
Rethinking Virtual Network Embedding in
Reconfigurable Networks

Max Curran, Md. Shaifur Rahman, Himanshu Gupta and Vyas Sekar†
Department of Computer Science, Stony Brook University, NY, USA.

†Department of ECE, Carnegie Mellon University, PA, USA.

Abstract—The virtual network embedding (VNE) problem of
mapping virtual network (VN) requests to a substrate network
is a key component of network virtualization in datacenters.
In a bid to improve datacenter network’s performance and
cost, there has been recent interest in “reconfigurable” network
architectures, wherein the network topology can be changed at
runtime to better handle current traffic patterns. Such reconfig-
urable networks seem naturally well-suited for efficient network
virtualization—as networks can be “tailored” to accommodate
the incoming VN requests. Motivated by the above, in this
paper, we address the problem of virtual network embedding
in reconfigurable networks; to the best of our knowledge, this
has not been addressed before. In particular, we address the VNE
problem in reconfigurable networks under two different models
of VN link demands: fixed-bandwidth and stochastic-bandwidth
demands. The former is the traditional model, while we propose
the the latter to improve network utilization and leverage the
runtime reconfiguration capability of reconfigurable networks.
For the stochastic demand model, we employ a novel concept of
embedding with “runtime-binding,” wherein the embedding of a
VN link is “configured” at runtime (via network reconfiguration)
depending on the prevailing network state and traffic. We
evaluate the efficiency of our proposed models and techniques via
simulation using real VN requests and traffic statistics from large
datacenters, and show that our proposed models and techniques
offer significant performance advantages (up to 30-40%) over
traditional models.

I. INTRODUCTION

Network virtualization has recently gained intensive atten-
tion within both the research community as well as indus-
try [1]. It enables sharing of virtualized resources which is a
key enabler for cloud computing. In a network virtualization
environment, multiple tenants can request computing resources
in the form of virtual networks (VNs) to offer services to
their end users, and infrastructure providers serve the requests
efficiently to maximize their monetary gain. Tenants benefit
by not having to make significant investment in physical
infrastructure.

A key component of the above paradigm is efficient allo-
cation of shared resources to the VN requests, i.e., the VN
embedding (VNE) problem. Typically, a VN is represented
as a graph with CPU and bandwidth demands associated with
nodes and links respectively, and the VNE problem is to reject
or embed the arriving VNs onto the substrate network, such
that the total revenue from accepted VNs is maximized. The
VNE problem is well-known to be NP-hard [2]. In fact, we
show (§II) that the online VNE problem is inapproximable
even for very special cases.

In this work, we revisit the VNE problem in light of recently
proposed reconfigurable network architectures, which have the
ability to change the network topology at runtime based on the
network state (e.g., prevailing network traffic). Examples of
reconfigurable networks include c-Through [3], Flyways [4],
[5], Firefly [6], [7], ProjecToR [8], etc.; they use steerable
wireless (free space optics or RF) devices or optical switches
to reconfigure the network. We stipulate that reconfigurable
networks are particularly well-suited for efficient allocation
of VNs, as they can tailor the network topology based on
the specific VN requests. However, the VNE problem in
reconfigurable networks has not been addressed before, to the
best of our knowledge. The key challenge in handling VNE
problem in reconfigurable networks is to take advantage of the
flexibility in configuring the network topology—in particular,
when and how to reconfigure the network in response to
arriving VNs. We show that failing to reconfigure the network
appropriately can affect performance. To best leverage the
reconfiguration capabilities, we propose the use of stochastic-
bandwidth demand model which introduces additional chal-
lenges to develop an efficient embedding strategy, e.g., runtime
binding of link embeddings.

