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ABSTRACT

Full projector compensation is a practical task of projector-camera
systems. It aims to find a projector input image, named compen-
sation image, such that when projected it cancels the geometric
and photometric distortions due to the physical environment and
hardware. State-of-the-art methods use deep learning to address this
problem and show promising performance for low-resolution setups.
However, directly applying deep learning to high-resolution setups
is impractical due to the long training time and high memory cost.
To address this issue, this paper proposes a practical full compensa-
tion solution. Firstly, we design an attention-based grid refinement
network to improve geometric correction quality. Secondly, we in-
tegrate a novel sampling scheme into an end-to-end compensation
network to alleviate computation and introduce attention blocks to
preserve key features. Finally, we construct a benchmark dataset
for high-resolution projector full compensation. In experiments,
our method demonstrates clear advantages in both efficiency and
quality.

Index Terms: Projector compensation—;—Spatial augmented
reality—; Projector-camera system

1 INTRODUCTION

As an essential device for spatial augmented reality, projectors are
usually combined with cameras to form smart projector-camera sys-
tems, and are used in many scientific experiments and real-world
applications [4, 5, 14, 24, 34, 35, 38, 42, 43, 46, 48, 53, 54, 65, 70].
However, projection onto non-planar and textured surfaces is still
a challenging problem, which limits the applicability of projector-
camera systems. As a typical solution, full projector compensa-
tion neutralizes geometric and photometric distortions caused by
sensor radiometric variation, lens distortion, and surface material
reflectance [3, 15, 19, 21, 28, 30, 44, 55, 61, 62, 64, 71]. In particular, a
composite function of full projector compensation is estimated from
projector input and the corresponding camera-captured images, and
then, the compensation image is generated based on the estimated
parameters.

Traditional projector compensation methods assume that geo-
metric and photometric distortions are independent. Thus, they
formulate these two tasks separately. For geometric correction, a
common solution is finding the pixel-to-pixel correspondences with
structured light, then generating the corrected image by inverse map-
ping. For photometric compensation, conventional methods define
a per-pixel color mapping function for each camera and projector
pixel pair. Recently, with the successful application of deep learning,
some works are devoted to modeling full compensation using deep
neural networks [26, 29]. Although these end-to-end algorithms
overcome the drawbacks of two-step methods, the memory usage
and computation cost increase rapidly with image resolutions, and
thus they are less practical for high-resolution setups. Therefore,
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Figure 1: Comparison of state-of-the-art end-to-end full compensation
algorithms. FLOPS are calculated on an Nvidia GeForce 1080 GPU
with input size 1024× 1024× 3. The star sizes are proportional to
the number of parameters. The proposed CompenHR (the magenta
star) achieves the highest PSNR with a mediate FLOPS. Note that
CmpSt(Bi) and CmpSt(SR) are highly overlapped.

how to compensate for the high-resolution input of a projector under
constrained conditions has yet to be studied.

By taking into account the memory and time limitations, this pa-
per builds an efficient end-to-end trainable framework named Com-
penHR for full high-resolution projector compensation. After refor-
mulating the problem by integrating a sampling scheme, we design
efficient subnets to model compensation functions. For geometric
correction, a novel subnet named GANet (short for Attention-based
Geometry Correction Network) is utilized to warp high-resolution
input with corrected geometry. We design a grid refinement net-
work to improve the accuracy of sampling grid estimation. Then,
for photometric compensation, an efficient subnet named PANet
(short for Attention-based Photometric Compensation Network) is
exploited to recover the high-resolution images. We employ shuf-
fle/unshuffle [60], instead of traditional downsample/upsample, to
improve PANet and enable it to be trained more efficiently with
a small amount of information loss. Moreover, we integrate the
attention mechanism into both subnets and thus allow CompenHR
to extract more important features from the high-resolution input. In
addition, due to the lack of high-resolution compensation datasets for
evaluation, we construct a dataset with 20 different projector-camera
system setups. In experiments, the proposed CompenHR is clearly
more efficient than state-of-the-art methods. Our contributions can
be summarized as follows:

• We reformulate the full compensation problem for high-
resolution projectors and propose a memory and time efficient
solution named CompenHR.

• We design an efficient sampling grid refinement subnet for
geometric correction, owing to which our CompenHR can
achieve more accurate image warping than the state-of-the-art
methods.



• Instead of simple downsampling/upsampling, we apply novel
pixel unshuffle/shuffle operations in photometric compensa-
tion. Such a design not only avoids information loss but also
improves network training and inference efficiency. Moreover,
the pixel attention mechanism is integrated into both subnets to
focus on key features, which further improves our CompenHR
performance.

• A real high-resolution projector full compensation benchmark
dataset with 25 setups is constructed and is expected to fa-
cilitate future work in this direction. In addition, a synthetic
high-resolution dataset with 100 setups is proposed to pre-train
models.

