomposing the 
global affinity between objects in a sequence of frames as 
the product of local pairwise affinities between objects in 
consecutive frames. The decomposition of the affinity leads 
to an efficient solution. However, the association discrimi-
nability is limited in that multi-frame motion information, 
which is useful for reducing the association ambiguity, is 
lost. Collins (2012) used the global affinity between objects 
to enhance the association robustness. The limitation of his 
method is that interactions between the moving objects are 
not utilized to improve association accuracy.

Because motion contexts (Ali et al. 2007; Ge et al. 2012; 
Pellegrini et al. 2010; Yamaguchi et al. 2011) can reduce 
intrinsic association ambiguities caused by appearance simi-
larity, occlusion, fast motion, and so on, modeling inter-
actions among objects is useful for multi-object tracking. 
The classic social force model (Helbing and Molnar 1995) 
used in pedestrian tracking (Luber et al. 2010; Pellegrini 
et al. 2009; Scovanner and Tappen 2009) defines a series 
of social forces for an object to ensure collision avoidance 
and a desired direction for the destination. Its limitations are 
that it is complicated and requires pre-training from similar 
scenes, as well as prior knowledge, for example about the 
destination which is usually unavailable. Most methods that 
include an interaction-based motion model (Ali et al. 2007; 
Luber et al. 2010; Pellegrini et al. 2009; Yamaguchi et al. 
2011) are limited to a predictive tracking framework. In Ali 
et al. (2007), the motion context is a collection of trajectories 
of objects. It was used to predict and reacquire occluded 
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objects. In Brendel et al. (2011), the association problem 
was formulated as finding the maximum weighted independ-
ent set. The interaction between two trajectories was embed-
ded as a soft constraint. The limitation of these methods is 
that the local temporal association is often troubled by the 
intrinsic motion ambiguity.

1.1.3  Multi‑graph Matching

While matching two graphs has been studied intensively, 
multi-graph matching has received relatively less atten-
tion. In the following, two graph matching and multi-graph 
matching are reviewed respectively.

Matching two graphs is traditionally formulated as an 
optimization problem which is solved by the graduated 
assignment algorithm (Gold and Rangarajan 1996), the inte-
ger projected fixed point method (Leordeanu et al. 2009), the 
spectral matching methods (Leordeanu and Hebert 2005; 
Cour et al. 2007), the path-following algorithms (Zhou and 
De la Torre 2016; Zaslavskiy et al. 2009; Liu et al. 2014), 
etc. Both the pairwise edge affinity and the hyper-edge 
affinity are exploited in two-graph matching. The pairwise 
edge affinity is generally sensitive to the scaling and rota-
tion, while hyper-edge affinity explores high-order structure 
information and is more robust to certain geometric trans-
formations (Duchenne et al. 2011; Lee et al. 2011; Zass and 
Shashua 2008). In particular, the algorithm in Duchenne 
et al. (2011) uses a high-order tensor for hyper-graph match-
ing between two graphs. Lee et al. (2011) proposed a hyper-
graph matching method by reinterpreting the random walk 
concept on the hyper-graph in a probabilistic manner. Leor-
deanu et al. (2011) proposed a hypergraph matching method, 
in which the parameters combining structural information 
and appearance information were learnt in a semi-supervised 
way. Nguyen et al. (2015) proposed two tensor block coor-
dinate ascent methods for hypergraph matching. Zeng et al. 
(2010) proposed a graph matching method to address non-
rigid surface matching. The limitation of two-graph match-
ing is that high-order affinity among multi-graphs, which 
can be used to increase the matching consistency between 
vertices in different graphs, is not exploited.

Multi-graph matching methods can be roughly divided 
into affinity-driven and consistency-driven. The affinity-
driven methods (Sole-Ribalta and Serratosa 2013; Shi et al. 
2016; Yan et al. 2014; Sole-Ribalta and Serratosa 2011) for-
mulate multi-graph matching as an optimization problem in 
which the objective is usually the summation of the overall 
pairwise matching affinities (Sole-Ribalta and Serratosa 
2013), sometimes supplemented by matching consistency 
regularization (Yan et al. 2014). For example, Sole-Ribalta 
and Serratosa (2013) applied the graduated assignment algo-
rithm (Gold and Rangarajan 1996) repeatedly across graph 
pairs to achieve cross graph matching. Yan et al. (2014) 

carried out multi-graph matching by iteratively approximat-
ing the global-optimal affinity, while using regularization to 
gradually increase the consistency. The consistency-driven 
methods (Pachauri et al. 2013; Yan et al. 2013) put more 
attention on the matching consistency. Yan et al. (2013) pro-
posed an iterative optimization solution with a rigid match-
ing consistency constraint. Pachauri et al. (2013) pooled all 
pairwise matching solutions into a single matrix and then 
estimated the globally consistent array of matches. The limi-
tation of the above work is that high-order information both 
across multi-graphs and across hyper-edges is not handled.

In summary, the main limitation in the current methods 
for multi-dimensional assignment is that high order sequen-
tial information and longtime variation in sample features 
as well as the contexts between samples are not simultane-
ously modeled with low computational complexity. Corre-
spondingly, the main limitations in the current methods for 
data association-based multi-object tracking are that motion 
contexts are not efficiently utilized without pre-training from 
similar scenes to model the interactions between moving 
objects, and multi-frame high-order motion information is 
not effectively combined with high-order appearance varia-
tion. The main limitations in the current methods for multi-
graph matching are that high-order information across multi-
graphs and high-order information across hyper-edges are 
not simultaneously modeled.

1.2  Our Work

Our work handles the above main limitations in the current 
methods for multi-dimensional assignment, as well as data 
association-based multi-object tracking and multi-graph 
matching. As tensors are the tools for effectively repre-
senting high order information, we introduce rank-1 ten-
sor approximation which has effective solutions with solid 
mathematical support, such as tensor power iteration, into 
the multi-dimensional assignment problem. Then, a dual 
L1-normalized context/hyper-context aware tensor power 
iteration optimization method for multi-set sample associa-
tion is proposed and applied to multi-object tracking and 
multi-graph matching (Shi et al. 2014).

In our dual L1-normalized context/hyper-context aware 
tensor power iteration optimization method, a high-order 
tensor is constructed from a sequence of sets of samples. 
The low rank approximation to this tensor has the same 
affinity formulation as the multi-dimensional assignment 
problem. A tensor power iteration method with row/column 
unit norm (i.e., dual L1-normalized) is proposed to solve 
the context/hyper-context aware tensor approximation prob-
lem. Interactions between sample associations are modeled 
as contexts or hyper-contexts and combined with the global 
affinity into the power iteration solution. In our multi-object 
tracking method, objects detected in each frame are treated 
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as samples in a set. The global affinity is defined accord-
ing to the appearance similarity between objects in different 
frames. Motion contexts are constructed to model the inter-
action between associations. Then, the dual L1-normalized 
context-aware tensor power iteration optimization is applied 
to obtain the associations of the objects. In the multi-graph 
matching method, each vertex in a graph is treated as a sam-
ple, and the graph is treated as a sample set (Shi et al. 2016). 
The affinity of the vertices is formulated as a global asso-
ciation affinity and the structure affinity over a set of hyper-
edges as a hyper-context affinity. The dual L1-normalized 
hyper-context aware tensor power iteration optimization is 
applied to match the vertices in the graphs.

The contributions of our work are summarized as follows:

• We formulate the objective of multi-dimensional assign-
ment as the objective of rank-1 tensor approximation, 
and incorporate context into the multi-dimensional 
assignment formulation. By mathematical derivation, 
we ensure that the context-aware multi-dimensional 
assignment problem is solvable and propose an effec-
tive context-aware tensor power iteration method, in 
which the additional runtime for modeling the contexts 
is very small. We incorporate hyper-contexts into the 
multi-dimensional assignment problem and propose an 
effective hyper-context aware power iteration method. In 
this way, our dual L1-normalized context/hyper-context 
aware tensor power iteration optimization method cap-
tures information across multiple sample sets. Contexts 
or hyper-contexts are utilized to characterize interactions 
between sample associations. The optimization frame-
work provides the flexibility to use different context 
information.

• Our multi-object tracking method constructs the motion 
contexts to model the interaction between moving 
objects. The tracking method effectively integrates high-
order motion information and high-order appearance 
variation.

• In contrast with the previous multi-graph matching 
methods, which use only pairwise affinities and ignore 
the high-order information in multi-sets of vertices, our 
multi-graph matching method works on high-order affin-
ity tensors and naturally improves the matching. The 
information on the vertex affinities and the information 
on the edge/hyper-edge affinities are combined in a flex-
ible way.

We test our multi-object tracking method and multi-
graph matching method on several datasets, such as the 
MOT16 challenge benchmark. For different datasets or dif-
ferent applications, different affinities between objects are 
defined. For example, on the MOT16 challenge benchmark 
dataset, the affinities are defined using the features from 

deep siamese neural networks. It is shown that our methods 
have excellent performance in comparison with the state of 
the art.

The remainder of the paper is organized as follows: 
Sect.  2 briefly introduces rank-1 tensor approximation. 
Section 3 describes the dual L1-normalized rank-1 tensor 
approximation. Sections 4 and 5 propose context and hyper-
context aware tensor power iterations. Sections 6 and 7 pre-
sent our multi-object tracking method and our multi-graph 
matching method respectively. Section 8 demonstrates the 
experimental results. Section 9 summarizes the paper.

2  Rank‑1 Tensor Approximation

A tensor is the high dimensional generalization of a matrix. 
Each element in a K-order tensor A ∈ ℝ

I1×⋯×Ik⋯IK is repre-
sented as ai1⋯ik−1ikik+1⋯iK

 where 1 ≤ ik ≤ Ik . Each order of a 
tensor is associated with a mode. The k-mode product of a 
tensor A ∈ ℝ

I1×⋯×Ik−1×Ik×Ik+1⋯IK and a matrix � ∈ ℝ
Ik×Jk is a 

new tensor B ∈ ℝ
I1×⋯×Ik−1×Jk×Ik+1⋯IK whose entries are

This k-mode product is notated as B = A⊗k � . In particu-
lar, the k-mode product of A and a vector � ∈ ℝ

Ik is a K −1 
order tensor:

A rank-1 tensor Ĉ ∈ ℝ
I1×⋯×Ik−1×Ik×Ik+1⋯IK is a specific ten-

sor which can be represented as the outer product ( ∗ ) of 
K vectors {�̂k ∈ ℝ

Ik}K
k=1

 : Ĉ=�̂�1 ∗ �̂�2
⋯ �̂�k

⋯ ∗ �̂�K , i.e., an 
element in Ĉ is represented as:

where ŵk
ik
 is the ik th element in �̂k . Let {�k ∈ ℝ

Ik}K
k=1

 be K 
L2 unit-normalized column vectors and let W be the matrix 
composed of {�k ∈ ℝ

Ik}K
k=1

 . A rank-1 approximation to a 
tensor A ∈ ℝ

I1×⋯×Ik−1×Ik×Ik+1⋯IK is obtained by finding the 
vectors {�k ∈ ℝ

Ik}K
k=1

 and a scalar � for minimizing the fol-
lowing square of the Frobenius norm:

(1)bi1⋯ik−1jkii+1iK
=

Ik∑
ik=1

ai1⋯ik−1ikik+1⋯iK
wikjk

.

(2)(A⊗k �)i1⋯ik−1ii+1iK
=

Ik∑
ik=1

ai1⋯ik−1ikik+1⋯iK
wik

.

(3)
ĉi1…ik…iK

= (�̂1 ∗ … ∗ �̂k … ∗ �̂K)i1⋯ik⋯iK
= ŵ1

i1
ŵ2
i2
⋯ ŵk

ik
⋯ ŵK

iK
,

(4)

min
� ,�

‖‖‖A − ��1 ∗ �k
⋯ ∗ �K‖‖‖

2

F

=min
� ,�

I1∑
i1=1

I2∑
i2=1

⋯

IK∑
iK=1

(
a
i1i2⋯iK

− �w1

i1
w
2

i2
⋯w

K

iK

)2

.
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By solving (4), the tensor A is approximated by the rank-1 
tensor ��1 ∗ �k

⋯ ∗ �K . A function g is defined as:

With some derivations as shown in Regalia and Kofidis 
(2000), De Lathauwer et al. (2000), the optimization in (4) 
has the following equivalent form:

Tensor power iteration (Regalia and Kofidis 2000; De 
Lathauwer et al. 2000) has been proposed to optimize (6).

3  Dual L1‑Normalized Rank‑1 Tensor 
Approximation

Many applications, such as multi-frame data association and 
multi-graph matching, can be formulated as multi-dimen-
sional assignment problems (Collins 2012). We transform 
the multi-dimensional assignment problem to a rank-1 ten-
sor approximation problem. Then, mathematical techniques 
for rank-1 tensor approximation are introduced to solve the 
multi-dimensional assignment problem.

