A System Prototype for Warehouse View Maintenance

Janet L. Wiener, Himanshu Gupta, Wilburt J. Labio, Yue Zhuge,
Hector Garcia-Molina, Jennifer Widom *

Department of Computer Science

Stanford University
Stanford, CA 94305-2140, USA

wiener@cs.stanford.edu

http://www-db.stanford.edu/warehousing/ warehouse.html

Abstract

A data warehouse collects and integrates data from mul-
tiple, autonomous, heterogeneous, sources. The warehouse
effectively maintains one or more materialized views over the
source data. In this paper we describe the architecture of the
Whips prototype system, which collects, transforms, and in-
tegrates data for the warehouse. We show how the required
functionality can be divided among cooperating distributed
CORBA objects, providing both scalability and the flexibil-
ity needed for supporting different application needs and het-
erogeneous sources. The Whips prototype is a functioning
system implemented at Stanford University and we provide
preliminary performance results.

1 Introduction

A data warehouse is a repository of integrated informa-
tion from distributed, autonomous, and possibly hetero-
geneous, sources. In effect, the warehouse stores one or
more materialized views of the source data. The data is
then readily available to user applications for querying
and analysis. Figure 1 shows the basic architecture of
a warehouse: data is collected from each source, integ-
rated with data from other sources, and stored at the
warehouse. Users then access the data directly from the
warehouse.

As suggested by Figure 1, there are two major com-
ponents in a warchouse system: the integration compon-
ent, responsible for collecting and maintaining the ma-
terialized views, and the query and analysis component,
responsible for fulfilling the information needs of spe-
cific end users. Note that the two components are not
independent. For example, which views the integration
component materializes depends on the expected needs
of end users.

Most current commercial warehousing systems (e.g.,
Redbrick, Sybase, Arbor) focus on the query and ana-
lysis component, providing specialized index structures
at the warehouse and extensive querying facilities for
the end user. In this paper, on the other hand, we focus

This work was supported by Rome Laboratories under Air
Force Contract F30602-94-C-0237 and by an equipment grant
from Digital Equipment Corporation.

Data
Querying & Analysis
Component

Data
Warehouse

Data Integration
Component

Figure 1: The basic architecture of a data warehousing
system.

on the integration component. Specifically, we describe
the architecture of a prototype system that collects data
from heterogeneous sources, transforms and summarizes
it according to warechouse specifications, and integrates
it into the warehouse. This architecture has been im-
plemented in the WHIPS (WareHouse Information Pro-
totype at Stanford) System at Stanford. The Whips
system is currently being used as a testbed for evaluat-
ing various integration schemes (as described briefly in
Section 3).

We designed the Whips architecture to fulfill several
important goals, all interrelated, as follows:

e Plug-and-Play Modularity. We clearly do not wish
to have a system that only works with a specific
warchouse or with particular types of sources, or
that can only manage views in a specific way. On
the contrary, the integration component should be
composed of interchangeable modules, each provid-
ing some of the required functionality. For example,

a warehouse wrapper module is responsible for stor-
ing information into the warehouse, which could be
any database system. If the target database system
changes, we only need to change the warehouse wrap-
per module.

e Scalability. The integration component must deal

with large amounts of data, coming from many
As the load grows, the system should
scale gracefully by distributing its work among more
machines and among more modules. For example, in
our architecture, each materialized view is handled
by a separate module. As the number of views grows,
each view module can be run on a separate machine.
Similarly, the system should support high degrees of
concurrency, so that large numbers of updates can
be processed simultaneously.

sources.

e 24x 7 Operation. Many customers have international
operations in multiple time zones, so there is no
convenient down time, no “night” or “weekend”
when new sources or views can be added and all
of the recent updates can be batched and processed
together to (re)compute materialized views. Thus,
we should be able to add new sources and views
to the system dynamically, and the integration
component should be able to incrementally maintain
the materialized views, without halting queries by
end-users.

e Data Consistency. When data is collected from
autonomous sources, the resulting materialized views
may be inconsistent, e.g., they may reflect a state
that never existed at a source [ZGMW95]. We
would like a system that can avoid these problems,
if it is important to the application. Thus, it
should be possible to specify the desired level of
consistency, and the system should support the
necessary algorithms to achieve the different levels.

e Support for Different Source Types. Not all data
sources are cooperative and willing to notify the
warehouse when their data has changed. On the
other hand, some sources do provide notification,
e.g., by using trigger facilities. The integration
component should be able to handle many different
types of sources, and extract data from them
in the most effective fashion. For example, to
incrementally maintain a view based on data from an
uncooperative source, the system should be capable
of comparing database snapshots and extracting the
differences.