2 RELATED WORKS

2.1 Compensation methods
Projector compensation is an important task for spatial augmented
reality, and it has been studied extensively. Existing methods can
be divided into three categories: geometry correction, photometric
compensation, and full compensation. Detailed reviews can be found
in [6, 17].

2.1.1 Geometric correction
For conventional applications, where projection surfaces are pla-
nar or multi-planar, traditional methods estimate geometric relations
between the camera, the projector, and the projection surface. Projec-
tions can be simply corrected by homographies [54, 57]. However,
curved surfaces increase the intricacy of geometric correction in
many applications.

A surge of work estimates the pixel mappings between the projec-
tor input and camera-captured images using structured light [9, 40,
56, 63, 68]. These methods project landmarks onto the surface and
capture them with a synchronized camera. Then the 3D geometry
of the surface is reconstructed given the pixel mappings and the
geometric relationships between the cameras, the projectors, and the
surfaces. To reduce the computational complexity, Boroomand et
al. [9] propose a geometric correction method based on local surface
saliency that selects a small set of points rather than dense samples.
Tardif et al. [63] decompose the mapping function from the camera
to the projector into two orientations and determine its parameters
by the correspondence of each pixel without surface reconstruction,
then construct the corrected image by inverse mapping. Tehrani et
al. [64] study an automatic method to estimate all device parameters
and the surface geometry for a multi-projector system without prior
calibration. Particularly, some efforts track the dynamic non-planar
surface by marking patterns with invariant topologies [20,46]. Narita
et al. [46] design fiducial markers that consist of four types of dot
clusters, and track non-rigid surfaces by identifying these dot cluster
IDs in real-time.

2.1.2 Photometric compensation
Photometric compensation aims to cancel the photometric distor-
tion caused by the textured projection surface and the radiometric
response functions, with the assumption that captured images have
already been geometrically corrected. Previous methods estimate
the color transformation by 1-to-1 mapping from the camera to the
projector pixels. Nayar et al. [47] define the mapping function with
a 3×3 color mixing matrix and estimate it using the correspondence
between the captured image and the projected image. On this basis,
Grossberg et al. [16] reduce the number of calibration patterns to six.
Grundhöfer and Iwai. [18, 19] propose a method for an uncalibrated
projector and camera system. The compensation process is modeled
by a non-linear color mapping function that is defined by a per-pixel
thin plate spline interpolation. Considering the pixel redundancies
of surface reflectance and the input coherence of the transfer func-
tion, Li et al. [39] employ sparse sampling and multidimensional
interpolation techniques to improve compensation efficiency.

However, the limitation of dynamic ranges and gamuts of the
projector and camera system results in clipping artifacts in compen-
sation images. To address this issue, some studies take human vision
system properties into consideration. For instance, Wang et al. [66]
employ the perceptually-based physical error metric, which incorpo-
rates the threshold sensitivity, contrast sensitivity, and visual mask
to minimize achromatic artifacts in compensation images. Huang et
al. [31] adjust the brightness and hue of the image by manipulating
the reference white of the CIECAM02 Color Appearance Model
according to the anchoring property. Pjanic et al. [52] propose
an adaptive color gamut acquisition to generate a color-prediction
model, and then optimize the framework in the RLab color space.
Akiyama et al. [2] generate the compensation image by minimizing
the perceptual distance between its projection and the desired image.

Besides, for a dynamic environment, Fujii et al. [15] present an
adaptive photometric model under the assumption that the global
light is approximately unchanged. In their method, parameters are
first estimated by projecting four uniform calibration images, and
then the surface reflectance matrix is updated using the error be-
tween the captured and desired images when the surface reflectance
change exceeds the threshold. Bokaris et al. [7, 8] generate images
using a linear transformation matrix for dynamic surfaces with one-
frame delay. Hashimoto et al. [22] estimate the offset of the adjacent
moment to update the inter-pixel correspondence and optimize the
current reflectance using the present and the sum of past correspon-
dence. Considering the effect of inter-pixel coupling, Shih et al. [61]
calculate the gamma function and the inter-pixel coupling matrix
using two constant grayscale patterns and a ramp grayscale one in
the initial calibration, then estimate the dynamic reflectance using
the projected image as calibration patterns.

Inspired by the successful application of deep learning to image-
to-image translation tasks, Huang et al. [27] explore an end-to-end
photometric compensation method that learns the inverse mapping
from the camera image to the projector image using convolution
neural networks and achieves outstanding performance in static
projector-camera systems. For white diffuse surfaces, Kageyama
et al. [33] propose an effective deblurring technique using a convo-
lutional neural network for dynamic projection mapping scenarios.
It employs an extractor to estimate defocus blur and luminance
attenuation maps and then feeds them to a generator to compute
compensation images.

