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Abstract
The diversity of base learners is of utmost impor-
tance to a good ensemble. This paper defines a nov-
el measurement of diversity, termed as exclusivity.
With the designed exclusivity, we further propose
an ensemble SVM classifier, namely Exclusivity
Regularized Machine (ExRM), to jointly suppress
the training error of ensemble and enhance the di-
versity between bases. Moreover, an Augmented
Lagrange Multiplier based algorithm is customized
to effectively and efficiently seek the optimal so-
lution of ExRM. Theoretical analysis on conver-
gence, global optimality and linear complexity of
the proposed algorithm, as well as experiments are
provided to reveal the efficacy of our method and
show its superiority over state-of-the-arts in terms
of accuracy and efficiency.

1 Introduction
Classification is a major task in machine learning and pat-
tern recognition. In binary classification, a hypothesis is con-
structed from a feasible hypothesis space based on the train-
ing set {(xi, yi)}Ni=1, where {xi}Ni=1 is a set of data points
with xi ∈ Rd sampled i.i.d. under a distribution from an
input subspace, and {yi}Ni=1 with yi ∈ {−1,+1} is the cor-
responding label set. The obtained hypothesis, also known
as classifier, is “good” when it is capable to generalize well
the “knowledge” learned from the training data to unseen in-
stances. Multi-class cases can be analogously accomplished
by a group of binary classifiers.

Over the past decades, numerous classifiers have been de-
vised. The k-nearest neighbor (k-NN) [Altman, 1992] is an
intuitive and simple one. However, its performance heavily
depends on the selection of k and is sensitive to noisy da-
ta, making k-NN vulnerable in practice. Decision tree (DT)
learning is to construct a tree by partitioning the source set in-
to subsets according to a feature test. CART [Breiman et al.,
1984] and C4.5 [Quinlan, 1993] are two examples of DT. The
main drawbacks of decision trees are their sub-optimality and
overfitting problems. Support vector machine (SVM) [Vap-
nik, 1995], as one of the most robust and accurate approach-
es, aims to find a hyperplane with the maximum margin be-
tween classes. Besides, linear discriminant analysis [Fisher,

1936] and naive Bayes [Domingos and Pazzani, 1997] are
other classic classifiers.

As has been well recognized, a combination of various
classifiers can improve predictions. Ensemble approaches,
with Boosting [Freund and Schapire, 1997] and Bagging
[Breiman, 1996] as representatives, make use of this recog-
nition and achieve strong generalization performance [Zhou,
2012]. The generalization error of ensemble mainly depends
on two factors, formally expressed as E = Ē − Ā, where
E is the mean-square error of the ensemble, Ē represents
the average mean-square error of component learners and
Ā stands for the average squared difference (diversity) be-
tween the ensemble and the components. Error-Ambiguity
decomposition [Krogh and Vedelsby, 1995], Bias-Variance-
Covariance decomposition [Ueda and Nakano, 1996] and
Strength-Correlation decomposition [Breiman, 2001] all con-
firm the above principle. Specifically, Boosting is a family of
ensemble learning meta-algorithms, which improves the clas-
sification performance through letting the subsequent base
learner pay more attention on data that have been wrongly
grouped by the previous bases. AdaBoost is probably the
most prominent Boosting scheme. While Bagging represents
another category that tries to train a set of diverse weak clas-
sifiers by utilizing the bootstrap sampling technique. Sever-
al specific algorithms, such as random subspace [Ho, 1998],
random forest [Breiman, 2001] and rotation forest [Rodriguez
et al., 2006], have been proposed to further enforce the diver-
sity of ensemble members. Certainly, both Boosting and Bag-
ging can be applied to (most of) the conventional classifiers,
e.g. DT and SVM.

Considering the popularity of SVM and the potential of en-
semble, it would be beneficial to equip SVM with ensemble
thoughts. Employing SVM as the base learner of Bagging or
Boosting is a natural manner. Alternatively, this work pro-
vides a model to train a set of SVMs and integrate them as
a homogeneous ensemble. The model jointly minimizes the
training error and maximizes the diversity of base learners.
Different from Bagging, our method does not rely on sam-
pling schemes to achieve the diversity, although it is flexible
to embrace such schemes. Additionally, the proposed method
simultaneously trains all the base learners unlike Boosting
methods doing the job sequentially. Concretely, the contribu-
tion of this paper can be summarized as follows: 1) we define
a new measurement, namely (relaxed) exclusivity, to manage



the diversity between base learners, 2) we propose a novel
ensemble, called Exclusivity Regularized Machine (ExRM),
which concerns the training error and the diversity of com-
ponents simultaneously, and 3) we design an Augmented La-
grange Multiplier based algorithm to efficiently seek the so-
lution of ExRM. Theoretical analysis on convergence, global
optimality and linear complexity of the proposed algorithm is
also provided.