The contribution of this paper is to show how the
functionality required for integration can be decomposed
into modules to achieve our desired goals, and to show
how these modules then efficiently interact. Our solu-
tion is based on the notion of distributed objects, as in

the CORBA model [Obj95, YD96]. Each module is im-
plemented as a CORBA object that can run on any ma-
chine. FEach object has a set of methods that can be
called from other objects. In essence, our architecture
and prototype system may be viewed as an experiment
of CORBA’s suitability for building information pro-
cessing systems such as a data warehouse. Our exper-
ience indicates that distributed object technology, with
the right architecture, is indeed very useful for providing
the modularity and scalability required.

The remainder of paper is organized as follows.
In Section 2, we overview the Whips architecture by
showing the flow of messages that occurs among the
modules during system startup, view creation, and view
maintenance. In Section 3, we describe the modules and
explain the design trade-offs we faced. We then go into
more specific implementation details in Section 4. We
present some preliminary performance results from our
prototype in Section 5 and conclude in Section 6.

For an additional discussion of data warehouses
and their research challenges, we refer the reader to
[Wid95, HGMW195]. These papers provide references
to work upon which our system builds, for instance,
in incremental view maintenance, data consistency for
materialized views, and snapshot difference algorithms
for identifying updates to legacy sources. Due to space
limitations, we do not survey that work here.

2 Whips architecture

In Figure 2 we expand the integration component of
Figure 1 to depict the Whips system architecture. As
shown in the figure, the system is composed of many
distinct modules that communicate with each other
although they potentially reside on different machines.
We implemented each module as a CORBA object,
using the ILU implementation of CORBA [Xer95]. The
commmunication between objects 1s then performed
within the CORBA distributed object framework, where
each object O has a unique identifer used by other
objects to identify and communicate with O.

Using CORBA provides several benefits. First,
CORBA hides the low-level communication so that the
modules themselves are written independently of the
communication; contacting another module is simply a
method call. Second, CORBA guides all communication
by the destination module’s identifier rather than by its
location. Therefore, it is easy to redistribute modules
as the system scales.

In the current prototype, we use the relational model
to represent the warchouse data: views are defined in
the relational model and the warehouse stores relations.
The underlying source data is converted to the relational
model by the source’s monitor and wrapper before it is
sent to any other module. To simplify the presentation,
we will discuss each source as if it contained only

Administrator

View Specifier

View
Manager

Data
Warehouse

e
N

View
Manager

Query Processor

CMonitor > Wrapper > :

Source, Source
1

<
Source,

Figure 2: The Whips system architecture for warehouse maintenance.

a single “relation.” In actuality, each source may
contain multiple relations (or anything else, converted
to relations), and modifications are detected separately
for each of them.

We overview the modules of the architecture first by
tracing the flow of messages in the Whips system. There
are three distinct operations that each have their own
flow of messages. First, at startup, the modules must
identify themselves to each other. Similar actions also
occur whenever a new source becomes available. Second,
whenever a view is defined, the view 1s initialized and
the system is primed to maintain the view. Third,
each defined view is maintained (updated) in response
to modifications that affect the view. Figure 2 shows
the communication patterns during view definition and
maintenance.

2.1 System initialization and source startup

At system startup, the integrator publishes its identifier
and creates the query processor(s). All other starting
modules contact the integrator. More specifically,
the warechouse, meta-data store, and view specifier
contact the integrator and identify themselves. Each
source monitor and wrapper also contact the integrator
to register the source meta-data, which is passed to
the persistent meta-data store and query processor(s).
Currently, there is one monitor and one wrapper per
relation, implemented according to the source data type

(see Sections 3.6 and 3.7). While we expect most sources
to be reported at startup, sources may be added to the
system at any time, by following the same procedure.