2.1.3 Full compensation

Full compensation techniques perform geometry correction and pho-
tometric compensation jointly. Park et al. [49] present spatial and
temporal encoding techniques that compensate images via embed-
ding patterns. In temporal encoding, pattern images for geometric
and radiometric calibration are projected and embedded separately;
in spatial encoding, a single pattern that incorporates the informa-
tion for both geometric and radiometric calibration is designed for
simultaneous compensation. Shahpaski et al. [58] also design a
special projected pattern using squares with mixed blue and red
colors for geometric and radiometric calibration. They project this
special pattern onto a printed pattern with a standard checkerboard.
Benefiting from this design, printed and projected corners are able
to be detected from the blue channel and the red channel of captured
images respectively using automatic checkerboard detectors.

Recently, Huang et al. [26, 29] reformulate the physical process
of full compensation and learn the geometric correction and photo-
metric compensation functions using deep neural networks. Park et
al. [50] simulate the full projection process under virtual light and
optimize the compensation image using differentiable rendering.

2.2 Our method
Our method, named CompenHR, belongs to the category of full
compensation and is inspired by CompenNeSt++ [29]. While Com-



penNeSt++ has achieved promising performance on low-resolution
setups, its memory and training time grow dramatically with the
increase of image sizes, making it impractical to compensate for
high-resolution inputs. To address this issue, we reformulate the full
compensation process for high-resolution projectors and propose
to reduce the feature map sizes in the photometric compensation
module. After that, we design networks by combining a variety of
effective schemes to further improve accuracy. For geometric correc-
tion, an attention-based network is designed to refine the sampling
grid, produces accurate image warping; for photometric compensa-
tion, novel sampling operations are introduced to rearrange images
and feature maps. Furthermore, attention mechanisms are employed
to preserve key features from images and their linear transformations.
Benefiting from these schemes, our CompenHR shows great advan-
tages in memory and time efficiency, with even slightly improved
projection quality.

2.3 Attention Mechanism
The attention mechanism used in our CompenHR is inspired by its
popularity in computer vision. In the following, we discuss some
most related works. A pioneer channel-wise attention mechanism is
the squeeze-and-excitation (SE) module [25], which emphasizes the
channels with key information of feature maps. On this basis, Hui
et al. [32] construct the contrast-aware channel attention block by
replacing the pooling with a contrast operation. The Squeeze-and-
Attention (SA) module [74] replaces the full convolutional layers in
SE with the pooling and upsampling operations. Zhang et al. [72]
design the residual channel attention network (RCAN) using residual
channel attention blocks. Dai et al. [12] propose the second-order
attention network (SAN) by considering the high-order channel
feature correlations.

Additionally, a surge of methods incorporate both channel-wise
attention and spatial attention. Features in Long et al. [10] are
weighted by the cascaded channel-wise attention and spatial atten-
tion modules. Woo et al. [69] arrange the channel-wise and spatial
attention modules in parallel and sequentially respectively. Liu et
al. [41] propose the enhanced spatial attention (ESA) blocks which
aggregate local features into more representative features. Muqeet
et al. [45] make ESA blocks more efficient by employing dilated
convolutions. Zhao et al. [73] explores an effective pixel attention
scheme that learns attention coefficients for all pixels.

3 DEEP HIGH-RESOLUTION PROJECTOR COMPENSATION

3.1 Problem formulation
3.1.1 Projector compensation

Our full projector compensation system consists of a pair of un-
calibrated high-resolution projector and camera as well as a fixed
non-planar textured surface. Let the input image be xh (h stands
for high-resolution), and the function that geometrically warps a
high-resolution input image to the camera view be T , and the photo-
metric function that transforms the high-resolution warped image
to the camera-captured image be F , then the image x̃h captured by
camera1 can be formulated as:

x̃h = T (F(xh; l,s)) (1)

where l stands for the environment lighting and s stands for the
surface reflection parameters.

The purpose of full projector compensation is to find the high-
resolution compensation image x∗

h, so that the camera-captured
projection x̃∗

h is close to the ideal viewer-perceived image x′
h:

x̃∗
h = T (F(x∗

h; l,s))≈ x′
h (2)

1Following [29], we use ˜ for the camera-captured image.

We assume that s and l are implicitly captured by the camera-
captured surface image s̃, then the compensation process can be
formulated as:

x∗
h = F†(T −1(x′

h);T
−1(s̃)) (3)

3.1.2 Compensation with a sampling scheme
For high-resolution setups, directly learning Equ. (3) using deep
neural networks is impractical, due to the high memory consumption
and training time. To address this issue, we propose a more memory
and time-efficient method with a novel sampling scheme below.