3.1  Formulation

Suppose that there is a sequence of K + 1 sets of samples and 
each set has N samples.1 Let ik be a sample index in the kth 
set. A trajectory i0i1i2 ⋯ iK is a sequence of K + 1  samples 
from the K + 1 sets respectively (we index sample sets stat-
ing from 0 for description convenience). Let ai0i1i2⋯iK

 be the 
affinity of trajectory i0i1 ⋯ iK whose label xi0i1⋯iK

 is 1 if the 
trajectory is actually existent, otherwise is 0. An actually 
existent trajectory has higher affinity between the samples in 
it. Multi-dimensional assignment is formulated as:

(5)

g(�1
,�2

,… ,�K) =
|||A⊗1 �

1 ⊗2 �
2
⋯⊗

K
�K|||

=

I1∑
i1=1

I2∑
i2=1

⋯

IK∑
iK=1

a
i1i2⋯iK

w
1

i1
w
2

i2
⋯w

K

iK
.

(6)max
�

g(�1,�2,… ,�K).

(7)max

N∑
i0=1

N∑
i1=1

⋯

N∑
iK=1

ai0i1⋯iK
xi0i1⋯iK

,

(8)

s.t.

⎧
⎪⎨⎪⎩

xi0i1…iK
∈ {0, 1}, 0 ≤ k ≤ K;

∀ik ∈ {1, 2,… ,N},
N∑

i0=1

N∑
i1=1

⋯

N∑
ik−1

N∑
ik+1

⋯

N∑
iK=1

xi0i1⋯ik⋯iK
= 1.

Actually existent trajectories are found by solving this con-
strained integer optimization.

We decompose a global association xi0i1⋯iK
 into a 

sequence of pairwise associations:

where xk
ik−1,ik

∈ {0, 1} is the association between the ik−1 th 
sample in the k-1th set and the ik th sample in the kth set. 
Only if all the pairwise associations in the sequence are true 
(i.e., take value 1), is the global association also true. It is 
apparent that there are N2 associations between two consecu-
tive sample sets. In order to transform multi-dimensional 
assignment to a rank-1 tensor approximation problem, we 
flatten (unfold) the association matrix 

[
xk
ik−1,ik

]
N×N

 between 
the k-1th sample set and the kth sample set into a vector [
wk
�k

]N2

�k=1
 . To more clearly distinguish the association matrix 

and the flattened association vector, we use bold italic font 
to indicate the elements in an association vector. The relation 
between the association matrix and the association vector is 
illustrated in Fig. 1. The equivalent relation between the 
association index �k in the vector and the indices ik−1 and ik 
in the association matrix is:

(9)xi0i1⋯iK
= x1

i0,i1
x2
i1,i2

⋯ xK
iK−1,iK

,

(10)�k = (ik−1 − 1)N + ik.

Fig. 1  The relation between the association matrix and the associa-
tion vector: The sample association 

(
i
k
, i
k+1

)
 between two consecutive 

sets k and k + 1 is represented by vector �k+1 ∈ R
N×N . The upper part 

shows all the possible associations between three consecutive sets; 
the lower part shows the corresponding vector representation. The 
relation between the second sample in set 0 and the first sample in 
frame 1 

(
i0 = 2, i1 = 1

)
 corresponds to the fourth element �1

4
 in asso-

ciation vector �1 ; The association 
(
i1 = 1, i2 = 3

)
 corresponds to the 

third element �2
3
 in association vector �2

1 We assume that there is the same number of samples in each set. 
When there are different numbers of samples in each set, virtual sam-
ples are added to the sets to make the number of samples in each set 
the same. After the association is carried out, the samples associated 
with the virtual samples are the isolated samples.
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In this way, an association indexed by (ik−1, ik) in the associa-
tion matrix 

[
xk
ik−1,ik

]
N×N

 is also indexed by �k in the associa-

tion vector �k =
(
wk
�k

)N2

�k=1
 : xk

ik−1,ik
= wk

�k

.

We rearrange the affinity ai0i1i2⋯iK
 using the indices in 

association vectors {�k} . In the k-1th set the ik−1 index of 
the sample included in the association �k is ⌈�k∕N⌉ , where 
⌈ ⌉ is the up rounding operator; and in the kth set the 
index ik of the sample included in the �k th association is 
�k −

�⌈�k∕N⌉ − 1
�
N:

The consecutive associations �k and �k+1 have affinity 
only if they share the same sample in the kth set. Then, we 
define the affinity s�1�2⋯�K

 of the global association con-
sisting of the consecutive pairwise associations {�k}

K
k=1

 as 
follows:

where �k −
�⌈�k∕N⌉ − 1

�
N =

�
�k+1∕N

�
 means that asso-

ciations �k and �k+1 share the same sample in the kth sample 
set.

Using the pairwise association vectors {�k}K
k=1

 and 
the affinities defined on {�k}K

k=1
 , we can transform multi-

dimensional assignment to rank-1 tensor approximation. 
Let � ∈ ℝ

N2×K be the matrix composed of {�k}K
k=1

 . Using 
(10) and (12), the objective of multi-dimensional assignment 
formulated in (7) is transformed to the objective of rank-1 
tensor approximation:

The global constraint in (8) is decomposed into the following 
local pairwise constraints:

where xk
ik−1,ik

 is an element in the association matrix and it is 
equal to wk

�k

 . The dual L1 norm in (14) is that both the rows and 

(11)
�

ik−1 = ⌈�k∕N⌉,
ik = �k −

�⌈�k∕N⌉ − 1
�
N.

(12)s�1�2⋯�
K
=

⎧
⎪⎨⎪⎩

a
i0 i1⋯i

K
if �

k
−
�⌈�

k
∕N⌉ − 1

�
N =

�
�
k+1∕N

�
,

k = 1, 2,…K − 1

0 otherwise.

(13)

max
�

g(�1

�1

,�2

�2

,… ,�K

�K

)

= max
�

N
2∑

�1=1

N
2∑

�2=1

⋯

N
2∑

�K=1

s�1�2⋯�K
w
1

�1

w
2

�2

⋯w
K

�K

.

(14)

⎧⎪⎪⎨⎪⎪⎩

N∑
ik−1=1

xk
ik−1,ik

= 1

N∑
ik=1

xk
ik−1,ik

= 1

1 ≤ k ≤ K,

columns in the association matrix 
[
xk
ik−1,ik

]
N×N

 are L1-normal-
ized. This ensures that one sample in the current set associates 
with only one sample in the subsequent set, and one sample in 
the subsequent set associates with only one sample in the cur-
rent set. The optimization objective in (13) is the same as in 
(6). However, the original rank-1 tensor approximation in (6) 
is constrained by the L2 norm, while the optimization in (13) 
is constrained by the dual L1 norm. The methods for the origi-
nal rank-1 tensor approximation are not suitable for solving the 
dual L1 normalized rank-1 tensor approximation.

3.2  Solution

We carry out the optimization in (13) by an iterative algo-
rithm that finds the association variables {wk

�k

}k=1,…,K

�k=1,…,N2
 . In 

each iteration some association variables are updated while 
the remaining association variables are fixed. It is required 
that in each iteration the value of the objective function is 
increased.

A power iteration method is utilized to adapt the dual L1 
unit norm constraint. The integer constraint on wk

�k

 is relaxed 
to a real value constraint: 0 ≤ wk

�k

≤ 1 . Then, wk
�k

 represents 
the probability of the association between the ik−1 th sample 
in the k-1th set and the ik th sample in the kth set. A tensor 
power is used to iteratively update �k = {wk

�k

}N
2

�k=1
 followed 

by a dual L1 unit normalization. The iteration is based on the 
partial differential of g(�1,… ,�k,�k+1,… ,�K) for each 
association vector element wk

�k

:

Let �k(�) be the kth association vector at the � th iteration. It 
has elements {wk

�k

(�)}N
2

�k=1
 . At the � + 1 th iteration, on con-

sidering the update of �k(�) , with all other association vec-
tors {�1(� + 1),… ,�k−1(� + 1),�k+1(�),… ,�K(�)} fixed, 
the following equations are used to update �k:

(15)

�g(�1,… ,�k,�k+1,… ,�K)

�wk
�k

=

N2∑
�1=1

⋯

N2∑
�k−1=1

N2∑
�k+1=1

⋯

N2∑
�K=1

s�1⋯�k⋯�K
w1

�1

⋯wk−1
�k−1

wk+1
�k+1

⋯wK
�K
.

(16)

w
k

�k

(� + 1)

← w
k

�k

(�)

N2∑
�1=1

⋯

N2∑
�k−1=1

N2∑
�k+1=1

⋯

N2∑
�K=1

s�1�2⋯�K
w
1

�1

(� + 1)

⋯w
k−1
�k−1

(� + 1)wk+1
�k+1

(�)⋯w
K

�K

(�)
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where (17) and (18) carry out the dual L1 normalization 
corresponding to the constraint in (14), ensuring the one to 
one mapping between samples in consecutive sets. We can 
prove that

The convergence shown in (19) ensures that (16), (17), and 
(18) form an effective iteration algorithm for solving the 
dual L1 normalized rank-1 tensor approximation problem. 
The original rank-1 tensor approximation in Sect. 2, con-
strained by the L2 unit norm, has been proved to converge. In 
the following, we first prove that the iteration for the rank-1 
tensor approximation constrained by the L1 unit norm is con-
vergent, and then give the proof of convergence of the dual 
L1 normalized rank-1 tensor approximation.

Proposition A For the L1 normalized rank-1 tensor approx-
imation, each element w1

i1
 in �1 is updated by:

where C1 is the L1 normalization factor of �1(� + 1):

Then, we have

Namely, with the L1 normalized �1(� + 1) , the iteration 
using (20) converges.

Proof We define two temporary vectors � = (f1, f2,… , fI1 ) 
and � = (u1, u2,… , uI1 ):

(17)xk
ik−1,ik

(� + 1) ←
xk
ik−1,ik

(� + 1)

∑N

lk=1
xk
ik−1,lk

(� + 1)
,

(18)xk
ik−1,ik

(� + 1) ←
xk
ik−1,ik

(� + 1)

∑N

lk−1=1
xk
lk−1,ik

(� + 1)
,

(19)

g(�1

�1

(� + 1),… ,�k
�k
(� + 1),

�k+1

�k+1

(�)… ,�K
�K
(�)) ≥ g(�1

�1

(� + 1),… ,

�k
�k
(�),�k+1

�k+1

(�),… ,�K
�K
(�)).

(20)

w1
i1
(� + 1) =

1

C1
w1
i1
(�)

I2∑
i2=1

⋯

IK∑
iK=1

ai1i2⋯iK
w2
i2
(�)⋯wK

iK
(�),

(21)C1 =

I1∑
i1=1

w1
i1
(�)

I2∑
i2=1

⋯

IK∑
iK=1

ai1i2⋯iK
w2
i2
(�)⋯wK

iK
(�).

(22)
g(�1(� + 1),�2(�),… ,�K(�)) ≥ g(�1(�),�2(�),… ,�K(�)).

Then, the following equation holds

where ‘ ⟨, ⟩ ’ and ‘◦’ denote the inner product and the Had-
amard product (element-wise product) respectively. With the 
L1 norm constraint ‖�‖2

2
= ���1(�)��1 = 1 , the application of 

the Cauchy–Schwarz inequality to (24) yields

After �1 is iterated using (20), the objective function is rep-
resented as:

It is apparent that

By combining formulae (25), (26), and (27), we prove the 
inequality (22). The convergence for the iterations of �2 , …, 
and �K can be proved in the same way as for �1.

(23)

⎧
⎪⎨⎪⎩

fi1 =
I2∑

i2=1

⋯

IK∑
iK=1

ai1i2⋯iK
w2
i2
(�)⋯wK

iK
(�),

ui1 × ui1 = w1
i1
(�).

(24)

g(�1(�),�2(�),… ,�K(�))

=

I1�
i1=1

I2�
i2=1

⋯

IK�
iK=1

ai1i2⋯iK
w1
i1
(�)w2

i2
(�)⋯wK

iK
(�)

=

I1�
i1=1

I2�
i2=1

⋯

IK�
iK=1

ai1i2⋯iK
ui1ui1w

2
i2
(�)⋯wK

iK
(�)

=

I1�
i1=1

ui1ui1

I2�
i2=1

⋯

IK�
iK=1

ai1i2⋯iK
w2
i2
(�)⋯wK

iK
(�)

= ⟨�,�◦�⟩

(25)
g(�1(�),�2(�),… ,�K(�)) = ⟨�,�◦�⟩ ≤ ‖�‖2‖�◦�‖2 = ‖�◦�‖2.

(26)

g(�1(� + 1),�2(�),… ,�N(�))

=
�
i1

�
i2

⋯

�
iK

ai1i2⋯iK
w1
i1
(� + 1)w2

i2
(�)⋯wK

iK
(�)

=
�
�1(� + 1),�

�
=

1

C1

�
�1(�),�

�

=
1

C1

�
�1(�)◦�,�

�

=
1

C1
⟨�◦�,�◦�⟩ = 1

C1
‖�◦�‖2

2
.