2.2 View definition and initialization

Views are defined at the view specifier by a system
administrator. The view specifier type-checks each view
definition with the meta-data store and then passes the
view definition to the integrator, which spawns a view
manager for that view. The integrator also notifies the
monitors for all of the sources involved in the view to
begin sending relevant modifications (if they were not
already). The view manager is then responsible for
initializing and maintaining the view. First, the view
manager generates a (global) query corresponding to
the view definition. It passes the query to a query
processor, which contacts the query wrapper for each
source involved in the view. The query processor joins
the results returned to it by the query wrappers, and
passes the (global) query answer back to the view
manager. The view manager then sends the query
answer to the warehouse wrapper to initialize the view.

2.3 View maintenance

Each monitor of a relation R detects the modifications to
R that occur at its source (see Section 3.7) and forwards
these modifications to the integrator. The integrator
then forwards the modifications to all interested view

managers (see Section 3.3). Each view manager then
uses one of the Strobe algorithms for view consistency
[ZGMW95] to compute the corresponding changes to the
view at the warehouse. This computation may involve
generating a (global) query, which is sent to the query
processor and evaluated as at view initialization time.
The returned query result is then adjusted as necessary
by the view consistency algorithm and possibly held and
combined with other query results. When the combined
modifications will leave the view in a consistent state,
the view manager sends the set of adjusted query results
to the warehouse wrapper, which applies them to the
warehouse view as a single transaction, bringing the
view to a new consistent state.

2.4 Communication and message ordering

Communication messages are sent asynchronously dur-
ing view maintenance, which means that delays in com-
munication should not hold up the processing at any
module. Note that in our architecture, messages sent
from a source may arrive at a view manager by two
paths. Modifications are sent from the monitor to the
integrator to the view manager. Query results are sent
from the wrapper to the query processor to the view
manager. The architecture cannot guarantee that two
messages sent by different paths will arrive in order, yet
the view consistency algorithms require the view man-
ager to know about all previous modifications when it
receives a query result.

One possible solution is to also send query results via
the integrator and to send modification synchronously
from the integrator to the view manager. However, this
would require both more messages and more expensive
(synchronous) messages.

Our solution is to use sequence numbers, instead.
Each monitor has its own sequence counter (per rela-
tion) and each modification is tagged with a sequence
number when it is sent to the integrator. In addition,
each wrapper tags its query results with the sequence
number of the last modification sent by the correspond-
ing monitor. The query processor builds an array of
sequence numbers returned by the wrappers, one per
relation, as part of each query result. The view man-
ager also keeps an array of sequence numbers, one per
relation, corresponding to the last modification i1t has
received. When a query result arrives, the view man-
ager then compares the query result array with its own
array. If any query result sequence number is higher
than the view manager’s corresponding sequence num-
ber, the view manager waits for the modification before
continuing. Note that this solution requires each single
source query to receive a sequence number at least as
high as any modification that may be reflected in the
query result, and communication between the monitor
and wrapper is involved. However, no special concur-
rency control is needed.

3 Whips modules

In this section, we describe the modules of the Whips
architecture in more detail. For each module, we
discuss the current implementation, design alternatives
we considered, advantages of the current design, and
extensions we would like to make. The modules are
described below in roughly the order in which they are
encountered during view definition and materialization.

3.1 View specifier

Views are defined in a subset of SQL that includes select-
project-join views over all of the source data, without
nesting. Optionally, the view definition may also specify
which Strobe algorithm to use for view consistency.
When a view is defined, the view specifier parses it
into an internal structure we call the view tree, adds
relevant information from the meta-data store (e.g., key
attributes, attribute types), and sends the view tree to
the integrator.

We are currently adding simple SQL aggregate oper-
ators (min, max, count, sum, and average) to the view
language. We plan to add index specification capab-
ilites for each view. We also plan to include the option
of specifying that the view should include historical in-
formation (although the source data does not).

3.2 Meta-data store

The meta-data store keeps catalog information about the
sources and how to contact them, the relations stored at
each source, and the schema of each relation. The meta-
data store also keeps track of all view definitions.

3.3 Integrator

The integrator coordinates both system startup, in-
cluding new source additions, and view initialization.
However, the main role of the integrator is to facilitate
view maintenance, by figuring out which modifications
need to be propagated to which views. To do so, the in-
tegrator uses a set of rules that specify which view man-
agers are interested in which modifications. These rules
are generated automatically from the view tree when
each view is defined. In the simplest case, the rules
dictate that all modifications to a relation over which
a view is defined are forwarded to the corresponding
view manager. Currently, the integrator is implemented
as an index over the view managers, keyed by the rela-
tions. We would like to extend the integrator to filter
the modifications for each view. For example, a selec-
tion condition in a view definition might render some
modifications irrelevant to that view (although relevant
to other views).