2 Our Method
2.1 Preliminary
Arguably, SVM [Vapnik, 1995][Keerthi and DeCoste, 2005]
is one of the most popular classifiers due to its promising per-
formance. In general, the primal SVM (PSVM) can be mod-
eled as follows:

argmin
{w,b}

Ψ(w) + λ
N∑
i=1

f(yi, φ(xi)
Tw + b), (1)

where f(·) is a penalty function, Ψ(w) performs as a regu-
larizer on the learner w and b is the bias. The function φ(·)
is to map xi from the original D-dimensional feature space
to a new M -dimensional one. Moreover, λ is a non-negative
coefficient that provides a trade-off between the loss term and
the regularizer. If PSVM adopts the hinge loss as penalty, the
above (1) turns out to be:

argmin
{w,b}

Ψ(w) + λ
N∑
i=1

(
1− (φ(xi)

Tw + b)yi
)p
+
, (2)

where the operator (u)+ := max(u, 0) keeps the input scalar
u unchanged if u is non-negative, returns zero otherwise, the
extension of which to vectors and matrices is simply applied
element-wise. Furthermore, p is a constant typically in the
range [1, 2] for being meaningful. In practice, p is often se-
lected to be either 1 or 2 for ease of computation, which cor-
respond to `1-norm and `2-norm loss PSVMs, respectively.
As for the regularization term, Ψ(w) := 1

2‖w‖
2
2 (`2 regular-

izer) and Ψ(w) := ‖w‖1 (`1 regularizer) are two classical
options.

2.2 Exclusivity Regularized Machine
It is natural to extend the traditional PSVM (2) to the follow-
ing ensemble version with C components as:

argmin
{W,b}

Ψ(W) +λ
C∑
c=1

N∑
i=1

(
1− (φ(xi)

Twc + bc)yi
)p
+
, (3)

where W ∈ RM×C := [w1,w2, ...,wC ] and b ∈ RC :=
[b1, b2, .., bC ]T . Suppose we simply impose 1

2‖W‖
2
F or

‖W‖1 on W, all the components (and the ensemble) will
have no difference with the hypothesis directly calculated
from (2) using the same type of regularizer.1 From this view,
Ψ(W) is critical to achieving the diversity.

1We note that splitting the training data into C sub-sets, like the
bootstrap sampling, and training C classifiers separately on the sub-
sets would lead to some difference between the components. How-
ever, this strategy does not essentially advocate the diversity of base
learners. Although how to sample training subsets is not the focus
of this work, our model has no difficulties to adopt such sampling
strategies.

Prior to introducing our designed regularizer, we first fo-
cus on the concept of diversity. Although the diversity has no
formal definition so far, the thing in common among studied
measurements is that the diversity enforced in a pairwise form
between members strikes a good balance between complexi-
ty and effectiveness. The evidence includes Q-statistics mea-
sure [Kuncheva et al., 2003], correlation coefficient measure
[Kuncheva et al., 2003], disagreement measure [Ho, 1998],
double-fault measure [Giacinto and Roli, 2001], k-statistic
measure [Dietterich, 2000], mutual angular measure [Yu et
al., 2011; Xie et al., 2015b; 2015a] and competition measure
[Du and Ling, 2014]. These measures somehow enhance the
diversity, however, most of them are heuristic. One exception
is Diversity Regularized Machine [Yu et al., 2011], which
attempts to seek the globally-optimal solution. Unfortunate-
ly, it often fails because the condition required for the global
optimality, say ‖wc‖2 = 1 for all c, is not always satisfied.
Further, Li et al. proposed a pruning scheme to improve the
performance of DRM [Li et al., 2012]. But, DRM requires
too much time to converge, which limits its applicability. Be-
low, we define a new measure of diversity, i.e. (relaxed) ex-
clusivity.
Definition 1. (Exclusivity) Exclusivity between two vectors
u ∈ Rm and v ∈ Rm is defined as X (u,v) := ‖u � v‖0 =∑m
i=1 u(i) · v(i) 6= 0, where � designates the Hadamard

product, and ‖ · ‖0 is the `0 norm.
From the definition, we can observe that the exclusivity en-
courages two vectors to be as orthogonal as possible. Due to
the non-convexity and discontinuity of `0 norm, we have the
following relaxed exclusivity.
Definition 2. (Relaxed Exclusivity) The definition of re-
laxed exclusivity between u ∈ Rm and v ∈ Rm is given
as Xr(u,v) := ‖u � v‖1 =