(27)
C
1 =

I1∑
i1=1

w
1

i1
(�)

I2∑
i2=1

⋯

IK∑
iK=1

a
i1i2⋯iK

w
2

i2
(�)⋯w

K

iK
(�)

= g(�1(�),�2(�),… ,�K(�)).
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Proposition B For the dual L1-normalized rank-1 tensor 
approximation, the following equations are used to update 
�1.

where (29) and (30) carry out the dual L1 normalization. 
Then, we have

Proof Similar to the definition of G using (23), we define a 
vector � = (f1, f2,… , fN2 ) as follows:

Let �i0
∈ ℝ

1×N = (fi0,1, fi0,2,… , fi0,N)(1 ≤ i0 ≤ N  ), where 
{i0, j}

N
j=1

 are defined using (11). Set � = {�i0
}N
i0=1

 . The 
objective function is represented as:

The objective function is the sum of N components ⟨
�i0

,�i0

⟩
 . Each component 

⟨
�i0

,�i0

⟩
 corresponds to a L1 

normalized rank-1 tensor approximation whose iteration 
convergence is proved in Proposition A. Therefore, the itera-
tions in (28), (29) and (30) for the dual L1-normalized rank-1 
tensor approximation also converge. The convergence for 
the iterations of �2 , …, and �K can be proved in the same 
way as for �1.

3.3  Discussion

In the solution, it is assumed that the sample sets have the 
same number of samples. When different numbers of sam-
ples exist in different sample sets, virtual samples are added 
to sample sets to make the number of samples in each set the 
same. The affinities to virtual samples are set to a fixed small 

(28)

w1
�1
(� + 1) ← w1

�1
(�)

N2∑
�1=1

N2∑
�2=1

⋯

N2∑
�K=1

s�1�2⋯�K
w2
�2
(�)⋯wK

�K
(�)

(29)x1
i0,i1

(� + 1) ←
x1
i0,i1

(� + 1)

∑N

l1=1
x1
l0,l1

(� + 1)
,

(30)x1
i0,i1

(� + 1) ←
x1
i0,i1

(� + 1)

∑N

l0=1
x1
l0,l1

(� + 1)
,

(31)
g(�1

�1
(� + 1),�2

�2
(�),… ,�K

�K
(�)) ≥ g(�1

�1
(�),�2

�2
(�),… ,�K

�K
(�)).

(32)

f�1
=

N2∑
�2=1

⋯

N2∑
�K=1

s�1�2⋯�K
w2
�2
(�)⋯wK

�K
(�) (1 ≤ �1 ≤ N2).

(33)

g(�1(� + 1),�2(�),… ,�K(�)) =
⟨
�1((� + 1),�

⟩
=

N∑
i0=1

⟨
�i0

,�i0

⟩
.

value. This fixed small value corresponds to the probability 
that samples appear or disappear. The same small affinity 
of the virtual samples in a set to the samples in other sets 
ensures that the virtual samples do not influence the match-
ing of the non-virtual samples in the sets. After finalization 
of association, the isolated samples in one set are associated 
with the virtual samples in other sets.

The above tensor formulation has various applications, 
depending on the form of the elements s�1⋯�k⋯�K

 in the tensor. 
In particular, two applications are 2D assignment and network 
flow. If s�1⋯�k⋯�K

 is decomposed as the sum of pairwise affini-
ties: s�1⋯�k⋯�K

=
∑K

k=1
sk
�k

 , where sk
�k

 denotes the affinity of 
the �k th association between the k-1th sample set and the kth 
sample set, then the objective in (13) is reformulated as: 
NK−1

∑K

k=1

∑N2

�k=1
sk
�k

wk
�k

 . This optimization corresponds to 
the 2D assignment problem. When the affinity is computed as 
the product of pairwise affinities: s�1⋯�k⋯�K

=
∏K

k=1
sk
�k

 , the 
objective in (13) is rewritten as 

∏K

k=1

∑N2

�k=1
sk
�k

wk
�k

 . This 
objective is appropriate for network flow (Berclaz et al. 2011). 
As a result, tensor approximation provides a flexible frame-
work to take advantage of global and local association affini-
ties. However, the above tensor approximation does not 
encode context information between trajectories.

4  Context‑Aware Tensor Power Iteration

Contexts between samples can be used to reduce the unre-
liability of sample associations. For example, the moving 
vehicles in a local spatiotemporal space usually have simi-
lar motion patterns. The determination of the association 
for a vehicle can be improved using the motion information 
about other vehicles. We combine the pairwise contextual 
relations between associations into the optimization objec-
tive and propose a dual L1-normalized context-aware tensor 
power iteration algorithm to determine the relations between 
samples.

Let ck
�k�k

 be the contextual affinity between two associa-
tions indicated by wk

�k

 and wk
�k

 respectively. Embedding the 
contextual affinity into the temporal affinity in (13) yields a 
joint optimization which is a linear combination of the tem-
poral affinity and the contextual affinity:

(34)

max
�

⎛
⎜⎜⎝

N
2�

�1=1

⋯

N
2�

�k=1

⋯

N
2�

�K=1

s�1⋯�k⋯�K
w
1

�1

⋯w
k

�k

⋯w
K

�K

+�

K�
k=1

N2�
�k=1

N2�
�k=1

c
k

�k�k
w
k

�k

w
k

�k

⎞⎟⎟⎠
,
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where α is a weighting parameter which is used to balance 
the effects of the two affinities, and the second term models 
the contexts between associations. The optimization is also 
constrained by (14) as well as 0 ≤ wk

�k

≤ 1.
The new optimization in (34) is more difficult than the 

basic one in (13) due to the quadratic contextual term. We 
make some reformulations to (34) to make it solvable by 
iterations. From (14), it is apparent that

By using (35), the first term in (34) is rewritten as follows:

By using (35), the second term in (34) is rewritten as 
follows:

where wk
�k

 is not included in the continued multiplication 
∏
f≠k

 

because it already exists in the preceding term. Merging (36) 
and (37), the optimization (34) is rewritten as:

We apply the block update strategy (Collins 2012) to opti-
mize (38) iteratively. Namely, when the block variables in 
�k are updated to yield a local optimization, other block 

(35)
1

N

N2∑
�k=1

wk
�k
= 1, k = 1, 2,… ,K.

(36)

N2�
�1=1

⋯

N2�
�k

⋯

N2�
�K=1

s�1⋯�k⋯�K
w1
�1
⋯wk

�k
⋯wK

�K

=

⎛⎜⎜⎝
1

N

N2�
�k=1

wk
�k

⎞⎟⎟⎠

N2�
�1=1

⋯

N2�
�k=1

⋯

N2�
�K=1

s�1⋯�k⋯�K
w1
�1
⋯wk

�k
⋯wK

�K

=
1

N

N2�
�1=1

⋯

N2�
�k=1

N2�
�k=1

⋯

N2�
�K=1

s�1⋯�k⋯�K
w1
�1
⋯wk

�k
wk
�k
⋯wK

�K
.

(37)

N2�
�k=1

N2�
�k=1

ck
�k�k

wk
�k
wk
�k
=

⎛
⎜⎜⎝

N2�
�k=1

N2�
�k=1

ck
�k�k

wk
�k
wk
�k

⎞
⎟⎟⎠
�
f≠k

⎛
⎜⎜⎝
1

N

N2�
�f=1

w
f

�f

⎞⎟⎟⎠

=
1

NK−1

N2�
�1=1

⋯

N2�
�k=1

N2�
�k=1

⋯

N2�
�K=1

ck
�k�k

w1
�1
⋯wk

�k
wk
�k
⋯wK

�K
,

(38)

max

N
2�

�1=1

⋯

N
2�

�k=1

⋯

N
2�

�K=1

s�1⋯�k⋯�K
w
1

�1
⋯w

2

�k
⋯w

K

�K

+ �

N
2�

�k=1

N
2�

�k=1

c
k

�k�k
w
k

�k
w
k

�k
+ �

�
f≠k

N
2�

�f =1

N
2�

�f =1

c
f

�f �f
w
f

�f
w
f

�f

= max
1

N

N2�
�1=1

⋯

N2�
�k=1

N2�
�k=1

⋯

N2�
�K=1

⎛⎜⎜⎝
s�1⋯�k⋯�K

+
�ck

�k�k

NK−2

⎞⎟⎟⎠
w
1

�1
⋯w

k

�k
w
k

�k
⋯w

K

�K

+ �
�
f≠k

N2�
�f =1

N2�
�f =1

c
f

�f �f
w
f

�f
w
f

�f
.

variables {�f |f ≠ k} are fixed. In this way, the complicated 
optimization in the global space reduces to a simplified solu-
tion in a local space. The second term in the right hand of the 
equality sign in (38) can be omitted. Thus, the optimization 
(38) reduces to:

The problem in solving (39) is that wk
�k

 and wk
�k

 lie in the 
same block vector �k and couple with each other. Namely, 
when wk

�k

 is updated, wk
�k

 cannot be fixed. To solve this prob-
lem, we decouple the interdependency between wk

�k

 and wk
�k

 
to simplify the optimization. If two association hypotheses 
indicated by wk

�k

 and wk
�k

 share the same object in the k-1th 
sample set or in the kth sample set [i.e., ik−1 = jk−1 or ik = jk , 
where the relation between jk−1 and �k is defined as in (11)], 
then we set their contextual affinity ck

�k�k
 to 0. This is because 

one sample does not exist in two real associations between 
two sample sets. Then, we reformulate (39) as follows:

Let el1…lkjk…lK
 be the element of a (K + 1)-order augmented 

tensor, which is defined as:

Then, (40) is transformed to:

In (42), (40) is decomposed into a series of the following 
optimizations:

In (43), the interdependency between wk
�k

 and wk
�k

 is decou-
pled. The optimization in (43) has the same form with (13). 
Then, we can use the dual L1 normalized tensor power itera-
tion method in Sect. 3 to solve (43).

In actual calculation, it is not necessary to construct the 
(K + 1)-order augmented tensor using (41). Instead we carry 
out the following iteration:

(39)
max
�k

N2∑
�1=1

⋯

N2∑
�k=1

N2∑
�k=1

⋯

N2∑
�K=1

(
s�1⋯�k⋯�K

+
�ck

�k�k

NK−2

)
w
1

�1

⋯w
k

�k

w
k

�k
⋯w

K

�K

.

(40)
max
�k

N2∑
�1=1

⋯

N2∑
�k=1

∑
{�k∶jk−1≠ik−1}

⋯

N2∑
�K=1

(
N

N − 1
s�1⋯�k⋯�K

+
�ck

�k�k

NK−2

)

× w1

�1

⋯wk
�k
wk
�k
⋯wK

�K
.

(41)e�1⋯�k�k⋯�K
=

N

N − 1
s�1⋯�k⋯�K

+
�ck

�k�k

NK−2
.

max
�k

N2∑
�1=1

⋯

N2∑
�k=1

∑
�k≠�k

⋯

N2∑
�K=1

e�1⋯�k�k⋯�K
w1

�1

⋯wk
�k
wk
�k
⋯wK

�K

=

N∑
ik=1

max
�k

N2∑
�1=1

⋯

N2∑
�k=1

∑
{�k∶jk−1≠ik−1}

⋯

N2∑
�K=1

e�1⋯�k�k⋯�K
w1

�1

⋯wk
�k
wk
�k
⋯wK

�K
.

(43)

max
�k

N2∑
�1=1

⋯

N2∑
�k=1

∑
{�k∶jk−1≠ik−1}

⋯

N2∑
�K=1

e�1⋯�k�k⋯�K
w1
�1
⋯wk

�k
wk
�k
⋯wK

�K
.

(42)
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It is seen that in the iteration the computation only 
involves the pairwise associations including the current 

(44)

wk
�k
(� + 1)

∝ wk
�k
(�)

N2∑
�1=1

⋯

∑
{�f |f≠k}

⋯

N2∑
�K=1

∑
{�k |jk≠ik}

e�1⋯�k�k⋯�K
wk
�k
w1

�1

⋯wk
�f
⋯wK

�K

∝ wk
�k
(�)

N2∑
�1=1

⋯

∑
{�f |f≠k}

⋯

N2∑
�K=1

s�1⋯�k⋯�K
w1

�1

⋯wk
�f
⋯wK

�K

+
∑

{�k |jk−1≠ik−1}
ck
�k�k

wk
�k
.

set k. While the computational complexity of the itera-
tion in the dual L1 normalized tensor power iteration 
is O(N2K) , the computational complexity in (44) is 
O(N2K + N2) = O(N2K) as O(N2K) ≫ O(N2) . Considering 
the contexts only slightly increases the runtime. The dual 
L1 normalized context-aware tensor power iteration is out-
lined as follows:
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two objects from two consecutive frames respectively is 
generated only when they are spatially close to each other. 
Removing unnecessary association hypotheses in this way 
greatly reduces the computational complexity and storage 
space. In a scene, moving objects may enter, exit, reappear, 
be occluded, or be missed, etc. There may be detections that 
have no associated detection in consecutive frames. To han-
dle this issue, virtual detections are introduced in each frame 
to drop out the isolated detections and thus avoid disturb-
ing the real detection associations. Appearance models and 
motion models are used to construct the temporal affinity. 
The contextual affinity is defined using motion contexts. The 
context-aware tensor power iteration is applied to obtain the 
real valued associations between detections. The real valued 
solutions must be discretized to meet the integer and one-
to-one mapping constraints in the assignment. We regard 
the real valued solutions as the costs for the corresponding 
associations, and apply the Hungarian algorithm to obtain 
the binary association outputs. In the following, we detail 
tensor construction, definition of the contextual affinity, and 
the computational complexity analysis.