We consider two different models to represent band-
width demands of a VN link: (i) fixed-bandwidth demand
model, wherein each VN link demand is expressed as a
fixed bandwidth (as in the traditional VN models), and (ii)
stochastic-bandwidth demand, wherein each VN link demand
is represented as stochastic traffic parameters. The stochastic-
bandwidth demand model is motivated by various factors in
the context of reconfigurable networks: (a) to improve overall
network utilization, (b) to better leverage the runtime recon-
figuration ability of reconfigurable networks via our newly
proposed embedding model of runtime-binding, (c) to relax
otherwise overly exacting user constraints, a major source
of VN allocation failures [9]. The “burstable performance
instances” supported by Amazon Web Service [10] uses a
similar “elastic” model wherein a baseline demand is allocated
with an allowance to burst over the baseline, and the revenue
computed accordingly. This model also facilitates a way to
trade performance for revenue in a controlled manner, by
varying the “slack-factor” parameter (see §IV).

Contributions. In the above context, we make the following
specific contributions:

1) We show that the traditional VNE problem in standard

networks is inapproximable (§II); these results also imply
that VNE problems considered in this paper for reconfig-
urable networks are inapproximable.

2) We formulate the VNE problem in reconfigurable net-
works, and explore the design space with appropriate
(link-demand and embedding) models. In particular, we
consider the VNE problem in reconfigurable networks
with (i) fixed-bandwidth model in §III, and (ii) stochastic-
bandwidth demand in §IV.

3) We demonstrate significant performance advantage of our
proposed models and techniques via evaluations over real
datacenter requests and traffic traces (§V).

II. BACKGROUND AND INTRACTABILITY RESULTS

In this section, we describe the traditional VNE problem
and related work, followed by some intractability results. We
start with a few definitions.

Substrate and Virtual Networks; Virtual Network Em-
bedding (VNE). Typically, both the substrate network and
virtual networks are modeled as graphs of nodes and edges
connecting them. In the substrate network, the nodes are
servers with given computing capacity, and the edges between
the nodes are associated with a given bandwidth. Each VN is
also represented as a graph with computing and bandwidth de-
mands for each of its nodes and links respectively. Informally,
embedding a VN onto a substrate network entails locating the
VN nodes onto the substrate nodes, and mapping the VN links
onto a path connecting the corresponding substrate network
nodes such that the CPU usage and bandwidth constraints are
satisfied. We now formalize the above.

Definition 1: (Virtual Networks; VN Embedding.) Consider
a substrate network represented by a graph G′(V ′, E′), where
each vertex v′ ∈ V ′ has cv′ units of available (as described
below) CPU, and each edge e′ ∈ E′ has be′ units of available
bandwidth. Also, consider a VN G(V,E), where each vertex
v ∈ V requires cv units of CPU and each edge e ∈ E requires
be units of bandwidth demand (i.e., a fixed-bandwidth demand
of be).

An embedding of a VN G(V,E) onto the substrate network
G′(V ′, E′) are mappings M1 : V 7→ V ′ and M2 : E 7→ P ′

where P ′ is the set of all paths in G′, such that: (i) M1 is a one-
to-one function (i.e, each node v of V is mapped to a different
node v′ in V ′; (ii) if M1(v) = v′, then the CPU demand of
v is less than the available CPU in v′; and (iii) if M2(e) =
p′, where e = (u, v) and p′ = (u′, w1, w2, . . . , wk, v

′), then
M1(u) = u′ and M1(v) = v′; and (iv)

∑
e∈S(e′)(be) ≤ be′ ,

where S(e′) is the set of all links e of G that are mapped (via
M2) to a path containing e′.

Definition 2: (VNE Problem.) Given a substrate network
and a stream of arriving VNs with a duration associated
with each, the (online) VNE problem is to immediately (on
VN’s arrival)1 reject or accept-and-embed each VN onto
the substrate network, so as to maximize the total number

1It would be interesting to consider a variant, wherein a VN may be
accepted after a (bounded) delay.

of accepted VNs or total revenue from accepted VNs. The
revenue for an accepted VN is typically defined as its total
demand (CPU plus bandwidth, summed up across all nodes
and links) multiplied by the duration; the total revenue is the
sum of revenues of the accepted VNs.