∑m
i=1 |u(i)| · |v(i)|, where |u|

is the absolute value of u. The relaxation is similar with that
of the `1 norm to the `0 norm.
It can be easily verified that ‖u‖0 = X (u,1), ‖u‖1 =
Xr(u,1) and ‖u‖22 = Xr(u,u), where 1 ∈ Rm is the vector
with all of its m entries being 1.

Instead of directly employing
∑

1≤c̃6=c≤C Xr(wc,wc̃) as
the final Ψ(W), we adopt the following:

Ψ(W) :=
1

2
‖W‖2F +

∑
1≤c̃6=c≤C

Xr(wc,wc̃)

=
1

2

M∑
i=1

( C∑
c=1

|wc(i)|
)2

=
1

2
‖WT ‖21,2.

(4)

The main reasons of bringing 1
2‖W‖

2
F into the regularizer

are: 1) it essentially enhances the stability of solution, 2) it
tends to mitigate the scale issue by penalizing large columns,
and 3) as the relaxed exclusivity itself is non-convex, the in-
troduction guarantees the convexity of the regularizer. Final-
ly, the proposed Exclusivity Regularized Machine (ExRM)
can be written in the following shape:

min
{wc,bc}

1

2
‖WT ‖21,2 + λ

C∑
c=1

N∑
i=1

(
1− (φ(xi)

Twc + bc)yi
)p
+
.

(5)



Remarks As expressed in Eq. (4), we have motivated
the `1,2 regularizer from a novel perspective. It has been
verified that, as one of mixed norms, the `1,2 is in nature
able to capture some structured sparsity [Kowalski, 2009].
In general, the regression models using such mixed norms
can be solved by a modified FOCUSS algorithm [Kowalski,
2009]. Zhou et al. [Zhang et al., 2010] introduced the `1,2
regularizer into a specific task, i.e. multi-task feature selec-
tion, and used the subgradient method to seek the solution
of the associated optimization problem. The responsibility of
the `1,2 regularizer is to enforce the negative correlation a-
mong categories [Zhang et al., 2010]. Recently, Kong et al.
[Kong et al., 2014] utilized `1,2 norm to bring out sparsity at
intra-group level in feature selection, and proposed an effec-
tive iteratively re-weighted algorithm to solve the correspond-
ing optimization problem. In this work, besides the view of
motivating the `1,2 regularizer, its role in our target prob-
lem, say constructing an ensemble of SVMs, is also different
with the previous work [Kowalski, 2009; Zhang et al., 2010;
Kong et al., 2014]. The functionalities of [Zhang et al., 2010]
and [Kong et al., 2014] are the intra-exclusivity of multiple
hypotheses (tasks) and the inter-exclusivity of a single hy-
pothesis respectively, while our principle is the diversity of
multiple components of a single ensemble hypothesis.

2.3 Optimization
With the trick that 1 − (φ(xi)

Twc + bc)yi = yiyi −
(φ(xi)

Twc + bc)yi = yi(yi − (φ(xi)
Twc + bc)), we intro-

duce auxiliary variables eci := yi − (φ(xi)
Twc + bc). In the

sequel, the minimization of (5) can be converted into:

argmin
{W,b}

1

2
‖WT ‖21,2 + λ

(
Y �E)p+

s. t. P = W; E = Y − (XTP + 1bT ),

(6)

where X ∈ RM×N := [φ(x1), φ(x2), ..., φ(xN )], ec ∈
RN := [ec1, e

c
2, ..., e

c
N ]T , E ∈ RN×C := [e1, e2, ..., eC ]

and y ∈ RN := [y1, y2, ..., yN ]T . And each column of
Y ∈ RN×C is y. Please note that, the constraint P = W
is added to make the objective separable and thus solvable by
the ALM framework. It is worth mentioning that, thanks to
the convexity of each term in the objective and the linearity of
the constraints, the target problem is convex. The Lagrangian
function of (6) can be written in the following form:

L(W,b,E,P) :=
1

2
‖WT ‖21,2 + λ

(
Y �E)p++

Φ(Q,P−W) + Φ(Z,E−Y + XTP + 1bT ),
(7)

with the definition Φ(U,V) := µ
2 ‖V‖

2
F + 〈U,V〉, where

〈·, ·〉 represents matrix inner product and µ is a positive penal-
ty scalar. In addition, Q ∈ RM×C and Z ∈ RN×C are La-
grangian multipliers. The proposed solver iteratively updates
one variable at a time by fixing the others. Below are the
solutions to sub-problems.
W sub-problem With the variables unrelated to W fixed, we
have the sub-problem of W:

W(t+1) = argmin
W

1

2
‖WT ‖21,2 + Φ(Q(t),P(t) −W). (8)

As observed from the problem (8), it can be split into a set
of smaller problems. For each row W·j , instead of directly
optimizing (8), we resolve the following equivalent objective:

W
(t+1)
·j = argmin

W·j

1

2
W·jGWT

·j + Φ(Q
(t)
·j ,P

(t)
·j −W·j),

(9)
where G is formed by:

G := Diag

([
‖W·j‖1

|W·j(1)|+ ε
, ...,

‖W·j‖1
|W·j(C)|+ ε

])
, (10)

where ε → 0+ (a small constant) is introduced to avoid ze-
ro denominators.2 Since both G and W·j depend on W·j ,
to find out the solution to (9), we employ an efficient re-
weighted algorithm to iteratively update G and W·j . As for
W·j , with G fixed, equating the partial derivative of (9) with
respect to W·j to zero yields:

W
(k+1)
·j = (µ(t)P

(t)
·j + Q

(t)
·j )(G(k) + µ(t)I)−1. (11)

Then G(k+1) is updated using W
(k+1)
·j as in (10). The pro-

cedure summarized in Alg. 1 terminates when converged.
b sub-problem Dropping the terms independent on b leads
to a least squares regression problem:

b(t+1) = argmin
b

Φ(Z(t),E(t) −Y + XTP(t) + 1bT )

=
(
Y −E(t) −XTP(t) − Z(t)

µ(t)

)T ( 1

N
1
)
.

(12)
E sub-problem Similarly, picking out the terms related to E
gives the following problem:

E(t+1) = argmin
E

λ

µ(t)

(
Y ◦E)p+ +

1

2
‖E− S(t)‖2F , (13)

where S(t) := Y−XTP(t)−1b(t+1)T − Z(t)

µ(t) . It can be seen
that the above is a single-variable 2-piece piecewise function.
Thus, to seek the minimum of each element in E, we just
need to pick the smaller between the minima when yieci ≥ 0
and yieci < 0. Moreover, we can provide the explicit solution
when p := 1 or 2 (for arbitrary p we will discuss it latter).
When p := 1:

E(t+1) = Ω ◦ S λ

µ(t)
[S(t)] + Ω̄ ◦ S(t). (14)

For p := 2:

E(t+1) = Ω ◦ S(t)/(1 +
2λ

µ(t)
) + Ω̄ ◦ S(t), (15)

where Ω ∈ RN×C := (Y ◦ S(t) > 0) is an indicator
matrix, and Ω̄ is the complementary support of Ω. The
definition of shrinkage operator on scalars is Sε>0[u] :=
sgn(u) max(|u| − ε, 0). The extension of the shrinkage oper-
ator to vectors and matrices is simply applied element-wise.

2The derived algorithm can be proved to minimize ‖WT +ε‖21,2.
Certainly, when ε → 0+, ‖WT + ε‖21,2 infinitely approaches to
‖WT ‖21,2.



Algorithm 1: W Solver

Input: W(t), P(t), Q(t), µ(t).
Initial.: k ← 0; H(k) ←W(t);
for j = 0 : M do

while not converged do
Update G(k+1) via Eq. (10);
Update H

(k+1)
·j via Eq. (11); k ← k + 1;

end
end
Output: W(t+1) ← H(k)

Algorithm 2: Exclusivity Regularized Machine

Input: Training set {(xi, yi)}Ni=1, positive integer C and
positive real value λ.