6.1  Tensor Construction

The form of the elements s�1⋯�k⋯�K
 in (34) depends on the 

application and the particular temporal affinities. In some 
applications the temporal affinities are based on motion 
models while in other applications it is necessary to com-
bine appearance models and motion models to define the 
temporal affinity. Two methods for defining temporal affini-
ties are described.

The first method defines the temporal affinity of a trajec-
tory based on a global motion affinity m�1�2⋯�K

 and appear-
ance affinities given by associations between consecutive 
frames. Let �k

�k

= �������������⃗
�

k−1
ik−1

�
k
ik

 be the spatial displacement of the 
association between objects �k−1

ik−1
 at frame k −1 and �k

ik
 at 

frame k. If objects �k−1
ik−1

 and �k
ik
 are the same object, �k

�k

 is the 
velocity vector of the object. The global motion affinity is 
defined as:

where the first part in the exponential term is the cosine of 
two velocity vectors measuring their direction consistency 
and the second part measures their amplitude consistency. 
This motion affinity describes object motion inertia: an 
object has similar velocities in consecutive frames. For an 
object �k

ik
 , we use a gray scale histogram {h1

ik
, h2

ik
,…} and the 

area bk
ik
 of the box bounding the object to represent its 

(51)

m�1�2⋯�K
=

K−1�
k=1

exp

⎛⎜⎜⎜⎝

(�k
�k

)T�k+1
�k+1

����k�k

���2
����

k+1
�k+1

���2
+

2
����k�k

���2
����

k+1
�k+1

���2
����k�k

���
2

2
+
����

k+1
�k+1

���
2

2

⎞⎟⎟⎟⎠
,

5  Hyper Context‑Aware Power Iteration

We replace the pairwise contexts formulated in Sect. 4 with 
hyper-contexts among triples of associations. Suppose that 
wk
�k

 , wk
�k

 , wk
�k

 represent, respectively, the associations on sam-
ples pairs �k−1

ik−1
↔ �

k
ik
 , �k−1

jk−1
↔ �

k
jk
 , and �k−1

lk−1
↔ �

k
lk
 between 

the k-1th sample set and the kth sample set. The affinity of 
the hyper-context among wk

�k

 , wk
�k

 , and wk
�k

 is represented as 
ck
�k�k�k

 . By replacing the context affinity with the hyper-con-
text affinity, the objective of hyper-context aware tensor 
approximation is extended as:

Using tensor power iteration to solve the above optimiza-
tion, we only need to replace (46) with

6  Multi‑object Tracking

Multi-object tracking can be carried out in a batch or online 
mode:

• Batch mode For a batch of K + 1 successive frames, 
N objects in each frame are detected, and N2 associa-
tion hypotheses are generated between two consecutive 
frames. Then, a K order tensor is constructed by com-
puting the temporal affinity. The context affinities are 
computed. Based on these affinities, the dual L1 norm 
context-aware tensor power iteration is applied to find the 
real associations between the detected objects. After that, 
the next batch of K + 1 successive frames is processed in 
the same way as for the preceding batch, where the two 
batches share a common boundary frame. Serial expan-
sion of the associations in all the batches in a video yields 
the global trajectories of the detected objects.

• Online mode Given a new frame, it is combined with the 
preceding K frames. The dual L1 normalized context-
aware tensor power iteration is applied to find the object 
associations between these K + 1 frames.

The main components of the multi-object tracking algo-
rithm include association hypothesis generation, tensor con-
struction, definition of the contextual affinity, and initiali-
zation and termination. An association hypothesis between 

(49)

max
�

N2∑
�1=1

⋯

N2∑
�k=1

⋯

N2∑
�K=1

s�1⋯�k⋯�K
w
1

�1

⋯w
k

�k

⋯w
K

�K

+ �

K∑
k=1

N2∑
�k=1

N2∑
�k=1

N2∑
�k=1

c
k

�k�k�k
w
k

�k

w
k

�k
w
k

�k
.

(50)�ik−1,ik
=

∑
{�k|jk−1≠ik−1}

∑
{�k|lk−1≠ik−1}

ck
�k�k�k

wk
�k
wk
�k
.
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appearance. We define the appearance affinity ak
�k

 of an asso-
ciation (�k−1

ik−1
,�k

ik
) as follows:

The two terms in the right hand of the equal sign represent 
the similarities of appearance and area respectively. Com-
bining (51) and (52), the temporal affinity of a trajectory is 
defined as follows:

The second method that we use for defining the tensors is 
taken from Collins (2012). The temporal affinity is:

where E0 is a constant used to make the affinity positive and 
η is a weighting parameter. The second term on the right 
hand side of (54) penalizes large position translation for any 
association and the third term penalizes changes in velocity 
between consecutive associations. The intuition is that the 
changes in velocity and the spatial translation of the same 
object between consecutive frames are not large.

6.2  Motion Contexts

Motion contexts are used to define the contextual affinity 
ck
�k�k

 between two associations �k and �k . Low-level contexts 
and high-level contexts are proposed to represent interac-
tions between associations on detected objects and interac-
tions between trajectory segments, respectively. When 
between-frame motions are large, low-level context is valu-
able, such as in the low-frame rate or fast motion applica-
tions. In pedestrian tracking, inaccurately located object 
detections along with low-speed motion make raw detection-
based low-level context unreliable. High level interactions 
are more reliable.

6.2.1  Low Level Context

We formulate the interaction between two associated 
detected objects using the motion consistency of the objects. 
Let �k

�k

 and �k
�k

 be the spatial displacement vectors for the 
association hypotheses (�k−1

ik−1
,�k

ik
) and (�k−1

jk−1
,�k

jk
) respec-

tively. The motion consistency mk
�k�k

 between these two asso-
ciation hypotheses is defined as a linear combination of the 
orientation similarity and the speed similarity between the 
motion vectors �k

�k

 and �k
�k

:

(52)ak
�k

=
1

2

∑
bin

min
(
hbin
ik
, hbin

ik−1

)
+

1

2
min

(
bk−1
ik−1

bk
ik

,
bk
ik

bk−1
ik−1

)
.

(53)s�1�2⋯�K
= a1

�1
a2
�2
⋯ aK

�K
m�1�2⋯�K

.

(54)s�1�2⋯�K
= E0 − �

K∑
k=1

‖‖‖�
k
�k

‖‖‖2−
K−1∑
k=1

‖‖‖�
k+1
�k+1

− �k
�k

‖‖‖2,

where λ is a weighting parameter balancing the orientation 
similarity (the first part to the right of the equality sign) 
and the speed similarity (the second part to the right of the 
equality sign).

It is only necessary to model interactions between asso-
ciations of objects with similar motions in local spatial 
neighborhoods. Furthermore, associations with contexts 
cannot share the same object in the same frame, because one 
object only belongs to one real association between two 
frames. We define the low-level motion context as a selective 
representation. The context ck

�k�k
 between associations 

(�k−1
ik−1

,�k
ik
) and (�k−1

jk−1
,�k

jk
) is set to their motion consistency 

mk
�k�k

 only if they satisfy the following three conditions (oth-
erwise ck

�k�k
 is set to 0):

• ik−1 ≠ jk−1 and ik ≠ jk,
• 

‖‖‖‖
����������������⃗
�

k−1
ik−1

�
k−1
jk−1

‖‖‖‖2 < L and 
‖‖‖‖
����������⃗
�

k
ik
�

k
jk

‖‖‖‖2 < L where L is a dis-

tance threshold,
• jk = max

j̃k

mk

(ik−1,ik),(jk−1,j̃k)
.

The first condition is a one-to-one mapping constraint. The 
second is a spatial distance mask. The third selects the asso-
ciation (jk−1, jk) most similar to the association (ik−1, ik) from 
the associations including object jk−1 . This sparse represen-
tation of non-maximum removal is used to bind the most 
similar associations as contexts and suppress the influences 
from noisy and conflicting association pairs.

6.2.2  High Level Context

We devise two types of high level contexts to model the 
motion interaction on associations between tracklets (trajec-
tory segments). Figure 2 shows the two types of high level 
contexts. The first context, as shown in Fig. 2a, includes the 
interactions between two associated tracklets and a tracklet. 
The second one includes the interactions between two asso-
ciations of tracklets.

When two tracklets Tj and Tl are associated with the motion 
Ti of an object as shown in Fig. 2a, it is more likely that there 
is a true association between Tj and Tl . We use this prior knowl-
edge to measure contextual affinity between Tj and Tl . Suppose 
that the i-th tracklet Ti is represented by {�ti

s

i
,�

ti
s
+1

i
,… ,�

ti
e

i
} , 

where ti
s
 and ti

e
 denote, respectively, the start time and the end 

time of Ti . Let �t
i
 be the spatial displacement from the target 

�
t−1
i

 to �t
i
 . For two tracklets Tj ∶ {�

t
j
s

j
,… ,�

t
j
e

j
} and 

Tl ∶ {�
tl
s

l
,… ,�

tl
e

l
} , there exists association hypothesis 

(55)
mk

�k�k
=

|||(�
k

�k
)T�k

�k

|||
‖‖‖�k�k

‖‖‖2
‖‖‖�k�k

‖‖‖2
+ �

‖‖‖�k�k

‖‖‖2
‖‖‖�k�k

‖‖‖2
‖‖‖�k�k

‖‖‖
2

2
+
‖‖‖�k�k

‖‖‖
2

2

,
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Tjl ∶ {�
t
j
s

j
,… ,�

t
j
e

j
,�

t
j
e+1

jl
,… ,�

tl
s
−1

jl
,�

tl
s

l
,… ,�

tl
e

l
} ,  w h e r e 

�
t
jl
(t
j
e < t < tl

s
) is the virtual object interpolated using Tj and 

Tl . Then, the motion consistency mjl,i between association 
hypothesis Tjl and tracklet Ti is defined as their motion orienta-
tion similarity:

where �t
jl
 is the spatial displacement from target �t−1

jl
 to �t

jl
.

We select the spatial neighboring tracklets around Tjl and 
overlapped with Tj and Tl in the time window and use them 
to measure the contexts for motion consistency between Tj 
and Tl . These spatial neighboring tracklets {Tc}c satisfy the 
following conditions:

• tc
s
≤ t

j
e and tl

s
≤ tc

e
,

• 
‖‖‖‖‖
����������⃗
�

t
j
e

c�
t
j
e

j

‖‖‖‖‖2
< L and 

‖‖‖‖‖
����������⃗
�

tl
s

c�
tl
s

l

‖‖‖‖‖2
< L.

Let C be the number of tracklets in {Tc}c . The motion con-
text for the tracklet pair Tjl is estimated by:

The term cjl is the contextual affinity between Tj and Tl.
The second type of context, shown in Fig. 2b, measures 

the motion interactions between tracklet association hypoth-
eses. We define these motion contexts based on motion con-
sistency between the association hypotheses. Suppose that 
association hypothesis Tjl connects tracklets Tj and Tl , and 
association hypothesis Tfh connects tracklets Tf  and Th , as 
shown in Fig. 2b. Let tjfe = max{t

j
e, t

f
e} and tlh

s
= min{tl

s
, th
s
} . 

The motion consistency mjl,fh between Tjl and Tfh is estimated 
by:

(56)mjl,i =
1

tl
s
− t

j
e

tl
s∑

t=t
j
e

|||(�
t

jl
)T�t

i

|||
‖‖‖�tjl

‖‖‖2
‖‖‖�ti

‖‖‖2
,

(57)cjl =
1

C

C∑
c=1

mjl,c.

(58)mjl,fh =
1

tlh
s
− t

jf
e

tlh
s∑

t=t
jf
e +1

|||(�
t

jl
)T�t

fh

|||
‖‖‖�tjl

‖‖‖2
‖‖‖�tfh

‖‖‖2
,

where �t
jl
(�t

fh
 ) is the spatial displacement from object 

�
t−1
jl

(�t−1
fh

) to �t
jl
(�t

fh
).