Let the low-resolution version of xh be xl and plug it into
Equ. (3), projector compensation for low-resolution input can be
formulated as:

x∗
l = F†(T −1(x′

l);T
−1(s̃l)) (4)

Clearly, x′
l can be easily obtained by sampling x′

h. Define ↓ and
↑ as downsampling and upsampling operations, respectively, and let
k ∈ {1,2,3, . . . ,M} be the scale factor, then, according to Equ. (3)
x∗

h is given by:

x∗
h = (F†(T −1(x′

h ↓k);T −1(s̃h ↓k))) ↑k (5)

where ↓k reduces the dimension of the image by 1/k. This allows us
to perform full compensation on the low-resolution images x′

l and
s̃l rather than x′

h and s̃h. Finally, the compensated high-resolution
image x∗

h is reconstructed from x∗
l by an upsampling operation ↑k.

However, reconstructing high-resolution images from low-resolution
ones is an ill-posed problem [37]. Thus, to preserve more informa-
tion from x′

h and s̃h, we employ pixel unshuffle Dk and pixel shuffle
Uk operations instead of ↓k and ↑k, and Equ. (3) becomes

x∗
h = Uk

(
F†(T −1(Dk(x

′
h));T

−1(Dk(s̃h))
))

(6)

Note that T performs image warping and the most intensive
computation is performed in photometric compensation, thus we
only need to perform pixel shuffle on the geometrically corrected
image, therefore we swap the positions of Dk and T −1.

x∗
h = Uk

(
F†(Dk(T −1(x′

h));Dk(T −1(s̃h))
))

(7)

We model the above equation using a deep neural network named
CompenHR π

†
θ(·, ·) ≡ Uk

(
F†

(
Dk(T −1(·));Dk(T −1(·))

))
for conciseness,

where θ = {θF ,θT } are CompenHR’s learnable parameters. Clearly,
it can be trained using image pairs like {x∗

h,i,x
′
h,i} and a captured

surface image s̃h. However, the ground truth of x∗
h is hard to obtain.

Therefore, following [29] we generate a surrogate training set X =

{(x̃h,i,xh,i)}N
i=1 by projecting the sampling images xh,i and capturing

their projections x̃h,i, then CompenHR can be trained by

θ = argmin
θ′

∑
i
L
(
x̂h,i = π

†
θ′(x̃h,i; s̃h), xh,i

)
(8)

In our approach, we define the loss function L using a combina-
tion of pixel-wise l1, l2 and structural similarity (SSIM) [67]:

L= Ll1 +Ll2 +Lssim (9)

3.2 Network design
Based on Equ. (7), our CompenHR integrates two subnets GANet
and PANet, which model T −1 and the combination of Uk, F† and
Dk, respectively. The architecture is shown in Fig. 2(a). It takes
a surface image s̃h and some captured sampling images x̃h,i of
resolution 1920× 1080 as input, and then generates the inferred
projector input/compensation images with a resolution of 1024×
1024. Next, we will introduce the subnets in detail.



Figure 2: An overview of our CompenHR. (a) During training, CompenHR takes the captured surface image s̃ and sampling images
x̃h,1, . . . , x̃h,i, . . . , x̃h,N as input, and outputs the inferred high-resolution projector input. It consists of two subnets: GANet and PANet. (b)
GANet aims to warp the input camera-captured image to the projector’s canonical frontal view. It uses a coarse-to-fine architecture that integrates
two grid generators, two grid samplers, and a novel refinement network. (c) PANet is applied to compensate for the warped image. It incorporates
a siamese encoder with a downsampler and a decoder with an upsampler.

3.2.1 GANet

Our GANet is inspired by WarpingNet [29], a coarse-to-fine architec-
ture for geometric correction. As shown in Fig. 2(b), GANet consists
of two grid generators, two grid samplers, and a grid refinement
network. Let θaff ∈R2×3 be the learnable parameters of the affine
matrix used to roughly warp x̃h and s̃h to the front view, θtps be the
learnable parameters of thin plate spline (TPS) [13] with five control
points used to roughly model the nonlinear warping from the affine
warped image to the desired view. GANet employs grid generators
φ(θaff) and φ(θtps) to generate affine grid gaff and TPS grid gtps,
and then injects them into the first grid sampler ψ(gaff,gtps) that
samples 2D coordinates using bilinear interpolations. This process
can be summarized as:

gcoarse = ψ(φ(θaff),φ(θtps)) (10)

Then, we design a neural network W to further refine the coarse
grid gcoarse:

grefine =W(gcoarse) (11)

The refinement network contains six convolutional layers followed
by ReLU activation and two transpose convolutional layers. To
extract useful information from a large input coarse grid efficiently,
we use the first and third convolutional layers to downsample large-
scale feature maps, and others to extract multi-level features. Then
we place two transposed convolutional layers to upsample feature
maps and generate the refined output. The detailed parameters are
listed in Fig. 2(b). In addition, we employ the attention module
that consists of a 1× 1 convolutional layer followed by sigmoid
activation for efficient feature extraction. This strategy brings better
performance on the geometric correction compared with [29].