Although we have initially built the system with
one integrator, an advantage of our design is that
the integrator only depends on the view definitions.
Therefore, the integrator can be replicated to scale the

system. One integrator would be designated to spawn
the view managers for each view definition, and to
register the view managers with the other integrators.

3.4 View manager(s)

There is one view manager module responsible for main-
taining each view, using one of the Strobe algorithms (as
specified in the view definition) to maintain view con-
sistency. The different Strobe algorithms yield differ-
ent levels of consistency depending on the modification
frequency and clustering; all of the algorithms require
keeping track of the sequence of modifications and com-
pensating query results for modifications that may have
been missed. A full discussion of the algorithms may be
found elsewhere [ZGMW95].

There are two advantages to using one view manager
per view. First, the work of maintaining each view
can be done in parallel on different machines. Second,
each view may employ a different Strobe algorithm, to
enforce a different level of consistency for its view.

3.5 Query processor(s)

The query processor is responsible for distributed query
processing, using standard techniques such as sideways
information passing and filtering of selection conditions
[OV91] to prune the queries it poses to the wrappers. It
tracks the state of each global query while waiting for
local query results from the wrappers.

The primary advantages of separating the query
processing from the view manager are that the view
manager can generate global queries, unaware of the
distributed sources; the query evaluation code, which is
commmon to all of the Strobe algorithms, is only written
once; and a single query processor can handle queries
for many view managers. Because the wrappers hide
the source-specific query syntax, the query processor
generates single source queries as if the sources were
relational databases.

Currently, the query processor waits for each single
source query result from the wrapper before continuing.
We are extending the query processor to work concur-
rently on evaluating multiple queries; while waiting for
a query result from a given source, the query processor
can then generate another single source query or apply
a single source query result to a global query.

The architecture provides for multiple query pro-
cessors as needed to handle the number of queries in the
system. One design issue is then how each view manager
chooses a query processor for each query. One option
lets the view manager choose a query processor, either
at random or with a hint from the integrator. However,
a better alternative provides an additional module that
exists purely to schedule queries to query processors.
This scheme is most likely to scale to large numbers of
view managers and queries. Note that multiple query

schedulers could be added if needed, where each sched-
uler handles N query processors, and each view manager
always sends its queries to a given query scheduler.

3.6 Wrappers

Each wrapper is responsible for translating single source
queries from the internal relational representation used
in the view tree (which resembles relational algebra) to
queries in the native language of its source. For example,
a relational database wrapper would merely translate
the relational algebra expression into SQL. A wrapper
for a flat file Unix source might translate the algebra
expression into a Unix grep for one selection condition,
use postprocessing to apply further selection conditions
and projections, and then transform the result into a
relation. As stated above, using one wrapper per source
hides the source-specific querying details from the query
processor and all other modules: all wrappers support
the same method interface although their internal code
depends on the source.

3.7 Sources and monitors

Each source may be completely autonomous of the
warehouse and of the Whips system. However, we do
take advantage of sources that are willing to cooperate
(notify the system of changes) when we build monitors
for them. Like the wrappers, the monitors all support
a uniform method interface. However, their code differs
according to the underlying source.

Each monitor detects the modifications that are per-
formed (outside the Whips system) on its source data.
These modifications are then sent to the integrator. Cur-
rently, we have implemented trigger-based monitors for
cooperative (relational) sources, and snapshot monitors
for flat file sources that only provide periodic snapshots
of the source data. We describe algorithms for efficient
change detection on snapshots elsewhere [LGM95]. We
are working on adding IBM’s DataCapture to the sys-
tem; DataCapture is a log-based monitor which reads
the log for DB2 and generates a table of source changes.

Currently, once a monitor is told that there is at
least one view interested in the source, it notifies the
integrator of all source modifications. However, we plan
to enhance the monitors by filtering modifications based
on selection conditions and projecting only relevant
attributes (those involved in a selection condition,
projection or join, or which are keys for the relation
[GM95]) in the view definition. Note, though, that
filters applied at the monitor must apply to all view
definitions. View-specific filtering must be performed at
the integrator.