The context cjl,fh between Tjl and Tfh is set to their motion 
consistency mjl,fh only if the following conditions are satis-
fied (otherwise cjl,fh is set to 0):

• t
jf
e < tlh

s ,
• j ≠ f  and l ≠ h,

• 
‖‖‖‖‖
�����������⃗
�

t
jf
e

j
�

t
jf
e

f

‖‖‖‖‖2
< L and 

‖‖‖‖‖
������������⃗
�

tlh
s

h
�

tlh
s

l

‖‖‖‖‖2
< L.

6.3  Computational Complexity

The computational complexity of our multi-object track-
ing method depends on the number of high-order trajectory 
hypotheses. An association hypothesis between two objects 
from consecutive frames respectively is made only when 
they are spatially close to each other. For a set of K + 1 con-
secutive frames, each frame has N objects and every object 
has I association candidates in the next frame. Then, there 
are NMK trajectory hypotheses. For the maximum number Γ 
of iterations, the computational complexity of one set asso-
ciation is O(ΓK2NIK).

7  Multi‑graph Matching

We apply the proposed dual L1 normalized context/hyper-
context aware tensor power iteration algorithm to multi-
graph matching. A graph � is represented as � = (� ,�,�) , 
where �  is the vertex set, � is the edge set, and � is the 
attribute set. The attribute set � includes the vertex features 
such as the position, appearance information, as well as the 
edge properties such as the distance and orientation. Given 
K + 1 graphs {�k = (� k,�k,�k)}K

k=0
 with the same number 

N of vertices, the task of multi-graph matching is to find an 
optimal one-to-one correspondence between the vertices in 
the K + 1 graphs respectively. The solution is denoted by a 
K + 1th order assignment tensor. An element xi0i1…iK

 in the 
tensor denotes the group-wise matching between the vertices 
(vk

ik
∈ �

k)K
k=0

 in turn. If the matching is true, then xi0i1⋯iK
= 1 , 

otherwise xi0i1⋯iK
= 0 . The vertex affinity of the group-wise 

matching is denoted by ai0i1⋯iK
 . The structural affinity over 

the edge set {e0
i0j0

, e1
i1j1

,… eK
iK jK

} between vertex correspond-
ences xi0i1⋯iK

 and xj0j1⋯jK
 is denoted as s

�
(e0

i0j0
, e1

i1j1
,… , eK

iK jK
) . 

The objective function for multi-graph matching is formu-
lated as:

(59)

max

N∑
i0=1

⋯

N∑
ik=1

⋯

N∑
iK=1

ai0⋯ik⋯iK
x0
i0
⋯ xk

ik
⋯ xK

iK

+ �

N∑
i0=1

⋯

N∑
iK=1

N∑
j0=1

⋯

N∑
jK=1

x0
i0
⋯ xK

iK
sE(e

0

i0j0
,… , eK

iK jK
)x0

j0
⋯ xK

jK
.

Fig. 2  High-level motion contexts: a interaction between tracklet 
association (Tj, Tl) and tracklet Ti; b interaction between two tracklet 
associations (Tf, Th) and (Tj, Tl)
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We transform the optimization (59) into the optimization 
in (34) or the optimization in (49). The high-order matching 
xi0i1⋯iK

 is decomposed into pairwise ones: x
i0i1⋯iK

=

x
1

i0,i1
x
2

i1,i2
⋯ x

K

iK−1,iK
 , where xk

ik−1,ik
 is an element in the assign-

ment vector �k for matching graphs �k−1 and �k . The group-
wise edge affinity s

�
(e0

i0j0
, e1

i1j1
,… , eK

iK jK
) is decomposed into 

pairwise edge affinities as follows:

where ck
ik−1ik ,jk−1jk

 is the pairwise similarity between edge 
ek−1
ik−1jk−1

 in �k−1 and edge ek
ikjk

 in �k . As shown in (10), matrix 
index elements (ik−1, ik) and (jk−1, jk) are transformed to vec-
tor index elements �k and �k . Substitution of (60) into the 
term after α in (59) yields:

In this way, multi-graph matching problem is transformed 
into the dual L1 normalized context-aware tensor power 
iteration problem in Sect. 4.

For multiple hyper-graph matching, hyper-edges are con-
sidered based on vertex triples. Let ck

ikjklk
 be the affinity 

between hyper-edges ek−1
ik−1jk−1lk−1

 and ek
ikjklk

 corresponding to 
vertex triples {vk−1

ik−1
, vk−1

jk−1
, vk−1

lk−1
} and {vk

ik
, vk

jk
, vk

lk
} respectively. 

We decompose the group-wise hyper-edge affinity 
s
�
(e0

i0j0l0
, e1

i1j1l1
,… , eK

iK jK lK
) into pairwise hyper-edge affinities 

as follows:

Substitution of (62) into the term after α in (59) yields the 
hyper context-aware tensor power iteration problem in 
Sect. 5.

The vertex affinity used in the optimization is defined by 
considering the local appearance similarity between vertices 
that correspond to image feature points. Each vertex is 

(60)sE(e
0
i0j0

, e1
i1j1

,… , eK
iK jK

) ≈

K∑
k=1

ck
ik−1ik ,jk−1jk

,

(61)
K∑
k=1

N2∑
�k=1

N2∑
�k=1

ck
�k�k

wk
�k
wk
�k
.

(62)sE(e
0
i0j0l0

, e1
i1j1l1

,… , eK
iK jK lK

) ≈

K∑
k=1

ck
ik−1ik ,jk−1jk ,lk−1lk

.

associated with a shape context feature vector (Belongie 
et al. 2002) of a feature point in an image. Let �k

ik
 be the 

column feature vector of vertex vk
ik
 . All the feature vectors 

from the vertex set {v0
i0
, v1

i1
,… , vK

iK
} are stacked into a matrix 

�i0i1…iK
= {�0

i0
, �1

i1
,… , �K

iK
} . Let eigen(�i0i1⋯iK

, d) be the d-th 
eigenvalue of the matrix �i0i1⋯iK

 when the eigenvalues are 
ranked in descending order. The high-order vertex affinity 
ai0i1⋯iK

 is computed as:

This vertex affinity measures the compactness of the feature 
vector set.

We define the contextual affinity ck
�k�k�k

 by considering the 
difference in angles formed by hyperedges as hyper-contexts. 
Let wk

�k

 represent the matching between vertices vk−1
ik−1

 and vk
ik
 . 

Let wk
�k

 be the matching between vertices vk−1
jk−1

 and vk
jk
 . Let wk

�k
 

be the matching between vertices vk−1
lk−1

 and vk
lk
 . The hyper-

edge on the vertex triple {vk−1
ik−1

, vk−1
jk−1

, vk−1
lk−1

} in �k−1 forms a 
triangle whose three angles {�k−1

1
, �k−1

2
, �k−1

3
} are used as the 

features for this hyper-edge. The hyper-edge on the vertex 
triple {vk

ik
, vk

jk
, vk

lk
} in �k has its triangle features {�k

1
, �k

2
, �k

3
} . 

The triangle structure of the hyper-edge is invariant to rota-
tion and scaling. The relation between hyper-edges and tri-
angle features is illustrated in Fig. 3. The hyper-edge affinity 
ck
�k�k�k

 (Duchenne et al. 2011; Lee et al. 2011) is defined as:

where σ2 is a regularized factor.
Using the hyper-context tensor power iteration solution, 

a sequence of real-valued pairwise matching vectors {�k}K
k=1

 
is obtained. The real-valued matching matrix is further dis-
cretized using the Hungarian algorithm. Given the pairwise 
matching vectors {�k}K

k=1
 , the group-wise matching {xi0i1⋅⋅⋅iK} 

is derived naturally.
The computational complexity for our multi-graph match-

ing method depends on the number of hyper-edge triples. 

(63)ai0i1⋯iK
=

eigen(�i0i1⋯iK
, 1)

∑
d eigen(�i0i1⋯iK

, d)
.

(64)ck
�k�k�k

= exp

�
−

∑3

h=1
(sin �k

h
− sin �k−1

h
)
2

2�2

�
,

Fig. 3  Hyper-edges and their 
triangle features
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The number of group-wise matches grows with the num-
ber of graphs. For K + 1 graphs, each graph has N verti-
ces and each vertex has I matching candidates. There are 
NIK matches and K(NI)3 hyper-edge triples. In this way, the 
computational complexity is O(�NIKK2 + �K(NI)3) for Γ 
iterations. A divide-and-conquer strategy can be used for 
acceleration.

8  Experimental Results

The experimental results for multi-object tracking are shown 
first (Please see the supplemental videos), followed by the 
experimental results for multi-hyper-graph matching.

8.1  Multi‑object Tracking

We evaluated the proposed multi-object tracking methods on 
the following five public datasets: Columbus Large Image 
Format (CLIF) (The Columbus Large Image Format CLIF 
2006), PSU-data (Ge et al. 2012), PETS 2009, TUD-Stadt-
mitte, and MOT16 challenge.

8.1.1  CLIF and PSU

The CLIF and PSU datasets contain low frame-rate 
sequences, on which the proposed low-level motion con-
text was used. Three CLIF sequences, CLIF1, CLIF2, and 
CLIF3, were used. There are 80–100 objects in each frame 
in CLIF1 and CLIF2, and 150–200 objects in CLIF3. These 
sequences are very challenging, because of fast motions, 
a large number of objects, small apparent sizes of objects, 
and similar object appearances, etc. The PSU dataset con-
sists of three sparse sequences, “Sparse-1”, “Sparse-2”, 
and “Sparse-3” with 3–5 people per frame and three dense 
sequences, “Dense-1”, “Dense-2”, and “Dense-3” with 
25–20 people per frame. These sequences are challenging 
because of the large spatial displacement per frame and the 
unavailability of object appearance information.

We compared our methods with the following four multi-
object tracking methods:

• Hungarian assignment algorithm This is an optimal solu-
tion for each association of two successive frames (i.e., 
each single pair of successive frames). The association 
among K + 1 successive frames is carried out by K pair-
wise associations, each of which is determined by the 
Hungarian assignment algorithm. This comparison is 
used to show the effect of multi-frame associations in 
contrast with two frame associations.

• Network flow algorithm (Pirsiavash et al. 2011) As stated 
in Sect. 3.3, when the temporal affinity is computed as 
the product of pairwise affinities (i.e., affinities between 

two successive frames), the tensor rank-1 approximation-
based algorithm reduces to the network flow-based algo-
rithm which is a pairwise association-based method. This 
comparison is used to show the effect of high-order affin-
ity representation in contrast with two frame association-
based affinity representation.

• Min-cost flow algorithm (Butt and Collins 2013) This 
framework incorporates the high-order constraints in 
three consecutive frames for multi-object tracking by 
using candidate matching pairs. The framework is solved 
efficiently through Lagrangian relaxation to min-cost net-
work flow. This comparison is used to show the effect of 
utilizing higher order information in our tensor power 
iteration.

• Iterated conditional modes (ICM)-like method (Collins 
2012) This ICM-like method is similar to ours in that it 
is multi-assignment-based and uses a global affinity rep-
resentation and a block update strategy. The difference is 
that in each iteration step the ICM-like method uses the 
Hungarian algorithm to yield binary object association 
relations.

We used the correct matching percentage and the false 
matching percentage to evaluate the association perfor-
mance. Let cm(t), wm(t), and g(t) be, respectively, the num-
bers of correct associations, false associations, and ground 
truth associations between frame t − 1 and frame t. The cor-
rect match percentage Pc and false matching percentage Pf  
are defined as:

Because the sum of the numbers of the correct and false 
associations is not necessarily equal to the number of ground 
truth associations, the sum of Pc and Pf  is not necessarily 
equal to 1.

As there are no training samples on the CLIF dataset 
and the PSU dataset, we randomly selected 12 consecutive 
frames from each of these two datasets to tune the param-
eters. The number of frames in a batch for association deter-
mination was taken to 5 and 6 for the CLIF and PSU data-
sets respectively. On the CLIF dataset, the temporal affinity 
defined in (53) was used. On the PSU dataset, the temporal 
affinity defined in (54) was used, and η in (54) was set to 0.5. 
The parameter α in (34) was set to 10 and 5 for the CLIF and 
PSU datasets respectively. A larger α was used on the CLIF 
dataset, since the object motions are better-regulated in the 
CLIF scenarios and modeling motion interaction contexts 
is more important. The parameter λ in (55) was 0.6 and 2.0 
for the CLIF and PSU datasets respectively. A smaller λ 

(65)

⎧⎪⎨⎪⎩

Pc = 100 ×
∑

t cm(t)∑
t g(t)

,

Pf = 100 ×
∑

t wm(t)∑
t g(t)

.
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was used on the CLIF dataset, since the orientation con-
sistency is more remarkable in the CLIF scenarios due to 
path constraints. The number of iterations was set to 100 
for all the sequences, because in all the experiments, when 
100 iterations were reached, the dual L1-normalized rank-1 
tensor approximation method and the dual L1-normalized 
context-aware tensor power iteration method both showed 
convergence.