Notes: (i) Each accepted VN runs in the substrate network
only for the duration associated with it; (ii) At any instant,
the available CPU at a substrate node v′ is equal to the
original CPU capacity minus the CPU demands of the running
VN nodes mapped onto v′; (iii) Similarly, at any instant, the
available bandwidth at a substrate edge e′ is equal to the
bandwidth capacity of e′ minus the bandwidth demands of the
running VN links that are mapped onto a path p′ containing
e′; (iv) By default, once embedded, the embedding of a VN
is not changed (say, to accommodate a newly arrived VN).
However, in other variants [11]–[13], such re-embedding are
permitted.

Related Work. The above described VNE problem is NP-
hard [2] and even inapproximable (see §II-A), and hence, most
works have focused on developing efficient heuristics. See [14]
for a detailed taxonomy of different approaches to solve the
above VNE problem and its variations. These heuristics can be
categorized into two broad categories: (i) Two phase, and (ii)
merged phase. The two phase approach involves first mapping
the VN nodes onto the substrate network nodes, followed by
embedding the VN links onto the substrate network paths [12],
[15]–[18]. In contrast, the merged-phase approaches [19] map
the VN nodes and links simultaneously onto the substrate
network, i.e., the node mapping is done contingent on the
feasibility of embedding the corresponding VN links. In both
approaches, backtracking with branch and bound is sometimes
used to explore the space of embeddings [16], [17], [19]. Some
recent approaches [16] have developed techniques to rank/sort
the nodes, based on residual topological resources around
them, and used this ranking to drive the node mapping. In
addition, stochastic algorithms like simulated annealing [20],
particle swarm optimization [11], tabu search, or genetic
algorithms, have also been used to solve the VNE problem.
The main drawback of stochastic algorithms, besides their
relatively long execution times, is their high likelihood of
getting stuck in local optima.

The works that are closest to the techniques explored in
our paper are: (i) [15] considers VNs with probabilistic “sub-
workloads” and addresses the resulting resource allocation
problem at each time slot, (ii) [12] considers embedding each
VN link onto multiple paths rather than a single path (but
the overall embedding is still fixed at VN’s arrival), (iii) [21]
considers single-node VNs with stochastic traffic demands
(no CPU requirement) and addresses the resulting stochastic
“bin-packing” problem, and (iv) [22] addresses the bandwidth
allocation problem in a hybrid optical-electric datacenter;
they do not consider CPU demands (so, inapplicable in our
context).

2

A. Intractability Results

To the best of our knowledge, the only theoretical result
known about the above VNE problem is that it’s NP hard [14].
Here, we show that even the simplest versions (e.g., restricted
to single-node VNs) are inapproximable, i.e., no online al-
gorithm can have a non-zero competitive ratio.2 Since the
above VNE problem is a special case of the VNE problems
in reconfigurable networks addressed in our paper, the below
hardness results also apply to our problems. Below, we observe
that, even for the special case of single-node VNs, the above
VNE problem is inapproximable for either number of VNs
accepted or revenue as a maximization objective. However,
when restricted to “accommodating sequences” and allowing
re-embeddings, the revenue-maximization VNE problem for
single-node VNs can actually be solved optimally in exponen-
tial time. In addition, the revenue-maximization VNE problem
has a simple 2-competitive online algorithm when restricted
to permanent (infinite duration) single-node VNs. We omit
the proofs of Corollary 1 and 3 (they follow from arguments
in [25]).

Corollary 1: For the objective of maximizing the number of
VNs accepted, the VNE problem is inapproximable (i.e., no
online algorithm can have a non-zero competitive ratio) even
for the special case of single-node VNs.

Corollary 2: For the objective of maximizing revenue from
accepted VNs, the VNE problem is inapproximable even for
the special case of single-node VNs. This hardness result holds
even if we permit re-embedding or restrict to accommodating
sequences of VNs (i.e., arriving VNs that can be all accepted
by the optimal algorithm).
PROOF: Consider single-node VNs and a 2-node substrate. Let
two VNs L1 and L2 arrive, each with a unit CPU demand and
small duration. If they are accepted, then subsequent two VNs,
each of a unit CPU demands and infinite duration would be
rejected. If L1 and L2 are rejected, then no other VN may
arrive. Here, allowing re-embeddings wouldn’t help. Similar
sequences can be constructed for accommodating sequences
(we omit details).