After refining the grid, the second grid sampler is used for warping
the input image using the finer sampling grid grefine.

T −1(x̃h) = ψ(x̃h,grefine) (12)

3.2.2 PANet

In PANet, we model F† with a combination of an encoder and
a decoder, and model the downsample/upsample-like operations
Uk/Dk with shuffle/unshuffle operations.

As shown in Fig. 2(c), to reduce computation cost and memory us-
age, PANet employs a pixel unshuffle operation Dk instead of spatial
bilinear interpolation. It reshapes the input x̃h ∈R1024×1024×3 and
s̃h ∈R1024×1024×3 to the first feature maps M̃0

x ∈R256×256×48 and
M̃0

s ∈R256×256×48, without losing pixel information. Benefiting
from it, useful information from the original high-resolution image
can be preserved for extracting subsequent features.

The photometric compensation function F† is modeled by an
encoder and a decoder. The encoder is a siamese network with
shared weights. Each branch stacks three convolutional layers, two
of which are followed by ReLU activation. The decoder extracts
and upsamples multi-level feature maps from the difference between
surface feature maps and captured image feature maps. It consists of
three convolutional layers and two transposed convolutional layers.
The detailed parameters are noted in Fig. 2(c). Besides, two skip
convolution connections are used to capture interaction among multi-
level information. The first skip convolution connection (yellow line
in Fig. 2(c)) consists of a 1× 1 convolutional layer and two 3× 3
convolutional layers. The second skip convolution connection (green
line in Fig. 2(c)) consists of a 1×1 convolutional layer and a 3×3
convolutional layer. The stride of all convolutional layers is 1.



After generating the compensated feature maps, we employ a
pixel shuffle operation Uk to recover the high-resolution image. It
reshapes the multi-channel output of decoder M̃n ∈R256×256×48

to x̃h ∈R1024×1024×3. The use of pixel unshuffle and shuffle op-
erations reduces memory usage and time computation, but it may
also lead to lower precision. To alleviate this issue, we place two
pixel attention modules [73] (the yellow box in Fig. 2(c)) after the
unshuffle layer and the first convolutional layer to preserve more
important information from the reshaped image and the low-level
feature maps. This pixel attention module also consists of a 1×1
convolutional layer followed by sigmoid activation. Furthermore, it
operates on the input directly by using a skip connection. Denote the
input feature map as M ∈RC×H×W , a 1×1 convolution operation
as C, the Sigmoid function as σ , respectively, then the output of the
pixel attention layer is given by:

M ′ = σ(C(M))⊗M (13)

where ⊗ is the element-wise multiplication. Owing to the unshuf-
fle/shuffle operations and the attention mechanism, the memory
and time efficiency of PANet is significantly improved with little
accuracy degradation.

3.3 Training details
We implement CompenHR using PyTorch [51] and optimize param-
eters using Adam optimizer [36]. The model is trained on an Nvidia
GeForce 1080 GPU with 2000 iterations.

For CompenHR, the initial learning rate is set to 10−3 and is
decayed by a factor of 5 for every 1500 iteration. For parameter
initialization, the weights of the refinement network in GANet are
initialized using a normal distribution with a mean of 0 and a stan-
dard deviation of 1; the weights of PANet are initialized using He’s
method [23]. The batch size is set to 4 for all experiments.

4 BENCHMARK

To evaluate the compensation methods for high-resolution projectors,
we build a benchmark dataset with high-resolution image pairs
following [29].

4.1 System configuration
Our projector compensation system consists of a Sony α6400 cam-
era and an EPSON CB-X05 projector whose resolutions are set to
1920×1080 and 1024×768 respectively. An Elgato Cam Link 4K
video capture card is used to capture the camera frames.

The projector is placed about 1 meter in front of the surface, and
the camera is placed within a range of 0.3 to 1 meter around the
projector. In each setup, the camera settings such as exposure, focus,
and white balance are adjusted manually based on the ambient light
and surface material, and fixed during each setup data capturing.

4.2 Datasets
4.2.1 Real data
To the best of our knowledge, there is no public high-resolution
dataset for quantitative evaluation. Thus we construct a real dataset
with 25 setups, and 5 of them have specular surfaces. For each setup,
at least one of the ambient lighting, camera parameters, non-planar
projector surface, etc. is different.