Table 1 shows the quantitative comparison results on the 
CLIF dataset. Tables 2 and 3 show the quantitative com-
parison results on the sparse and dense scenes of the PSU 
dataset, respectively, where the results for the network flow 
method (Pirsiavash et al. 2011) were taken from Collins 
(2012). From these tables, the following points are revealed:

• Our rank-1 tensor approximation method and our dual L1 
normalized context-aware tensor power iteration method 
perform better than the ICM-like method. One reason is 
that the association probability is retained in the iteration 
process in our methods till the final decision.

• Our dual L1 normalized context-aware tensor power 
iteration method performs better than our rank-1 tensor 
approximation method. In particular, on the CLIF dataset 
both Pc and Pf  are improved, and Pf  has a remarkable 
relative decrease. This demonstrates that the proposed 
motion contexts and their solution are effective. The 
motion context is very useful for reducing the associa-
tion ambiguity, as the decision of the local association 
is influenced by not only its temporal coherence on the 
whole trajectory, but also its spatial interaction with other 

Table 1  Comparison results on 
the CLIF dataset

Method Performance

Correct matching percentage False matching percentage

CLIF-1 CLIF-2 CLIF-3 CLIF-1 CLIF-2 CLIF-3

Hungarian 77.8 88.9 85.9 22.0 11.6 14.2
Network flow 65.4 71.6 74.6 34.1 28.1 25.7
ICM 83.1 89.6 87.3 16.9 10.3 12.9
Tensor approximation 91.1 92.1 91.4 11.9 9.4 9.4
Context power iteration 94.7 96.0 95.8 6.0 4.8 4.1

Table 2  Comparison results 
on the sparse scene of the PSU 
dataset

Method Performance

Correct matching percentage False matching percentage

Sparse-1 Sparse-2 Sparse-3 Sparse-1 Sparse-2 Sparse-3

Network flow (Pirsiavash et al. 2011) 94.57 99.72 99.96 5.43 0.28 0.04
Hungarian 98.84 99.97 99.97 1.03 0.01 0.00
ICM 98.87 99.97 99.95 0.97 0.01 0.00
Min-cost flow (Butt and Collins 2013) – – – 0.41 0.00 0.00
Tensor approximation 99.45 99.98 99.99 0.50 0.00 0.00
Context power iteration 99.74 99.98 99.99 0.24 0.00 0.00

Table 3  Comparison results 
on the dense scene of the PSU 
dataset

Method Performance

Correct matching percentage False matching percentage

Dense-1 Dense-2 Dense-3 Dense-1 Dense-2 Dense-3

Network flow (Pirsiavash et al. 2011) 78.65 98.64 99.77 21.35 1.36 0.23
Hungarian 92.40 99.62 99.86 7.37 0.35 0.11
ICM 93.63 99.74 99.91 6.26 0.24 0.08
Min-cost flow (Butt and Collins 2013) – – – 1.46 0.17 0.10
Tensor approximation 96.98 99.78 99.94 3.01 0.20 0.05
Context power iteration 98.41 99.88 99.94 1.58 0.11 0.05
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associations. Though the performances of the rank-1 ten-
sor approximation method on the PSU dataset are close 
to saturation, yet the embedding of the proposed motion 
context improves the results remarkably.

• Our dual L1 normalized context-aware method improves 
the false matching rate more prominently than the cor-
rect matching rate. This is because motion consistency 
contexts reduce the uncertainty of associations, which 
directly reduces the false matches and thereby indirectly 
increases the correct matching rate.

• The min-cost flow (Butt and Collins 2013) has excellent 
performance on the PSU dataset, but our dual L1 normal-
ized context-aware tensor power iteration method yields 
better results.

• On more challenging sequences, our methods yield a 
larger increase of performance than on less challenging 
sequences.

• The two frame associations-based multi-object tracking 
methods, the Hungarian assignment algorithm and the 
network flow algorithm, perform much worse than the 
rank-1 tensor approximation method and the dual L1 nor-
malized context-aware tensor power iteration method. On 

the CLIF dataset and the dense scene of the PSU dataset, 
our methods yield much higher correct matching percent-
ages and much lower false matching percentages than the 
Hungarian assignment algorithm and the network flow 
algorithm. This indicates that it is very effective to uti-
lize the global temporal affinity and capture high-order 
motion, instead of utilizing only the pairwise association 
affinity.

Figures 4, 5, and 6 show some examples of the association 
results of the rank-1 tensor approximation method, the dual 
L1 normalized context-aware tensor power iteration method, 
and the competing methods on the CLIF-3 sequence, the 
Sparse-1 sequence, and the Dense-1 sequence, respectively. 
It is seen that the rank-1 tensor approximation method and 
the dual L1 normalized context-aware tensor power iteration 
method yield fewer mismatches (association errors) than the 
two frame associations-based methods, the Hungarian asso-
ciation method and the network flow method. Our methods 
perform better than the Hungarian association method and 
the network flow method on both sparse and dense scenarios. 

Fig. 4  Results of multi-object 
association for different meth-
ods on the CLIF-3 sequence: 
a dual L1 normalized context-
aware tensor power iteration 
(with 2 mismatches); b rank-1 
tensor approximation (with 8 
mismatches); c ICM-like asso-
ciation (with 13 mismatches); 
d Hungarian association (with 
30 mismatches); e network flow 
(with 26 mismatches). White/
black rectangles: vehicle detec-
tions in the current/last frame; 
red/green lines: associations on 
two orientations (Color figure 
online)
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These comparisons indicate the effectiveness of the high 
order temporal affinities.

The Dense-1 sequence was used as an example to show the 
process of convergence of our rank-1 tensor approximation 
and our dual L1 normalized context-aware tensor power when 
the number of iterations increases. Figure 7a shows the curve 
of the temporal affinity as a function of the number of varia-
tions for the rank-1 tensor approximation. Figure 7b shows the 
curve of the correct associations, where a binary decision is 
made for every 10 iterations. It is seen that the rank-1 tensor 
approximation tends to converge and the association results 
are improved when the number of iterations increases. Fig-
ure 8a shows the curves of the temporal affinity, the motion 
context affinity, and the temporal and context combined affin-
ity as functions of the number of iterations for the dual L1 
normalized context-aware tensor power iteration. Figure 8b 
shows the curve of the correct associations. It is seen that the 

temporal affinity, the context affinity, and the combined affin-
ity all increase together during the iteration process, and the 
association performance improves gradually. Therefore, the 
designed association affinities are reasonable.

All tests run on a laptop (2.1 GHz Intel Core i7 with 8G 
memory) without code optimization. Table 4 compares the 
runtimes of our rank-1 tensor approximation method, our 
dual L1 normalized context-aware tensor power iteration 
method, and the competing methods on the CLIF dataset 
and the PSU dataset, where the runtime for the object detec-
tion is excluded but the runtime required to build the affinity 
tensors is included. The following points are noted:

• The rank-1 tensor approximation method and the dual L1 
normalized context-aware tensor power iteration method 
overall require less runtime than the ICM-like method, 
in particular on the larger and more complex sequences 

Fig. 5  Multi-object association results of different methods on 360 
example frames in the Sparse-1 sequence: a dual L1 normalized con-
text-aware tensor power iteration (with 0 mismatches); b rank-1 ten-

sor approximation (with 0 mismatches); c min-cost flow (with 0 mis-
matches), d ICM-like (with 1 mismatches); e Hungarian association 
(with 7 mismatches); f network flow (with 6 mismatches)

Fig. 6  Multi-object association results of different methods on 220 
example frames in the Dense-1 sequence: a dual L1 normalized con-
text-aware tensor power iteration (with 1 mismatch); b rank-1 tensor 

approximation (with 6 mismatches); c min-cost flow (1 mismatches), 
d ICM-like (with 22 mismatches); e Hungarian association (with 13 
mismatches); f Network flow (with 30 mismatches)
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CLIF-3 and Dense-1 which include more objects, have 
lower frame rates, and require the production of more 
global trajectory hypotheses.

• The runtimes of the rank-1 tensor approximation method 
and the dual L1 normalized context-aware tensor power 
iteration method are higher than the runtimes of the Hun-
garian association method and the network flow method. 

This indicates that modeling high-order temporal affini-
ties require more runtimes.

• The runtime difference between our rank-1 tensor 
approximation method and our context-aware power 
iteration method is very marginal. This indicates that 
modeling context in our context-aware power iteration 
method does not increase the runtime by very much. The 

Fig. 7  The affinity and associa-
tion performance variations in 
the iteration process for the 
rank-1 tensor approximation 
for one frame set in the PSU 
dataset: a the curve of the affin-
ity as a function of the number 
of iterations; b correct match 
rate curve

Fig. 8  The affinity and association performance variations in the iter-
ation process for the dual L1 normalized context-aware tensor power 
iteration for one frame set in the PSU dataset: a the curves of differ-

ent affinities as functions of the number of iterations; b the correct 
matching rate curve

Table 4  Runtimes of different 
multi-object tracking methods 
on the CLIF dataset and the 
PSU dataset (seconds)

Method Sequences

CLIF-1 CLIF-2 CLIF-3 Dense-1 Dense-2 Sparse-1

Network flow (Pirsiavash et al. 2011) 10 10 24 9 17 2
Hungarian 34 31 383 2 2 1
ICM 93 100 1113 23,452 842 15
Our tensor approximation 86 116 455 936 320 13
Our context power iteration 88 119 459 942 323 14
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motion contexts are efficiently modeled in our context-
aware power iteration method.

8.1.2  PETS 2009 and TUD‑Stadtmitte

Two pedestrian datasets, PETS 2009 and TUD-Stadtmitte, 
were used to test the performance of high-level motion con-
text-based power iteration for pedestrian association. As in 
Huang et al. (2008), the hierarchical association strategy was 
utilized: first, based on the results of pedestrian detection, 
low-level detection associations were carried out to produce 
basic tracklets; then, high-level tracklet associations were 
found to produce object trajectories.

We used the rank-1 tensor approximation to obtain 
the basic tracklets using (53) as the temporal affinity. For 
the high-level tracklet associations, a longer time inter-
val ensures that high-level motion contexts introduced in 
Sect. 6.2.2 are useful for tolerating the inaccuracy of object 
detection. Therefore, we used the proposed dual L1 normal-
ized context-aware tensor power iteration to find the high-
level association on the tracklet sets.
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The association affinity used in (34) is defined by 
cjl = (cpjl + cdjl + ccjl)ctjl.

The pedestrian detection results in Yang and Nevatia 
(2012), Yang and Nevatia (2012) were used as the associa-
tion inputs. As there are no training samples for the PETS 
2009 dataset and the TUD-Stadtmitte dataset, we randomly 
selected 10 consecutive frames from each of these two data-
sets to tune the parameters. The parameter α in (34) was set 
to 0.4 and 0.2 for the PETS 2009 and TUD-Stadtmitte data-
sets respectively, since the object motions are more regulated 
in the PETS 2009 scenarios than in the TUD-Stadtmitte sce-
narios. The parameter � in (67) is independent of scenarios. 
It was set to 25 empirically for both datasets. Finally, two 
kinds of metrics were applied to evaluate the tracking perfor-
mance. The first is the CLEAR MOT metric (Bernardin and 
Stiefelhagen 2008) including multi-object tracking accuracy 
(MOTA) and multi-object tracking precision (MOTP). The 
second metric (Yang and Nevatia 2012a, b) evaluates the 
numbers of mostly/partially tracked (MT/PT), numbers of 
fragments, and ID switches.

Figures 9 and 10 show the tracking results of our dual 
L1 normalized context-aware tensor power iteration method, 
with both contexts shown in Fig. 2, on the PETS 2009 and 
TUD-Stadtmitte datasets, respectively. It is shown that there 
is no ID switch. Tables 5 and 6 compared our multi-object 
tracking methods with state of the art methods in Pirsiavash 
et al. (2011), Yang and Nevatia (2012), Yang and Nevatia 
(2012) on the PETS 2009 and TUD-Stadtmitte datasets 
respectively, where our methods include the rank-1 tensor 
approximation method and the dual L1 normalized tensor 
power iteration methods with high-level context shown in 
Fig. 2a alone, context shown in Fig. 2b alone, or both con-
texts shown in Fig. 2a, b. The following points are noted:

• Our dual L1 normalized context-aware tensor power itera-
tion methods, overall, yield more accurate results than 
the rank-1 tensor approximation method. There are fewer 
fragments and much fewer ID switches, as well as higher 
TA, TP, Prec., and Rec. The ID switch even reduces to 0. 
Both types of motion contexts shown in Fig. 2 improve 
the tracking results. This illustrates the effectiveness of 
the motion contexts on reducing association errors and on 
merging short tracklets into long tracks. A combination 
of these two types of high-level contexts improves the 
performance more significantly. This shows the mutual 
complementarity between the two types of contexts.