Corollary 3: For the special case of single-node permanent
(infinite duration) VNs, the VNE problem has a simple 2-
competitive online algorithm.

Corollary 4: Consider the VNE problem which allows re-
embeddings but is restricted to accommodating sequences of
single-node VNs. This problem can be solved optimally in
exponential time.
PROOF: At every VN arrival, do optimal “bin packing” of the
active VNs into the servers. Since the sequence is accommo-
dating, all the active VNs must fit into the servers—and this
packing can be easily determined in exponential time.

Corollaries 3 and 4 suggest that restricting the VNE problem
to VNs with infinite duration, accommodating sequences,
and/or allowing re-embeddings may make the problem more

2Competitive ratio [23], [24] of an online algorithm is simply the worst-case
ratio of the online algorithm’s performance with that of the optimal offline
algorithm that has access to the entire sequence of inputs.

tractable. On the other hand, all the above results consider
only single-node VNs; multi-node VNs bring in the embedding
bandwidth constraint, which adds considerable complexity to
the problem.

III. FIXED-BANDWIDTH LINK DEMANDS

In this section, we formally define reconfigurable networks,
and address the VNE problem in them with the traditional
VN model (i.e., with fixed-bandwidth demands on links as
per Def. 1).

Reconfigurable (Datacenter) Networks. We model a data-
center as a set of racks, each consisting of a set of servers.
Each server is connected to the top of rack (ToR) switch on its
rack. The ToR ports are connected via candidate links to form
a candidate graph among them; each node in the candidate
graph is a port in a ToR.3 See Figure 1. Any candidate link can
be “activated” at runtime (with some minimal reconfiguration
delay), with the following two reconfiguration constraints: (i)
Each node can have at most one active candidate link incident
on it, at any instant; (ii) A set of candidate links can be active
simultaneously at any instant only if they do not cause any
wireless interference among them. The second constraint can
be modeled by enumerating all possible sets of candidate links
that can be active simultaneously. In optical or FSO-based
reconfigurable networks, the second constraint does not exist
due to lack of wireless interference.

Network Reconfiguration entails activation and/or deactiva-
tion of one or more candidate links, without violating the
above constraints; Link activation latency depends on the
steering mechanism, and can vary from a few microseconds [8]
to a few milliseconds [7]. Techniques from [7] can be used to
maintain network consistency during flux and to ensure traffic
flow during VN embedding (at its arrival). Runtime-binding
of link embeddings (§IV) is done for each traffic flow, and
hence is viable only for large flows; short flows are handled
as suggested in §IV. Note that network reconfiguration, VN
embedding, and runtime bindings are all done seamlessly
without involving the VN applications or clients.

Partially-Reconfigurable Networks. The above definition can
generalized to augmented or partially-reconfigurable networks
such as c-Through [3], Flyways [4], wherein the overall
network essentially consists of two subnetworks: (i) a fixed or
static subnetwork, and (ii) a reconfigurable subnetwork. Here,
the non-server ports of the ToR switches are categorized into
static and reconfigurable ports, and the static ports form the
static subnetwork (via possibly additional core switches) and
the reconfigurable ports form a reconfigurable subnetwork as
defined above.

Motivating Example. We now give an example that illustrates
how reconfigurable networks can accommodate more VN
requests. See Figure 2. Here, the reconfigurable substrate
network has 6 nodes. Each node has a unit CPU, and each
link has a unit bandwidth capacity. Assume that the ToR ports

3The nodes corresponding to ports of the same ToR are implicitly connected
by high-bandwidth ToR-switch links.

3

Fig. 1: Reconfigurable Datacenter Networks.

Fig. 2: VNE in a Reconfigurable Network with Fixed-
Bandwidth Demands.

are configured in a way so that: (i) solid edges are/can be
always active, and (ii) nodes 2 to 5 can have at most one
active dashed edge incident on them. Consider the shown
VNs V N1, V N2, V N3, where each VN node requires a unit
CPU and each VN link requires a unit bandwidth. As shown,
the given reconfigurable substrate network can embed both
{V N1, V N2} as well as V N3, with an appropriate reconfigu-
ration. However, any static substrate network with 2 links per
node (i.e., any single static configuration of the given network)
can only accept either {V N1, V N2} or V N3, but not both.