Initial.: t← 0; W(t) ∈ RM×C ← 1; b(t) ∈ RC ← 0;
P(t) ∈ RM×C ← 0;Q(t) ∈ RM×C ← 1;
Z(t) ∈ RN×C ← 0; µ(t) ← 1; ρ← 1.1;

while not converged do
Update W(t+1) via Alg. 1;
Update b(t+1) via Eq. (12);
Update E(t+1) via Eq. (14) or (15);
Update P(t+1) via Eq. (17);
Update Multipliers and µ(t+1) via Eq. (18);
t← t+ 1;

end
Output: Final Ensemble 1

C (
∑C
i=1 w

(t)
c ,
∑C
i=1 b

(t)
c )

P sub-problem There are two terms involving P. The asso-
ciated optimization problem reads:

P(t+1) = argmin
P

Φ(Q(t),P−W(t+1))+

Φ(Z(t),E(t+1) −Y + XTP + 1b(t+1)T ).
(16)

Its closed-form solution can be obtained by:

P(t+1) = K
(
W(t+1) − Q(t)

µ(t)
+ X(M−E(t+1))

)
, (17)

where we denote K := (I + XXT )−1 and M := Y −
1b(t+1)T − Z(t)

µ(t) .
Multipliers and µ Two multipliers and µ are updated by:

Z(t+1) = Z(t) + µ(t)(E(t+1) −Y + XTP(t+1) + 1b(t+1)T );

Q(t+1) = Q(t) + µ(t)(P(t+1) −W(t+1));

µ(t+1) = ρµ(t), ρ > 1.
(18)

For clarity, the procedure of solving (2) is outlined in Al-
gorithm 2. The algorithm should not be terminated until the
change of objective value is smaller than a pre-defined thresh-
old (in the experiments, we use 0.05). Please see Algorithm
2 for other details that we can not cover in the text.

3 Theoretical Analysis
First, we come to the loss term of ExRM (5), which as-
sesses the total penalty of base learners as

∑C
c=1

∑N
i=1

(
1 −

(φ(xi)
Twc + bc)yi

)p
+

, where p ≥ 1. Alternatively, the loss

of the ensemble {we, be} := { 1
C

∑C
c=1 wc,

1
C

∑C
c=1 bc} is∑N

i=1

(
1 − (φ(xi)

Twe + be)yi
)p
+

. We have the relationship
between the two losses as described in Proposition 1.
Proposition 1. Let {w1, b1},..., {wC , bC} be the componen-
t learners obtained by ExRM (Alg. 2), and {we, be} :=

{ 1
C

∑C
c=1 wc,

1
C

∑C
c=1 bc} the ensemble, the loss of {we, be}

is bounded by the average loss of the base learners.
Proof. This can be established by Jensen’s inequality.
The proposition indicates that as we optimize ExRM (5), an
upper bound of the loss of the ensemble is also minimized.
Thus, incorporating with our proposed regularizer, ExRM
is able to achieve the goal of simultaneously optimizing the
training error of ensemble and the diversity of components.

One may wonder why not minimizing the loss of the en-
semble, which seems reasonable, like:

min
{W,b}

1

2
‖WT ‖21,2 + λ̃

N∑
i=1

(
1− (φ(xi)

Twe + be)yi
)p
+
.

(19)
The reason is that the optimal solution of (19) is exactly that
of PSVM (2). The solution of (19) satisfies that one entry
in the i-th row of W is we(i) and the rest ones are all zero,
having the columns of W absolutely independent. But, the
exclusivity achieved in this way is meaningless. According
to Proposition 1, their equivalence is reached when each wc

is identical with we. Based on the analysis above, we can say
that, compared with (19), ExRM is more proper, which de-
sires to find a balance between the diversity and consistency
(training error) of base learners.

Next, we shall consider the convergence and optimality of
the designed algorithms. We first confirm the property of Alg.
1, which is established by Theorem 1.
Theorem 1. The updating rules (10) and (11) for solving the
problem (9), i.e. Algorithm 1, converges and the obtained
optimal solution is exactly the global optimal solution of the
problem (8).
Proof. Algorithm 1 is actually a special case of the algorithm
proposed in [Kong et al., 2014]. We refer readers to [Kong et
al., 2014] for the detailed proof.
With Theorem 1, we have come to the convergence and opti-
mality of our proposed Algorithm 2.
Theorem 2. The solution consisting of the limit of the se-
quences {W(t)}, {b(t)} and {E(t)} generated by Algorithm
2, i.e. (W(∞),b(∞),E(∞)), is global optimal to ExRM (5),
and the convergence rate is at least o( 1

µ(t) ).