3.8 Warehouse and warehouse wrapper

The warehouse in the Whips architecture may be
any relational database. Of course, some relational

databases are optimized for querying warchouse data,
e.g. Redbrick [Red95], and may be more appropriate.

The warchouse wrapper receives all view definitions
and all modifications to the view data in a canonical
(internal) format, and translates them to the specific
syntax of the warehouse database. The wrapper thus
shields all other modules in the Whips system from the
particulars of the warehouse, allowing any database to
be used as the warehouse. All modifications received by
the warehouse wrapper in a single message are applied
to the warehouse in one transaction, as needed by the
Strobe view consistency algorithms.

4 Whips implementation

All of the code is written in C++ and C, except the view
parser portion of the view specifier, which is written
in Lex and Yacc. We currently use a Sybase database
[Syb92] for the warechouse. We have also experimented
with a Sybase source with a monitor that uses triggers
and a flat file source whose monitor uses the Windowing
Snapshot algorithm [LGM95] to detect modifications.
The Whips system currently runs on DEC Alphas and
IBM RS/6000s. In the tests below, we used five separate
machines for the modules: one for the integrator, view
managers, and query processor, and one each for the
warehouse wrapper, view specifier, Sybase source, and
monitors and wrappers.

5 Performance

In this section, we present the results of preliminary per-
formance experiments on the Whips prototype system.
We performed two experiments, one to measure the sys-
tem latency in propagating a single modification from a
source to the warehouse, and one to measure the system
throughput in propagating modifications.

For both experiments, the Whips system consisted
of two sources containing one relation each. The
daily_stock relation is a flat file containing a daily
feed of stock prices from the NYSE and NASDAQ
Stock Exchanges. The monthly_pe relation is a Sybase
relation that provides the price-to-earnings (pe) ratio of
each stock. (In the future, the pe’s will be obtained
from a Dialog source [Dia94] for this application.) The
two relations are defined as follows, where the italicized
attributes are the keys:

daily_stock(ticker, date, high, low, volume,
close)
monthly pe(ticker, pe)

Two views were defined for the experiments, a Copy
view that was a copy of the daily_stock relation, and a
Join2 view that joined the two relations on the ticker
attribute, as follows.

INTEGRATOR
(43 ms)

TOTAL =304 ms VIEW
MANAGER

(55 ms)

QUERY
PROCESSOR

M ONITOR (39 ms)
OMMUNICATIO

Figure 3: Time spent in each module while maintaining
a view.

define view Copy as
select *
from daily_stock

define view Join2 as

select daily stock.ticker, daily_stock.date,
daily_stock.close, daily_stock.volume,
monthly_pe.pe

from daily_stock, monthly pe

where daily_stock.ticker=monthly pe.ticker
and monthly pe.pe > 119.5

5.1 System latency

In the first experiment, we measured the system latency
in propagating a single detected modification from the
monitor to the Join2 view at the warehouse. We
simulated insertions to the daily_stock relation and
recorded the time spent by the Whips system in each
module in processing that one insert. We waited for a
steady state and recorded the time for each module for
20 insertions. The average time spent in each module
is shown in Figure 3, for a total time of 304 ms. The
communication time is the portion of the total time not
spent in any module.

As shown in the figure, a roughly equal amount of
time is spent in each module. Therefore, no one module
should be a bottleneck for propagating modifications in
the system.

Although for these experiments, we used small ver-
sions of the relations containing 150 rows each, when we
ran the experiment with larger versions of the relations
(over 10,000 rows each), only the time at the monitors
and wrappers increased: it takes slightly longer to de-
tect the change and slightly longer to find join matches
for it. The total time was therefore 340 ms, about 11%
slower.

= o N
Q T @
|
>
S.
()
\
\
\
\
\
\

ik
N\
A\

inserts processed / sec

0O 5 10 15 20
inserts/sec

Figure 4: Arrival rate of modifications at the warehouse.

5.2 System throughput

In the second experiment, we measured the system
throughput. We varied the number of modifications
at the source per second from 1 to 20, and measured
how many modifications appeared at the warehouse per
second, for both the Copy and Join2 views. (Twenty
modifications per second is roughly 1.8 million modific-
ations per day.) Each modification was an insert into
the relation daily stock. We ran the experiment for
two minutes. Figure 4 shows that, as expected, as we
increase the insertion rate, the Whips system processes
more total modifications, but a smaller percentage of the
total.