VNE Problem with Fixed Demand Model (FXD). Given
a reconfigurable network and a sequence of arriving VNs
(with links having fixed-bandwidth demands as in Def. 1),
the FXD problem is to, at arrival of a VN L, reject L or
accept and embed L over the graph of active candidate links
(after possible network reconfiguration). The objective is to
maximize the total revenue derived from the accepted VNs.
For now, we disallow re-embeddings, i.e., we assume that once
a VN is embedded, its embedding is not changed (we consider
the variant with re-embeddings, later). Thus, active candidate
links that are being used by a running (i.e., accepted and not
yet finished) VN can’t be deactivated for the VN’s duration.

Observation 1: In the FXD problem, there is no advantage
in reconfiguring the substrate network or re-embedding (link
or nodes) previously-accepted VNs, between VN arrivals.

The above observation holds since embedding of a VN with
fixed demands essentially “reserves” the requisite demand—

thus, there is no advantage (for VNE purposes) in changing
the network topology or embedding until a new VN arrives.

FXD Algorithm. At a high-level, the algorithm first ranks
the substrate network nodes, wherein the rank signifies the
amount of free resources (CPU and bandwidth) available in
the node’s neighborhood (including itself). Similarly, the VN
nodes are also ranked, based on the resource demands. Then,
these rankings are used to find matching between the VN
nodes and the substrate nodes; in particular, we try to map
the highest-ranked VN nodes with the highest-ranked substrate
nodes, while, as a merged-phase approach [19], also ensuring
that VN links incident on mapped VN nodes also find a
feasible embedding. To maximize the number of links that are
mapped simultaneously with the nodes, we traverse the VN
nodes in a pre-order manner (i.e., over a breadth-first tree).

Formal Description. First, we rank the substrate and VN
nodes, based on the formula described in the below paragraph.
Let T be some breadth-first tree of the VN graph, rooted at
the highest-ranked VN node. We traverse T in a pre-order
manner, while traversing the nodes at any particular level in
decreasing order of their ranks. For each traversed VN node
u, we do the following:

1) Map the virtual node u to the highest-ranked substrate
node that has more CPU available than u’s CPU demand.

2) Embed/map the VN links connecting u to already-
mapped VN nodes. Embedding a VN link in a recon-
figurable network may involve careful reconfiguration of
the network, as discussed below.

3) If any of the above steps fail, we backtrack to the first
step above and map u to the next available substrate node.
After sufficient backtracking for node u, we remove u’s
embedding and backtrack to the previously-mapped VN
node w and try the next mapping for w, and so on.

4) If all VN nodes and links have been mapped successfully,
then we return accept, else we reject the given VN.

Our algorithm is an extension of the algorithm in [17] for
the traditional VNE problem in non-reconfigurable networks.
The key differences of our algorithm from the one in [17]
are: (i) To rank the nodes, we need to define the “effective”
bandwidth of a candidate link to incorporate the fact that the
candidate link may or may not be activated eventually; (ii)
Embedding of VN links requires a careful reconfiguration of
the substrate network. We discuss each of these below.

Node Ranking. Let the graph G = (V,E) denote the new
VN request. We rank each node u ∈ Vv by the following
formula [17]:

r(u) = (1− µ) cu∑
v∈Vv

cv
+ µ

∑
v∈N(u)

b̂(u,v) × r(v)∑
w∈N(v) b̂(w,v)

(1)

where b̂e is the effective (as defined below) bandwidth of an
edge e, N(u) is the set of neighbors of u and µ is a factor
that determines the relative weights between normalized node
capacity and normalized link capacity. The above equation
is recursive, since a node’s rank depends on the ranks of its

4

neighboring nodes and vice versa. We can denote the formula
in matrix notation as follows:

r = (1− µ)c+ µMr

=⇒ r = (1− µ)(I− µM)−1c
(2)