Proof. Due to space limit, instead of the complete proof,
we here only provide the proof sketch including three
main steps: 1) (W(t),b(t),E(t)) approaches to a fea-
sible solution, i.e. limt→∞ ‖P(t) − W(t)‖F = 0 and
limt→∞ ‖E(t) − Y + XtP(t) + 1b(t)T ‖F = 0; 2) All of
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λ

λ

λ

Figure 1: Parameter effect of λ, convergence speed and training time

{P(t)}, {Z(t)}, {Q(t)}, {W(t)}, {b(t)} and {E(t)} are

bounded; 3) limt→∞ 1
2‖W(t)‖21,2 + λ‖(Y ◦ E(t))+‖pp =

limt→∞ Lμ(t−1)(W(t),b(t),E(t),P(t),Q(t−1),Z(t−1))

due to Lμ(t−1)(W(t),b(t),E(t),P(t),Q(t−1),Z(t−1)) =

1
2‖W(t)‖21,2 + λ‖(Y ◦ E(t))+‖pp +

‖Q(t)‖2
F−‖Q(t−1)‖2

F

2μ(t−1) +

‖Z(t)‖2
F−‖Z(t−1)‖2

F

2μ(t−1) . Then the conclusion can be drawn with

the feasibility of solution by Alg. 2, the convexity of problem
(5), and the (descending) property of an ALM algorithm.

In addition, we show the complexity of Alg. 2. Up-
dating each row of W takes O(qC2) and O(qC) for (11)
and (10) respectively, where q is the (inner) iteration num-
ber of Alg. 1. Please note that, due to the diagonality of
G, the inverse of G + μI only needs O(C). Therefore,
the cost of Alg. 1 is O(qC2M). The b sub-problem re-
quires O(CMN). The complexity of the E sub-problem is
O(CMN), for both p := 1 and p := 2. Solving P spends
O(CMN + CM2). Besides, the update of the multipliers
is at O(CMN) expense. In summary, Alg. 2 has the com-
plexity ofO(tCM(qC +N +M)), where t is the number of
(outer) iterations required to converge.

4 Experimental Verification
We adopt several popular UCI benchmark datasets for per-
formance evaluation.3 All experiments are conducted on a
machine with 2.5 GHz CPU and 64G RAM.

Parameter Effect Here, we evaluate the training and test-
ing errors of ExRMC (C ∈ {5, 10, 30} means the component
number) against varying values of λ in the range [0.05, 4].
All the results shown in this experiment are averaged over 10
independent trials, each of which randomly samples half da-
ta from the sonar dataset for training and the other half for
testing. The first picture in Fig. 1 displays the training error
and testing error plots of L2 loss ExRM with L2 loss PSVM
[Nie et al., 2014] (denoted as L2-PSVM) as reference. From
the curves, we can observe that, as λ grows, the training er-
rors drop, as well as composing less base learners leads to
a smaller training error. This is because more and more ef-
fort is put on fitting data. As regards the testing error, the
order is reversed, which corroborates the recognition that the
predication gains from the diversity of classifiers, and reveals
the effectiveness of our design in comparison with L2-PSVM.
Besides, the testing errors change very slightly in a relatively

3Available at www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

large range of λ, which implies the insensitivity of ExRM to
λ. The second picture corresponding to p := 1 shows an ad-
ditional evidence to p := 2. Although the performance gaps
between the different cases shrink, the improvement of ExR-
M is still noticeable. Based on this evaluation, we set λ to 2
for both L1-ExRM and L2-ExRM in the rest experiments.

Convergence Speed & Training Time Although the con-
vergence rate and complexity of the proposed algorithm have
been theoretically provided, it would be more intuitive to see
its empirical behavior. Thus, we here show how quick the
algorithm converges, without loss of generality, on the ijcn-
n1 dataset. From the third picture in Fig. 1, we can observe
that, when p := 2, all the three cases converge with about 30
iterations. The cases correspond to p := 1 take more itera-
tions than p := 2 (about 70 iterations), but they are still very
efficient. Please note that, for a better view of different set-
tings, the objective plots are normalized into the range [0, 1].
The rightmost picture in Fig. 1 gives curves of how the CPU-
time used for training increases with respect to the number of
training samples. Since the training time is too short to be ac-
curately recorded, we carry out each test for 10 independent
trials, and report the total training time (in seconds). As can
be seen, the training time for both p := 1 and 2 is quasi lin-
ear with respect to the size of training data. For all the three
cases that correspond to ExRM5, ExRM10 and ExRM30, the
choice of p barely brings differences in time. The gaps be-
tween the three cases dominantly come from the number of
base learners. The PSVM only needs to learn one classifier
while ExRM requires to train multiple bases.4