We collect N = 700 colorful high-resolution (1920× 1080 or
higher) images taken in real life and resize them to 1024× 1024
as projector input. During data collection, all these images and a
gray image are projected to the projection surface and captured
by the camera. Thus, the sets consist of image pairs Xtrain =
{(x̃h,i,xh,i)|i = 1 . . .Ntrain}, Y = {(ỹh,i,yh,i)|i = 1 . . .Ntest} and the
uncompensated surface s̃h. Among them, Ntrain = 500 image pairs
are for training and Ntest = 200 for testing. Fig. 3 shows three image
pairs with different setups and surfaces.

Figure 3: Samples of the real dataset. From left to right: textured
surfaces, projector input images, and camera-captured projections.

4.2.2 Synthetic data

Following [29], to improve the practicability of our full compen-
sation method, we build a synthetic high-resolution dataset to pre-
training the photometric compensation module by rendering 100
setups with different projector-camera-surface poses, materials, ex-
posures, and lightings in Blender [11].We use 100 surface patterns
provided by [29] and 500 projected sampling images in this synthetic
dataset are selected from DIV2K training dataset [1] and resized to
1024×1024.

4.3 Metrics

We use the surrogate evaluation protocol presented in [29] for quanti-
tative comparisons, and four metrics are used: PSNR, RMSE, SSIM,
and ∆E (CIE standard for perceptual color differences [59]).

5 EXPERIMENTS

In experiments, the proposed CompenHR is trained on our high-
resolution full compensation dataset with 500 images and tested
with 200 images in each setup, and the final results are averaged
over K = 20 setups.

5.1 Comparison with state-of-the-arts

We compare our CompenHR with an end-to-end trainable method
CompenNeSt++. The original CompenNeSt++ is proposed as the
solution for low-resolution input, we trained it with both high-
resolution and low-resolution image pairs, and we name the two
baselines CmpSt(HR) and CmpSt(LR), respectively. Besides, an
intuitive way to reconstruct high-resolution images is using super-
resolution. Thus, we also use CompenNeSt++ to generate low-
resolution compensation images and then reconstruct the correspond-
ing high-resolution images by bicubic interpolation, and we name
this method CmpSt(Bi). We also combine CompenNeSt++ with
the state-of-the-art deep learning-based super-resolution method
named Residual Local Feature Network (RLFN) [37]. We pre-train
it with DIV2K training dataset [1] and use it as an upsampler without
fine-tuning, we name this baseline as CmpSt(SR).



We train CompenHR and CmpSt(HR) using high-resolution im-
age pairs (1024× 1024) and then train CmpSt(LR) using the low-
resolution image pairs (256×256). In testing, all methods’ input and
output resolutions are set to 1024×1024, but the intermediate reso-
lutions of the two two-step methods (CmpSt(Bi) and CmpSt(SR)) are
256×256. The quantitative comparisons are shown in Tab. 1. To ver-
ify the efficiency of algorithms, in Tab. 3 we further compare the time
and memory consumption of CmpSt(LR), CmpSt(HR), and our Com-
penHR during training. We ignore the consumption during testing
since it is negligible compared with the training phase. CmpSt(Bi)
and CmpSt(SR) share the same trained module CmpSt(LR), thus
they have the same parameters, FLOPS, training time, and memory
consumption.

Table 1: Quantitative comparison of full compensation algorithm on
image quality. Results are averaged over 20 different setups.

Model PSNR RMSE SSIM ∆E

CmpSt(HR) 20.5508 0.1628 0.5980 7.6076
CmpSt(LR) 17.7894 0.2250 0.4673 9.8970
CmpSt(Bi) 19.8987 0.1761 0.5495 8.1626
CmpSt(SR) 19.9099 0.1758 0.5498 8.1719
CompenHR 20.9468 0.1554 0.6011 7.5746

Uncompensated 11.5984 0.4619 0.2414 21.4257

Table 2: Quantitative comparison of full compensation algorithm on
image quality. Results are averaged over 5 different setups with
specular highlight surfaces.

Model PSNR RMSE SSIM ∆E

CmpSt(HR) 20.6376 0.1614 0.6049 7.3914
CmpSt(LR) 18.3643 0.2104 0.4772 9.1279
CmpSt(Bi) 20.1215 0.1710 0.5514 7.8007
CmpSt(SR) 20.1094 0.1712 0.5513 7.8371
CompenHR 21.0135 0.1544 0.6094 7.3994

Uncompensated 11.4566 0.4695 0.2327 20.5489

Table 3: Quantitative comparison of full compensation algorithm on
the amount of computation. Results are averaged over 20 different
setups.