• Although our methods utilize the simple histogram 
appearance model, while the methods in Yang and Neva-
tia (2012a, b), which are pairwise association-based, uti-
lize much more powerful learnt appearance model, our 
methods in general perform better than the methods in 
Yang and Nevatia (2012a, b). On the PETS 2009 dataset, 
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our methods have fewer fragments, and higher values for 
MT and Rec. On the TUD-Stadtmitte dataset, our meth-
ods have higher values for MT and Rec. The network 

flow-based algorithm (Pirsiavash et al. 2011) which is 
two-frame association-based performs worse than our 
methods as well as the methods in Yang and Nevatia 

Fig. 9  Tracking results of our dual L1 normalized context-aware ten-
sor power iteration method with both contexts shown in Fig. 2 on the 
PETS 2009 dataset: the trajectory ID is shown in the top left corner 

of the bounding box of each object. The current state of each object 
and its historical trajectory in the most recent 50 frames are also 
shown

Fig. 10  Tracking results of our dual L1 normalized context-aware tensor power iteration method with both contexts shown in Fig. 2 on the Stadt-
mitte dataset
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(2012a, b). These partly indicate the effectiveness of 
high-order temporal affinities.

8.1.3  MOT16 Challenge Benchmark

On the MOT16 challenge benchmark dataset, we tested the 
performance of the dual L1-normalized hyper-context aware 
tensor power iteration method for online multi-object tracking. 
The association affinity used in (49) was defined using the 
appearance affinity and motion consistency. The hyper-context 
in (49) was defined using the spatial structural potential.

The appearance affinity was obtained using a siamese 
neural network with object patch tuples as the inputs. It is 
hard to distinguish objects that close to each other, as the 
bounding boxes overlap and share many common features. 
Thus, we extracted the appearance features just from the 
mask area using a siamese network framework based on the 
mask RCNN (regions with convolutional neural network 
features) with a ResNet-FPN (residual network-feature 
pyramid network) backbone (He et al. 2017) (shown in 
Fig. 11). Objects’ boxes and masks were produced by the 
mask RCNN, and the features were selected by masks from 
the final convolutional layer of the third stage of ResNet50. 
Then, triple samples were input to a shallow siamese neural 
network to extract the 128-dimensional appearance features. 
Let predr, posr, and negr be the feature vectors of the predic-
tion, positive and negative samples for the r-th input tuple. 
The triplet loss is defined as:

(69)

L =
∑
r

max(cos(predr, negr) − cos(predr, posr) +�, 0),

where � denotes the threshold for the margin of separation 
between correct and incorrect pairs and cos(.,.) denotes the 
cosine distance between two vectors. Let f k

i
 be the deep 

appearance feature vector of the observation of association 
i at frame k, extracted by the network. The energy produced 
by appearance affinity for the tuple of associations i, j, and l 
is calculated by cos(f k

i
, f k+1
i

) cos(f k
j
, f k+1
j

) cos(f k
l
, f k+1
l

).

To estimate the motion consistency, the velocity of one 
object was assumed to be a constant in a short period. A 
simple linear model was used to predict the objects state. Let 
�

′
c
 be the predicted observation of association c and �c be 

of the observation of association c. The motion consistency 
between associations i, j, and l is characterized as:

where �1 is a weight parameter.
The spatial structural potential is defined using the rela-

tive structural information of observations, as it is an affine-
invariant potential. To model this affine-invariant property, 
we define the spatial potential of association tuple {i, j, l} as:

where �2 is a weight parameter. We used the absolute differ-
ence of distances between observations rather than relative 
ratio, because the larger the distance the smaller the possibil-
ity of changing the relative position.
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Table 5  Comparison results on 
the PETS 2009 dataset

Method Performance

Rec.↑ Prec.↑ MOTA↑ MOTP↑ MT↑ PT↓ Frag↓ IDs↓

Yang and Nevatia (2012) 91.8 99.0 – – 89.5 10.5 9 0
Pirsiavash et al. (2011) 94.0 97.4 88.9 80.9 89.5 10.5 13 10
Rank-1 tensor approximation 96.0 98.2 92.7 81.8 94.7 5.3 11 7
Ours with contexts shown in Fig. 2a 97.4 98.5 94.7 81.4 94.7 5.3 8 6
Ours with contexts shown in Fig. 2b 96.6 98.8 94.9 81.6 94.7 5.3 8 5
Ours with contexts in both Figs. 2a and 1b 97.7 98.9 96.1 81.8 94.7 5.3 6 4

Table 6  Comparison results on 
the TUD-Stadtmitte dataset

Method Performance

Rec.↑ Prec.↑ MOTA↑ MOTP↑ MT↑ PT↓ Frag↓ IDs↓

Yang and Nevatia (2012) 87.0 96.7 – – 70.0 30.0 1 0
Pirsiavash et al. (2011) 83.8 96.5 75.9 82.6 80.0 20.0 10 8
Rank-1 tensor approximation 83.9 98.8 80.4 87.7 70.0 30.0 5 3
Ours with contexts shown in Fig. 2a 85.4 98.6 81.3 87.8 80.0 20.0 2 2
Ours with contexts shown in Fig. 2b 83.7 99.7 81.8 88.8 80.0 20.0 2 1
Ours with contexts in both Fig. 2a, b 84.0 99.9 82.5 89.3 80.0 20.0 1 0
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The MOT16 challenge benchmark includes a training 
sample set and a test sample set. Each of these sets is com-
posed of seven sequences, with frontal-view scenes taken 
by moving cameras or top-down surveillance setups. Evalu-
ation was carried out according to the following metrics: 
multi-object tracking accuracy (MOTA), multi-object track-
ing precision (MOTP), ID F1 score (IDF1) (Ristani et al. 
2016), mostly tracked targets (MT), mostly lost targets (ML), 
false positives (FP), false negatives (FN), identity switches 
(IDs), and fragmentation (Frag). The samples in the train-
ing set are used for researchers to tune the parameters. The 
ground-truth of the samples in the test set is not supplied to 
researchers. The results on the test set must be sent to the 
MOT16 challenge benchmark dataset organizers who report 
the accuracy of the results. The parameters were tuned to 
yield an optimal multi-object tracking accuracy (MOTA). 
We found that when �1 and �2 are larger than 1.5, the values 
of MOTA are too low. Then, we sampled �1 and �2 from 15 
values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 
1.3, 1.4, and 1.5. The optimal combination of �1 and �2 is 
determined with the maximum of MOTA. For the MOT16-
14 sequence, parameter �1 was determined as 0.4, and �2 
was determined as 1.1. For the all the other sequences, �1 
was determined as 0.7 and �2 was determined as 0.3. Thus, 
two sets of parameter values were used. In order to set the 
correct benchmarking protocol, we also tested our method 
using one set of parameter values, i.e., �1 was set to 0.7 and 
�2 was set to 0.3 for all the sequences.

Table 7 compares our dual L1 normalized context-aware 
tensor power iteration method with the state-of the art meth-
ods on the MOT16 challenge benchmark dataset where 
“Ours-1” refers to the results of our method using two sets 

of parameter values and “Ours-2” refers to the results of 
our method using one set of parameter values for all the 
sequences. It is seen that our tracker is a strong competitor 
to the competing online trackers (Yu et al. 2016; Wojke et al. 
2017; Bewley et al. 2016; Bochinski et al. 2017; Fang et al. 
2018) which are pairwise association-based. In particular, 
our method returns the highest identified detection score 
and MT, and fewer fragments among all the online pairwise 
association-based methods while maintaining competitive 
MOTA scores, ML, and identity switches. This shows the 
effectiveness of the high-order temporal affinities in our 
tracker. Furthermore, our method returns a higher number 
of false positives which impair the tracking accuracy. In 
general, applying a larger confidence threshold to the detec-
tions potentially increases the tracking performance. Most 
of the false positives in our model were generated from the 
sporadic detector responses at static scene geometry. Due to 
high-order spatial structural information and larger temporal 
distance (i.e., the number of the frames before the current 
frame, which are used to find the object associations for 
online tracking), these false positives usually are propagated 
to subsequent association results. As shown by the score of 
IDF1, which is more appropriate than MOTA to evaluate 
the robustness of the tracker, these mismatches do not lead 
to continual identity switches. It is noted that when one set 
of parameter values was used the accuracy of our method 
is only slight reduced. It is still comparable with the state 
of the art. In addition, our model even yields more accurate 
results than some state of the art methods in batch mode, 
such as NOMT which is significantly more complex and 
uses frames in the near future. Some qualitative results are 
shown in Fig. 12. It is seen that objects are tracked correctly 

Fig. 11  The architecture of the siamese neural network for extracting appearance affinity based on identity masks
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when even occlusions are encountered or the scene changes 
greatly due to camera movement. The runtime for object 
associations in our method is approximately 18 frames per 
second and it can be much faster with parallel operation.

To evaluate the effectiveness of proposed high-order 
affinity containing motion consistency and spatial structural 
information, we checked the changes in MOTA under dif-
ferent tensor orders and different temporal distances on the 
MOT16-10 sequence which was recorded using a moving 
camera. As shown in Fig. 13, both the MOTA and IDF1 
are improved along with the increase of the tensor order, as 
richer spatial information is extracted. This clearly shows the 
effectiveness of high-order temporal affinities. We observed 
that more samples from previous times benefit the perfor-
mance of our tracker within a certain period. However, the 
performance is not improved and may even decrease when 
the temporal distance is too long. The reason is that the lin-
ear motion assumption is no longer valid and the appearance 
changes greatly after a long time interval.

To evaluate the effectiveness of our feature extraction 
neural network based on the identity mask, we compared the 
proposed tracker with the DeepSORT tracker whose code is 
available and whose performance is better than other online 
trackers. As shown in Fig. 14, for either DeepSORT or our 
method, using the features with identity masks yields bet-
ter results than using the features without identity masks. 
Whether using the features with or without identity masks, 
the proposed tracker outperforms the DeepSORT tracker.

8.2  Multi‑graph Matching

In real scenarios for multi-graph matching, the graphs often 
have noisy structures with outlier vertices. These vertices 
should not be mapped to any real vertex. By adding dummy 
vertices to graphs, we make the number of the vertices in 
each graph the same. The dummy vertices in a graph are 
allowed to match with non-dummy vertices in other graphs. 
A small affinity is set for the dummy vertices to suppress 
erroneous matches.

To test the performance of our multi-graph matching 
method, extensive experiments were conducted on the fol-
lowing public benchmark datasets:

• The CMU House/Hotel dataset (http://vasc.ri.cmu.edu/
idb/html/motio n/) The House and Hotel sequences con-
tain 111 frames and 101 frames respectively, and each 
frame has thirty landmarks. Following the setting in Yan 
et al. (2014), we randomly selected 10 landmarks as the 
inliers, and randomly selected 3 landmarks from the rest 
as the outliers.

• The WILLOW-ObjectClass dataset (Cho et al. 2013) The 
ObjectClass dataset consists of five real world image 
sequences. Four sequences were used in the experiments Ta
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Fig. 12  Some qualitative results on the MOT16 benchmark: the same identity labeled by box with the same color (Color figure online)

Fig. 13  Performance of our method on the MOT16-10 sequence with different orders of the affinity tensor: The maximum temporal distance was 
set to 30 and the maximum order was set to 4
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including Duck (50 images), Car (40 images), Motorbike 
(40 images), and Winebottle (66 images). There are 10 
manually annotated landmarks in each image, but the 
annotations are not accurate. With the same settings as 
in Yan et al. (2016), the 10 landmarks were used as the 
inliers and supplemented by 2 outliers detected from the 
background using the SIFT detector.

• The repetitive structure dataset (Pachauri et al. 2013) 
This dataset consists of two sequences describing repeti-
tive structures, which make image matching difficult 
due to the ambiguous features. The Building sequence 
(16 images) was selected as the test sequence. For each 
image, we retained 10 landmarks as the inliers and ran-

domly sampled three landmarks from the rest as the outli-
ers.

Graph sets with various sizes were utilized to validate the 
performances of the multi-graph matching methods. Gener-
ally, the experiments were conducted on 4-graph, 6-graph, 
8-graph, 10-graph, and 12-graph matching tasks. For the 
robustness evaluation, 10 random tests were performed for 
each matching task, and the result is the average of all the 
10 tests.