Performance Comparison This part first compares our
proposed ExRM with the classic ensemble models including
AdaBoost and Bagging with Tree as the base learner (denot-
ed as AdaTree and BagTree, respectively), and the recently
designed DRM. The codes of DRM are downloaded from the
authors’ website, while those of AdaTree and BagTree are in-
tegrated in the Matlab statistics toolbox (fitensemble). The
base of DRM, ν-SVM, is from LibSVM.

Table 1 provides the quantitative comparison among the
competitors. We report the mean testing errors over 10 inde-
pendent trials. Since the sizes and distributions of the datasets
vary, to avoid the effect brought by the amount of training da-

4In [Nie et al., 2014], the authors have revealed via extensive
experiments, that PSVM (SVM-ALM) is much more efficient than
SVMperf [Joachims, 2006], Pegasos [Shalev-Shwartz et al., 2007],
BMRM [Teo et al., 2010], and TRON [Lin et al., 2008], PCD
[Chang et al., 2008] and DCD [Hsieh et al., 2008].



Table 1: Testing errors (mean ± standard deviation, %) on benchmark datasets

Method (R) german diabetes australian sonar splice liver heart ionosphere A.R.
L1-ExRM10 26.08±1.21 (5) 24.73±1.44 (4) 14.59±0.84 (6) 23.62±3.64 (4) 26.53±1.66 (7) 42.82±2.41 (6) 17.17±1.25 (2) 13.68±2.60 (4) 4.8
L2-ExRM10 26.00±1.16 (3) 24.34±0.92 (1) 14.13±0.40 (3) 23.79±4.36 (5) 26.75±2.26 (8) 36.00±4.05 (1) 17.83±1.81 (4) 13.03±2.20 (2) 3.4
AdaTree10 30.51±1.38 (8) 29.24±2.73 (7) 48.39±1.91 (9) 27.59±6.08 (10) 14.86±3.03 (3) 46.92±3.59 (10) 47.83±3.25 (9) 30.05±3.13 (8) 8.0
BagTree10 31.59±2.59 (9) 30.63±3.38 (9) 46.43±2.58 (7) 25.00±8.26 (6) 19.26±1.78 (4) 46.00±3.58 (8) 47.58±1.94 (7) 38.71±3.02 (10) 7.5
DRM10 25.98±1.20 (2) 24.47±0.89 (2) 14.09±1.55 (2) 27.07±3.05 (9) 35.96±2.85 (9) 36.77±3.79 (3) 19.00±2.22 (5) 19.50±3.67 (5) 4.6

L1-ExRM30 26.27±1.02 (6) 33.50±1.92 (10) 14.24±1.02 (4) 23.62±2.82 (3) 25.64±1.63 (5) 42.77±2.48 (5) 17.17±2.30 (3) 13.30±2.17 (3) 4.9
L2-ExRM30 25.75±1.10 (1) 25.42±1.41 (5) 14.02±0.81 (1) 21.55±3.66 (1) 26.07±1.80 (6) 40.05±3.48 (4) 17.08±1.26 (1) 12.99±1.95 (1) 2.5
AdaTree30 32.22±2.32 (10) 29.85±2.77 (8) 48.94±2.13 (10) 25.17±7.63 (7) 14.45±2.53 (2) 46.26±3.97 (9) 47.58±3.27 (8) 32.34±3.25 (9) 7.9
BagTree30 29.16±1.02 (7) 28.58±2.81(6) 46.59±1.39 (8) 21.72±4.24 (2) 14.00±1.96 (1) 45.85±2.23 (7) 48.08±4.21 (10) 27.86±2.27 (7) 6.0

DRM30 26.05±1.14 (4) 24.47±0.89 (2) 14.43±1.65 (5) 26.55±3.91 (8) 35.98±2.84 (10) 36.67±4.03 (2) 19.00±2.51 (6) 19.70±3.48 (6) 5.4