While a latency of 304 ms might predict processing
only 3 inserts per second, since the modules’ processing
time can overlap, we expected a throughput inversely
proportional to the slowest module, the view manager,
of roughly 18 inserts per second (1000/55). However, in
the current implementation, the query processor waits
for each local query result from the wrapper before
continuing. Therefore, the maximum throughput is
inversely proportional to the time for the query processor
and wrapper combined, or 11.6 inserts per second. The
maximum we observed was 11.3; when more inserts were
sent by the monitor, they generated longer and longer
queues at the other modules.

This experiment shows that the throughput is as good
as the slowest module. Therefore, by replicating the
modules, each replica can handle as much work and the
system can scale to handle larger modification rates and
more defined views. For example, in the above scenario,
we could add more query processor modules to handle
the heavy query workload, and also extend the query
processor to handle additional queries while waiting for

query results from the wrappers.

6 Conclusions and future work

In this paper, we described the Whips architecture for
warehouse creation and maintenance. The Whips sys-
tem allows views over multiple, heterogeneous, autonom-
ous, sources and provides incremental view maintenance
in a modular and scalable fashion. The Whips system
can thus grow while continuing to consistently update
all defined views and to allow concurrent querying and
analysis at the warehouse.

Future work on the Whips system includes adding
foreign functions to the view definitions, to translate
different representations of data into comparable formats
(e.g., dollars to yen) and filtering modifications at the
integrator so that view managers are only informed
of modifications relevant to their view (not simply all
modifications to relations in the view). We are also
designing algorithms for crash recovery; in order to
recover from a crash, not only do all source and view
definitions need to be persistent (they already are), but
also all modifications currently being processed must be
remembered and recovered.

We also plan to do more performance testing and
tuning of the prototype system. Adding system statistics
could be of great benefit. For instance, usage statistics
of the views defined could help decide how often the view
should be updated. Query processor and integrator load
statistics could help in load balancing.

Finally, we are interested in keeping track of the
relationships among views and using them to make view
maintenance more efficient. In the examples in this
paper, it was always necessary to examine the source
data to update each view. However, some views may
be self~-maintainable [QGMW95], possibly by querying
other views stored at the warehouse rather than the

sources.

References

[Dia9%4] Dialog Information Services, Inc. Dialog
Pocket Guide 1994, 1994.

[GM95] A. Gupta and 1. S. Mumick. Maintenance

of Materialized Views: Problems, Techniques,
and Applications. [IFEF Data FEngineering
Bulletin, 18(2):4-19, June 1995.

[HGMW'95] J. Hammer, H. Garcia-Molina, J. Widom,
W. Labio, and Y. Zhuge. The Stanford Data
Warehousing Project. IEEF Data Engineering
Bulletin, 18(2):41-48, June 1995.

W. J. Labio and H. Garcia-Molina. Ef-
ficient Snapshot Differential Algorithms for
Data Warehousing. In Proceedings of the In-
ternational Conference on Very Large Data
Bases, 1995. To appear.

[LGMO5]

[Obj95] Object Management Group (OMG), Fram-
ingham, MA. The Common Object Request
Broker: Architecture and Specification, July
1995.

[OV91] M. T. Ozsu and P. Valduriez. Principles of
Distributed Database Systems. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[QGMW95] D. Quass, A. Gupta, I. S. Mumick, and
J. Widom. Making Views Self-Maintainable
for Data Warehousing. Technical report,
Stanford University, 1995.

[Red95] Red Brick Systems. Red Brick Warehouse,
1995.

[Syb92] Sybase, Inc. Command Reference Manual,
release 4.9 edition, 1992.

[Wid95] J. Widom. Research Problems in Data
Warehousing. In Conference on Informa-

tion and Knowledge Management, 1995. Also
http://db.stanford.edu/pub/widom /1995 / warehouse-
research.ps.

[Xer95] Xerox Corp. ILU Reference Manual, March
1995.
[YDO6] Z. Yang and K. Duddy. CORBA: A Platform

for Distributed Object Computing. Operating
Systems Review, 30(2):4-31, April 1996.

[ZGMW95] Y. Zhuge, H. Garcia-Molina, and J. L.
Wiener. The Strobe Algorithms for Multi-
Source Warehouse Consistency. Technical
report, Stanford University, 1995. Also
http://db.stanford.edu/pub/zhuge/1995 /consistency.ps.