The impacts of the two basic components, the vertex 
affinity and the hyper-edge affinity, vary in different sce-
narios. So, the parameter α in the optimization (59) is 

Fig. 14  Tacking results using 
features with/without identity 
masks

Fig. 15  Matching results of the proposed method across three graphs 
on the CMU-House/Hotel dataset: a the Hotel sequence; b the House 
sequence. The vertices and matches are color-coded, and correct 

matches appear in the same color as the vertices that they connect. 
White circles denote outliers. Best viewed in color (Color figure 
online)
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dependent on the scenario. The more stable the graph struc-
ture, the more confident the component of the hyper-edge 
affinity. For the CMU-House/Hotel and Building sequences, 
the Motorbike and Winebottle sequences, and the Duck and 
Car sequences, we used the first 10 frames in each sequence 
to tune the parameter α. The parameter α was empirically 
set to 8 for the CMU-House/Hotel and Building sequences, 
4 for the Motorbike and Winebottle sequences, and 2 for 
the Duck and Car sequences. The regularized factor σ2 in 
(64) only depends on the triangle features of hyperedges. 
It is independent of scenarios. It was empirically set to 2 
throughout the experiments. The number of the dual L1 nor-
malized tensor power iterations was set to 100 throughout 
all the experiments.

There are two main measures of multi-graph match-
ing: (1) accuracy: the number of correctly matched inliers 
divided by the total number of inliers, as popularly used in 
related work (Cho et al. 2010; Zhou and De la Torre 2016; 
Yan et al. 2015); (2) consistency: the number of consistent 
matches divided by the number of all possible matches (a 
detailed definition can be found in Yan et al. (2014). In our 
work, the accuracy metric was mainly applied, since our 
method naturally guarantees 100% of consistency, which is 
a merit of our method.

The effectiveness of the proposed method was verified by 
comparing with the state of the art (Pachauri et al. 2013; Yan 
et al. 2013, 2014). They are the permutation synchroniza-
tion method (Match-Sync) (Yan et al. 2013), the alternative 
optimization method (Match-Opt) (Yan et al. 2013), and the 
graduated consistency-regularized optimization algorithm 
(Match-Grad) (Yan et al. 2014). The results of the three 
competing methods on the CMU dataset and WILLOWOb-
jectClass dataset are taken from the work in Yan et al. (2014, 
2016).

The proposed optimization objective consists of two 
components: the unary vertex affinity and the hyper-edge 
affinity. Each objective can be used alone in the optimiza-
tion to solve the matching problem. The proposed method 
is flexible to accommodate different kinds of optimizations. 
When the unary vertex affinity is exploited only, the optimi-
zation degenerates into the multi-dimensional assignment, 
and the solution is termed as “Tensor-MDA”. With the Ta
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Table 9  The results of comparison of consistency (%) between the 
3-graph matching carried out by pairwise graph matching (Pairwise) 
and the 3-graph matching directly using tensor-MGM (D-Tensor)

Method Measure CMU-House CMU-Hotel

Pairwise Accuracy 98.7 98.6
Consistency 93.9 96.9

D-Tensor Accuracy 98.1 98.7
Consistency 100.0 100.0
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hyper-edge affinity used only, the problem degenerates into 
the hyper-graph matching (HGM), and the method is termed 
as “Tensor-HGM”. The method for multi-graph matching 
using both the vertex affinity and the hyper-edge affinity is 
termed as “Tensor-MGM”. All the three methods, Tensor-
MAD, Tensor-HGM, and Tensor-MGM, were tested in the 
experiments.

1. The CMU-House/Hotel dataset The qualitative results 
on the Hotel and House sequences are shown in Fig. 15. It is 
seen that our Tensor-MGM method yields few mismatches 
and has an excellent performance. The results meet the full 
consistency, which is derived from the high-order matching 

naturally. The quantitative results on the CMU-House/Hotel 
sequences are presented in Table 8. It is seen that our multi-
graph matching method, Tensor-MGM, which uses both the 
vertex affinity and the hyper-edge affinity performs the best 
in almost all the tests. Moreover, the tensor-MGM method 
has a remarkable improvement over the state of the art. The 
two variants, Tensor-MDA which uses the vertex affinity 
only and Tensor-HGM which uses the hyper-edge affinity 
only, also yield good results on this dataset. The pairwise 
graph matching (2-graph matching) using our tensor-MGM 
method yields an accuracy of more than 99% on the House 
and Hotel sequences. However, for multi-graph matching, 

Table 10  The accuracies of 
our tensor-MGM method for 
different local appearance 
features on the CMU House 
sequence

Number of graphs Color histogram HoG SIFT SURF Deep learning Shape context

2-Graph 98.7 98.9 97.9 98.3 98.5 98.8
4-Graph 96.7 98.1 96.6 96.5 96.3 96.6
6-Graph 91.7 96.6 95.4 90.1 90.1 96.2
8-Graph 85.7 92.3 90.6 83.3 83.0 95.5

Fig. 16  Matching results of 
the proposed method across 
three graphs on the WILLOW-
ObjectClass dataset: a car; b 
motorbike; c wine bottle; d 
duck. The vertices and matches 
are color-coded, and correct 
matches appear in the same 
color as the vertices that they 
connect. White circles denote 
outliers. Best viewed in color 
(Color figure online)
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there is the consistency measure besides the accuracy 
measure. Pairwise associations-based multi-graph match-
ing methods cannot ensure 100% of consistency, while our 
tensor MGM-based multi-graph matching method naturally 
guarantees 100% of consistency. We compare the consist-
ency for the following two methods:

• the 3-graph matching carried out by pairwise graph 
matching using our tensor-MGM (Pairwise)

• the 3-graph matching carried out directly using our ten-
sor-MGM (D-Tensor).

The results are shown in Table 9. It is seen that the D-Ten-
sor method keeps the accuracy of the Pairwise method and 
yields a consistency of 100%. However, the consistencies 
for the Pairwise method are 93.9% and 96.9% for the CMU-
House sequence and the CMU-Hotel sequence, respectively.

To investigate the relevance of the affinity cost vs multi-
graph matching, we compared the results of using different 
local appearance features, i.e., the features of color histo-
gram, Histogram of Oriented Gradient (HoG), Scale Invari-
ant Feature Transform (SIFT), Speeded Up Robust Features 
(SURF), deep learning on AlexNet, and shape context. 
Table 10 shows the accuracy results when different local 
appearance features of vertices are used for our tensor-MGM 
method. It is seen that the results of the 2-graph matching 
and the 4-graph matching for different features are close 
to each other. The results of the 6-graph matching and the 
8-graph matching for the HoG and shape context features 
are higher than those for other features.

2. The WILLOW-ObjectClass dataset The large pose 
and viewpoint variations, flexible landmark  annotations, 
and noisy outliers make the matching on the ObjectClass 
sequences extremely difficult, in  particular for the Duck 
and Car sequences. The qualitative results on the WILLOW 
dataset are shown in Fig. 16. The full matching consistency 
is clearly observed from the figure. The quantitative results 
on this dataset are presented in Table 11. It is seen that our 
dual L1-normalized hyper-context aware tensor power itera-
tion algorithm (Tensor-MGM) yields more accurate results 
than the two variants, Tensor-MDA and Tensor-HGM. 
Our Tensor-MGM method obtains the best results for the 
4-graph and 8-graph matching tasks on all the sequences in 
the WILLOW dataset. For the 12-graph matching task, our 
method yields the most accurate result on the Winebottle 
sequence and the second accurate results on the Car and 
Duck sequences. Although the method in Yan et al. (2014) 
yields higheraccuracy than our Tensor-MGM method for the 
12-graph matching task, as stated in Yan et al. (2014), its 
consistency is about 70% (Yan et al. 2014). As stated above, 
our method naturally yields 100% consistency. The results 
show the effectiveness of our multi-graph matching method 
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as well as the effectiveness of the combination of the vertex 
affinity and the hyper-edge affinity.

3. The repetitive structure dataset The qualitative match-
ing is presented in Fig. 17 which shows the full matching 
consistency. The quantitative results on this dataset are pre-
sented in Table 12. The building sequence has many repeti-
tive patterns and viewpoint changes, but the annotations 
are stable. In this case, our method achieves the favorable 
performance.

Fig. 17  The matching results 
of the proposed method across 
three graphs on the building 
sequence: the vertices and 
matches are color coded, and 
correct matches appear in the 
same color as the vertices that 
they connect. White circles 
denote outliers. Best viewed in 
color (Color figure online)

Table 12  Matching accuracy (%) on the building sequence

Match-Sync 
(Pachauri 
et al. 2013)

Tensor-
MDA

Tensor-
HGM

Tensor-MGM

4-Graph 76.5 82.8 87.3 92.8
6-Graph 82.8 75.3 58.7 93.0
8-Graph 77.9 75.0 53.2 88.3
10-Graph 87.3 73.5 66.3 90.7

Fig. 18  The curves of the united affinity, the vertex affinity, and the hyperedge affinity as functions of the number of iterations: a curves for 
matching the house images; b curves for matching the motorbike images
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We discuss the results on these benchmark datasets from 
the aspects of convergence, vertex affinity, affinity combina-
tion, and complexity:

1. Convergence To test the convergence of the proposed 
dual L1 normalized hyper context-aware tensor power 
iteration, the variation in affinity during the iteration 
process is shown in Fig. 18. There are two examples: one 
is the 4-graph matching on the CMU-House sequence 
and the other is the 4-graph matching on the WILLOW-
Motorbike sequence. The united affinity and the indi-
vidual affinities (i.e., the vertex and hyper-edge affini-
ties) are included in the figure. It is clear that the affinity 
gradually increases during the iteration and the proposed 
method converges.

2. Vertex affinity The proposed method has the advantage 
that it allows the exploration of high-level vertex affin-
ity which is not available in the state of the art methods. 
Although we utilize a simple affinity measure which is 
sensitive to the factors such as large deformations of 
graphs, the state of the art results are still obtained.

3. Affinity combination It was observed from the experi-
ments that both the Tensor-MDA and Tensor-HGM have 
good performances. By combining these two comple-
mentary affinities, the proposed method obtains a much 
better result. This indicates the necessity of incorpo-
rating high-order information across both multi-graphs 
and hyper-edges. In addition, the proposed method is 
adaptable to diverse edge or hyper-edge affinities, such 
as the pairwise edge similarity, the third or higher order 
hyper-edge affinity, and even the hybrid of different 
order hyper-edge affinities.

4. Runtime Table 13 shows, for the CMU-House/hotel data-
set, the runtimes of our dual L1-normalized hyper-con-
text aware tensor power iteration-based graph matching 
method for matching 2 graphs, 4 graphs, 8 graphs and 12 
graphs, where the runtimes include the times required to 
build the affinity tensors. It is seen that the runtimes for 
the CMU-House and CMU-Hotel sequences are simi-
lar. When the number of graphs increases, the runtime 
inevitably increases.

8.3  Discussion on Parameter Tuning

In our work, some parameters, such as the regularized factor 
α, are dependent on the scenarios. To yield state of the art 

results, we chose these parameters differently for different 
datasets and some different sequences, as in previous work, 
such as Yu et al. (2016), Wojke et al. (2017). The reason is 
that the scenarios for the datasets, for example aerial vid-
eos and ground surveillance videos, are quite different. The 
scenario-dependent parameters should be set different values 
in order to obtain more accurate results than the competing 
methods which also vary the parameter values for different 
sequences (Yu et al. 2016; Wojke et al. 2017).

On the CLIF dataset, the PSU dataset, the PETS 2009 
dataset, and the TUD-Stadtmitte dataset, for our tracking 
method, the parameters for the sequences in the same dataset 
have the same values because the scenarios in the dataset are 
similar. On the MOT16 challenge benchmark dataset, only 
the MOT16-13 and MOT16-14 sequences have different val-
ues for the parameters, while all the other sequences have the 
same values of the parameters. Our methods yield the state 
of the art multi-object tracking results on the CLIF dataset, 
the PSU dataset, the PETS 2009 dataset, the TUD-Stadtmitte 
dataset, and the MOT16 challenge benchmark dataset, and 
yield the state of the art multi-graph matching results on the 
CMU-House/Hotel and Building sequences, the Motorbike 
and Winebottle sequences, and the Duck and Car sequences. 
These partly indicate the generalization capabilities of our 
methods.

9  Conclusion

In this paper, the multi-dimensional assignment task has 
been formulated as the row and column constrained ten-
sor approximation problem. A dual L1-normalized context/
hyper-context aware tensor power iteration optimization 
method has been proposed. In this method, temporal affin-
ity and association contexts or hyper contexts are included 
in a combined optimization. Various types of pairwise 
contexts have been modeled. This optimization method 
has been applied to association-based multi-object track-
ing. Contextual cues and high-order motion information 
have been used simultaneously to alleviate the association 
ambiguity. The tensor power iteration method has also been 
applied to multi-graph matching. High-order vertex affini-
ties and hyper-edge affinities have been explored to leverage 
graph matching accuracy and consistency. The experiments 
on diverse datasets have illustrated the effectiveness of the 
proposed methods.

Table 13  The runtimes for our 
multi-graph matching method 
on the CMU-House/Hotel 
dataset

Number of graphs 2 graphs (s) 4 graphs (s) 8 graphs (s) 12 graphs (min)

Runtime
 CMU-House 0.036 0.09 3.29 10.21
 CMU-Hotel 0.037 0.11 3.31 10.18
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