Here the matrices r = [r(1), r(2), . . . , r(n)]T and c =
[ĉ1, ĉ2, . . . , ĉn]

T , n = |Vv|, the relative capacity ĉu =
cu∑

v∈Vv
cv

, and the entry in the u-th row and v-th column in

matrix M is m(u, v) = b̂uv∑
w∈N(v) b̂(u,w)

. By solving the matrix

equation, the rank of each node can be determined.
We define the effective bandwidth of VN links as their band-

width demands, but the effective bandwidth of the candidate
links of the substrate network is defined as follows:

b̂(m,n) =

{
available bandwidth in (m,n) if (m,n) is active
b(m,n)

Q otherwise
(3)

where bm,n above is the original capacity of a substrate link,
and Q is the number of candidate links that can’t be activated
(due to reconfiguration constraints) in conjunction with (m,n).

Link Embedding in a Reconfigurable Network. Embedding a
specific VN link, say e = (u, v), entails finding the shortest
path p from u′ = M1(u) and v′ = M1(v) in the “residual”
(defined below) candidate graph, such that activation of links
on p doesn’t cause violation of the reconfiguration constraints.
When such a path p is determined, the links on the path are
activated.

Residual Candidate Graph. In the residual candidate graph
(for a given VN link e that is to be embedded), the available
bandwidth of the active candidate links is reduced by the
bandwidth used by embeddings of running VNs. In addition,
we deactivate any unused active candidate links, and remove:
(i) active candidate links whose available bandwidth is less
than the be, the bandwidth demand of e, and (ii) inactive can-
didate links that can’t be activated (due to the reconfiguration
constraints)4 in conjunction with other active candidate links
used by running VNs.

FXD Problem with Re-embeddings. We now consider the
FXD problem which permits re-embeddings of previously
accepted VNs to accommodate new VNs; however, we never
“remove” a previously accepted VN till its completion. By
Observation 1, a re-embedding can be useful only at the
time of a new VN arrival, when the newly arrived VN is
otherwise being rejected. At a high-level, the algorithm with
re-embeddings for a VN L works as follows. For a node
u (of L) that cannot be mapped, rather than backtracking
to an already-mapped node v of L, we instead look for a
node w (of an already-embedded VN L′) whose successful
re-embedding would accommodate u. Similar strategy is used
for a VN link that can’t be mapped. In addition, if neither of
the above strategies of single node/link re-embedding succeed,

4Here, for simplicity, we implicitly assume reconfiguration networks with
no wireless interference (e.g., FSO-based networks). Incorporating wireless
interference would require a slightly more involved strategy; we skip the
details here.

then we look to re-embed an entire already-embedded VN
L′ to accommodate L. If no such L′ exists, we reject L.
Re-embedding cost is optimized in the above strategies by
considering the re-embedding units (nodes or links or VNs)
in order of their re-embedding (e.g., total resource usage) cost.

IV. STOCHASTIC-BANDWIDTH LINK DEMANDS

In this section, we consider the VNE problem in recon-
figurable networks, with a stochastic-bandwidth link demand
model that improves network utilization and best leverages
runtime reconfiguration capability of the substrate network.

A. Stochastic Demands and Runtime-Binding Embedding

In the traditional VN model (Def. 1 and §III), the VN links
have a fixed bandwidth requirement which entails reserving
a fixed amount of bandwidth in the substrate network’s path
to which it is mapped. This results in inefficient utilization of
network resources, since fixed bandwidth demand typically
represents peak usage and in practice, at most times, the
bandwidth used is likely to be much less. To alleviate this
problem, we consider the stochastic demand model wherein we
represent the VN link bandwidth demands in terms of stochas-
tic traffic parameters rather than a fixed value. In this context,
we also consider embedding of VN links with runtime-binding
in the substrate network, wherein a VN link is mapped to
a set of paths at arrival time, and at runtime, one of these
mapped paths is chosen (e.g., on a per-flow basis). The above
two concepts leverage the key advantage of reconfigurable
networks, namely, runtime reconfiguration, while improving
network utilization compared to the traditional VNE model.
We start with a motivating example.