Model Params(M) FLOPS(G) Mem.(M) Time(s)

CmpSt(HR) 833,145 1645.5460 10003 6200.05
CmpSt(LR) 833,145 102.8466 1779 367.70
CompenHR 1327,586 364.1476 4927 1484.45

In Tab. 1, Tab. 2 and Tab. 3, comparing our CompenHR with
CmpSt(Bi) and CmpSt(SR), because our CompenHR is trained with
high-resolution images, it has a higher FLOPS, number of parame-
ters and memory usage in training. But clearly, it also has a better
compensation quality than others in testing Besides, compared with
CmpSt(HR), which also uses high-resolution images for training,
CompenHR achieves a little better quality and trains much faster.
Benefiting from the usage of shuffle/unshuffle operations, the feature
map size is reduced to a quarter of the original sizes so that our Com-
penHR consumes less computation and memory than CmpSt(HR).
Fig. 4 shows qualitative comparisons of all methods. For all samples,
the color and brightness of CompenHR are better than the others,
and the results of CompenHR and CmpHR are sharper than the other
three methods. In particular, the left two columns also show that
CompenHR’s geometric correction is more accurate than the others.

These results further demonstrate that preserving the input image
resolution has a significant influence on the quality of compensation
images. Methods trained with high-resolution images learn more
details than low-resolution ones. In particular, these methods can
handle slight specular highlights to some extent but do not work
well on the area with strong specular reflection.

5.2 Ablation study

In this section, we first validate the proposed CompenHR using
different numbers of training datasets, and then considering the
major ingredients in CompenHR: (1) a novel GANet with sampling
grid refinement; (2) shuffle/unshuffle based sampling operations for
both input and output of PANet; (3) pixel attention mechanisms
for important feature extraction; (4) the loss function combining
l1, l2 and SSIM, we explore the effectiveness of our sampling grid
refinement network, attention mechanism, and loss function.

5.2.1 The effect of the number of training images

To validate the practicability of the proposed method further, we
train our network with different numbers of training images and
evaluate them on our real dataset with 20 setups. The results are
reported in Tab. 4. The image quality of the default CompenHR
using 48 training images is much higher than that using 8 training
images, and then the image quality improves slightly as the number
of training datasets increases.

Furthermore, following [29], we also pre-train CompenHR using
the proposed synthetic dataset with 100 setups, and then fine-tune it
using only 8 images with 1000 iterations. The initial learning rate
for fine-tuning is set to 10−3 and is decayed by a factor of 5 for every
600 iteration. In Tab. 5, the pre-trained CompenHR outperforms the
default CompenHR.

Table 4: Quantitative comparisons of CompenHR with different num-
bers of training datasets. Results are averaged over 20 different
setups.

Model(-#Train) PSNR RMSE SSIM ∆E

CompenHR-8 19.3906 0.1876 0.5155 9.1814
CompenHR-48 20.7544 0.1589 0.5933 7.8020
CompenHR-125 20.7540 0.1589 0.5945 8.0139
CompenHR-250 20.7894 0.1583 0.5987 7.7242
CompenHR-500 20.9468 0.1554 0.6011 7.5746

Table 5: Quantitative comparisons between the default CompenHR
and the pre-trained CompenHR. Results are averaged over 20 differ-
ent setups.

Model(-#Train) PSNR RMSE SSIM ∆E

CompenHR-8 19.3828 0.1888 0.5345 9.3571
CompenHR-pretrain-8 19.7082 0.1800 0.5532 8.8882

Table 6: Quantitative comparisons of CompenHR with different sam-
pling grid refinement networks.

Model PSNR RMSE SSIM ∆E

CmpHR(WPGA) 20.4888 0.1639 0.5743 7.8431
CmpHR w/o r1,r2 20.6910 0.1603 0.5854 7.6807
CompenHR 20.9468 0.1554 0.6011 7.5746



Figure 4: Qualitative comparison on real camera-captured compensation. From top to bottom: surface, uncompensated, desired image,
CmpSt(HR), CmpSt(LR), CmpSt(Bi), CmpSt(SR), and our CompenHR. See high-resolution figures in the supplementary.

5.2.2 Effectiveness of the refinement network in GANet
To show the effectiveness of GANet, we replace GANet with Warp-
ingNet in [29] and name the compensation model CmpHR(WPGA).
As the sampling grid refinement network contains two attention
modules (yellow blocks in Fig. 2(b)), to further explore the role
of this architecture, we also compare CompenHR with the model
without r1 and r2 (short for CmpHR w/o r1,r2). The quantitative
comparisons in Tab. 6 show that CompenHR and CmpHR w/o r1,r2
outperform CmpHR(WPGA) on all metrics. Additionally, the fact
that the image quality of CompenHR is better than CmpHR w/o
r1,r2 also indicates the effectiveness of the attention modules. In
Fig. 5, CompenHR generates the sharpest images for all examples.
Besides, in the two right-most columns, CmpHR(WPGA) cannot
work well for the cluttered surface texture, as it can not warp the
image correctly.