Table 2: Average training time in seconds

L1-ExRM10 L2-ExRM10 AdaTree10 BagTree10 DRM10 L1-ExRM30 L2-ExRM30 AdaTree30 BagTree30 DRM30

0.0568 0.0575 0.1758 0.3019 16.86 0.1358 0.1091 0.2841 0.2512 59.38

ta and test the generalization ability of the ensembles learned
from different types of data, we randomly sample 150 data
points from a dataset as its training set and the rest as the test-
ing. AdaTree and BagTree are inferior to ExRM and DRM
in most cases. The exception is on the splice dataset. As for
our ExRM, we can see that it significantly outperforms the
others on australian, sonar, heart and ionosphere, and com-
petes very favorably on the german dataset. On each dataset,
we assign ranks to methods. The average ranks (A.R.) of
the competitors over the involved datasets are given in the
last column of Tab. 1. It can be observed that the top five
average ranks are all lower than 5.0, and four of which are
from ExRM methods. The best and the second best belong
to L2-ExRM30 (A.R.=2.5) and L2-ExRM10 (A.R.=3.4) re-
spectively, while the fourth and fifth places are taken by L1-
ExRM10 (A.R.=4.8) and L1-ExRM30 (A.R.=4.9) respective-
ly. The third goes to DRM10, the average rank of which is
4.6. The results on the ijcnn1 are not included in the table,
as all the methods perform very closely to each other, which
may lead to an unreliable rank.

Another issue should be concerned is the efficiency. Table
2 lists the mean training time over all the datasets and each
dataset executes 10 runs. From the numbers, we can see the
clear advantage of our ExRM. L1-ExRM10 and L2-ExRM10

only spend about 0.05s on training, while the ExRMs with 30
components, i.e. L1-ExRM30 and L2-ExRM30, cost less than
0.14s. Both AdaTree and BagTree are sufficiently efficient,
which take less than 0.3s to accomplish the task. But the
training uses 16.86s and 59.38s by DRM for the 10-base and
30-base cases respectively. We would like to mention that
the core of DRM is implemented in C++, while our ExRM
is in pure Matlab. Moreover, as theoretically analyzed and
empirically verified, our algorithm is linear with respect to
the size of training set.

As aforementioned, employing SVM as the base of Ad-
aBoost or Bagging is a way to construct an ensemble SVM.
Here, we repeat the previous experiment to see the difference
among AdaBoost plus L2-PSVM (AdaSVM), Bagging plus
L2-PSVM (BagSVM), DRM and our L2-ExRM. Please note
that L2-ExRM and DRM reduce to PSVM and ν-SVM re-
spectively, when the base number is 1. Table 3 provides the
average testing errors over all the datasets (each method run-

Table 3: Average testing error comparison

# Base 1 5 10 30
L1-ExRM 26.30 (L1-PSVM) 25.65 25.24 25.09
L2-ExRM 25.68 (L2-PSVM) 24.80 24.41 24.85
AdaSVM – 26.51 26.59 26.64
BagSVM – 26.34 25.93 25.69

DRM 28.31(ν-SVM) 27.85 27.70 27.89

s 10 times). From the numbers, we can observe that both
AdaSVM and BagSVM outperform DRM for all the cases,
while ExRM shows the best results among the competitors.

5 Conclusion and Discussion
The diversity of component learners is critical to the ensem-
ble performance. This paper has defined a new measurement
of diversity, i.e. exclusivity. Incorporating the designed reg-
ularizer with the hinge loss function gives a birth to a nov-
el model, namely ExRM. The convergence of the proposed
ALM-based algorithm to a global optimal solution is theoreti-
cally guaranteed. ExRM can take into account more elaborate
treatments for further improvement. For instance, thanks to
the relationship ‖u‖1 = Xr(u,1), the sparsity on W can be
promoted by extending W̃ to [W, β1], where β is a weight
coefficient of the sparsity. In addition, it is difficult to directly
solve the E sub-problem (13) with arbitrary given p. Fortu-
nately, in this work, it is always that p ≥ 1. Thus the partial
derivative of (13) with respect to E is monotonically increas-
ing. The binary search method can be employed to narrow the
possible range of E by half via each operation. In this work,
we did not take any advantages of Boosting and Bagging. It
is positive that ExRM is able to act as the base learner for
both Boosting and Bagging. By doing so, Boosting ExRM
and Bagging ExRM can be viewed as ensembles of ensemble
and expected to further boost the performance.
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