5.2.3 Effectiveness of pixel attention blocks in PANet
To improve the performance of CompenHR, two attention modules
are also introduced to extract key features in PANet. We explore
their effectiveness in this section. After removing each pixel atten-
tion layer respectively, we build new models named CmpHR w/o
p1, CmpHR w/o p2, and CmpHR w/o p1, p2, respectively. In the
comparison experiment, all methods are trained using the proposed

Table 7: Quantitative comparisons of CompenHR with different pixel
attention layers in PANet.

Model PSNR RMSE SSIM ∆E

CmpHR w/o p1 20.6688 0.1606 0.5932 7.7296
CmpHR w/o p2 20.8284 0.1576 0.5953 7.6685
CmpHR w/o p1, p2 20.4553 0.1646 0.5915 8.1839
CompenHR 20.9468 0.1554 0.6011 7.5746

full compensation datasets with 2,000 iterations. The quantitative
comparisons are listed in Tab. 7 and the qualitative comparisons are
shown in Fig. 6.

In the quantitative comparison, their SSIM scores are very close,
while PSNR scores gradually increase, and RMSE and ∆E scores
decrease with the number of pixel attention layers. In particular,
the image quality of CmpHR w/o p2 is slightly better than CmpHR
w/o p1. In Fig. 6, the compensation images of CompenHR have the
closest color and detail to the desired effects. Besides, the detail of
images generated by CompenHR is close to CmpHR w/o p2, and
is slightly better than CmpHR w/o p1, p2, because the first pixel
attention module extracts key features from the reshaped colorful
image directly and the second one further extracts key features



Figure 5: Qualitative comparison of models with different geometric correction methods. From top to bottom: surface, uncompensated, projected
image, CmpHR(WPGA), CmpHR w/o r1,r2 and CompenHR. See high-resolution figures in the supplementary.

from its linear transformation results. Benefiting from the attention
mechanism, CompenHR preserves more image color information in
photometric compensation. The experiment demonstrates that the
pixel attention mechanism with a few additional parameters can help
the model achieve better performance on image color. But adding
more attention blocks only brings a small performance improvement.
Thus, we finally use two attention blocks in our method.

5.2.4 Comparison of different loss functions

The pixel-wise l1 and l2 losses are widely used to penalize the pixel
errors in many image reconstruction tasks. In [29], Huang et al.
verify that SSIM loss can be used for image compensation tasks
to help recover the structural details. Therefore, we compare the
performance of methods that use different combinations of these
three loss functions in Tab. 8.

When using three losses separately, l1 loss achieves the best scores
on all metrics. Using l2 or SSIM alone achieves suboptimal results in
this task, while loss functions with added SSIM loss achieve higher
structure similarity, and loss functions with added ll loss achieve

better color quality. More qualitative comparisons are listed in the
supplementary material. The results confirm that l1 loss contributes
to compensating image color in this task, while SSIM loss tends
to recover image structural details. In addition, l2 loss also helps
improve the image quality slightly. As a result, we employ the
combination of all three losses and achieve the best performance.

Table 8: Quantitative comparisons of CompenHR with different loss
functions.

Loss PSNR RMSE SSIM ∆E

l1 20.7247 0.1595 0.5571 7.7462
l2 20.3679 0.1663 0.5465 8.1671
SSIM 18.9372 0.1964 0.5471 11.3003
l1 + l2 20.7946 0.1582 0.5555 7.7017
l1 +SSIM 20.8897 0.1564 0.5984 7.6284
l2 +SSIM 20.3312 0.1670 0.5917 8.7418
l1 + l2 +SSIM 20.9468 0.1554 0.6011 7.5746



Figure 6: Qualitative comparison of models with the different number of attention layers. From top to bottom: surface, uncompensated, projected
image, CmpHR w/o p1, CmpHR w/o p1, CmpHR w/o p1, p2 and CompenHR. See high-resolution figures in supplementary.

6 DISCUSSION

Our method improves the efficiency of the deep learning-based
method and achieves competitive performance on the high-resolution
compensation task, but it still has some limitations. First, our model
is designed for static projector-camera systems, and in future work,
we will explore online learning methods for dynamic projector com-
pensation. Second, like [29], our GANet does not work for surfaces
with sharp edges and occlusions, and a multi-projector setup may
better address this issue. Third, similar to CompenNeSt++ [29], our
method can handle slight specular highlights but does not work well
on the area with strong specular reflections.

7 CONCLUSION

In high-resolution full projector compensation, memory usage and
time cost increase sharply with the image resolution. This paper
proposes an efficient end-to-end solution by first reformulating the
full compensation problem by integrating the sampling process, then
an attention-based sampling grid refinement network is designed for
better geometric correction. Moreover, unshuffle/shuffle operations
and pixel attention mechanisms are applied to improve quality and

efficiency. Finally, a high-resolution full compensation benchmark
dataset is constructed, and experiments demonstrate the advantages
of the proposed method.
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