Fig. 3: VN Embedding with Runtime-binding

Illustrating/Motivating Example. For this example, we use
the following stochastic traffic model of VN link demand: each
VN link requires 10 Gbps bandwidth 10% of the time, and the
remaining 90% of the time, it requires only minimal (1Gbps)
bandwidth. Consider a VN with three nodes and two links, as
shown in Figure 3. The figure also shows a substrate network
of three nodes (let’s assume that other nodes are already used
up), each of which has two ports—one of which is connected
to a backbone/subnetwork of 1Gbps bisection bandwidth,
while the other port is connected to 10Gbps candidate link(s)
as shown. Let’s assume that only one of the two candidate
links can be active at any time. The figure also shows a
proposed embedding with runtime-binding, wherein each VN
link (e.g., l1) is mapped to two paths—one (P11) over the
static 1Gbps backbone and the other (P12) over the 10Gbps

5

candidate link. The candidate links are activated/deactivated
as needed to satisfy the bandwidth needs of the VN links.

Now observe that the proposed embedding will be able
to satisfy the VN link requirements 99% of the time, since
only 1% of the time both the VN links will require 10Gbps
bandwidth (in which case, one of the VN links (say l1) will
activate and use the 10Gbps candidate link P12, while l2 will
use the sub-optimal 1Gbps P21 path. The above simple exam-
ple illustrates and motivates the concept of embedding with
runtime-binding; in practice, each VN link may be mapped to
many more candidate paths in the substrate network, thereby
reducing the probability of sub-optimal performance to a
minimal value (which could be a user parameter).

VNs with Stochastic-Bandwidth Demands (ST-VN). The
VN with stochastic-bandwidth demand (denoted by ST-VN)5

is different from the traditional VN model in how the link
bandwidth demand is represented. In ST-VN, the bandwidth
requirement of a VN link is represented by two parameters:
(i) flow’s (mean) arrival rate and its distribution function (e.g.,
Poisson, uniform, or normal), and (ii) probability distribution
of the flow sizes.

ST-VN’s Embedding with Runtime-Binding. The traditional
way of embedding a VN onto a substrate network is essen-
tially an embedding with arrival-time binding, wherein each
VN link L is mapped onto a path (or multiple paths [12])
p in the substrate network and L’s traffic is then always
routed along p. However, when embedding a ST-VN onto a
reconfigurable network, we propose embedding with runtime-
binding—wherein each link L of the ST-VN is mapped onto
a set P of potential (candidate) paths in the reconfigurable
network. Only at runtime, e.g. on a per-flow basis, one of the
paths in P is chosen (and activated), based on the network
state, to route the flow on L. As only one path is chosen
for each flow, there are no TCP related issues. Each path
p ∈ P is given a fractional weight, such that aggregate weight
across all paths is one. The weight essentially corresponds
to the probability of the path being used at runtime; for
simplicity, we use equal weights for all paths in P since the
probability of a path being used depends on the runtime state
whose distribution is difficult to estimate. The motivation for
embedding with runtime-binding in the context of ST-VNs is
to best leverage the stochastic nature of VN traffic and the
runtime reconfiguration capability of reconfigurable networks.
In our evaluations, we will show that embedding with runtime-
binding offers a significant performance advantage over the
traditional (arrival-time binding) embedding model; however,
the embedding constraint is more involved as described below.

Link Constraint for Embedding with Runtime-Binding.
When embedding a ST-VN link onto a substrate network, we
must ensure that none of the substrate network’s resources
are “over utilized.” We do this by ensuring that the aggregate
arrival rate of VN links mapped to any “unit-link” (defined
below) of the substrate network is at most some precomputed

5We sometimes just refer to them as VNs, when obvious from the context.

maximum arrival rate λmax. Mathematically, if the flow size
(=d) is uniform and the arrivals follow a Poisson distribution,
then the arrival rate λmax that results in the probability of
“collision” being less than σc in a link of bandwidth b is
given by (we omit the derivation here):

λmax =
b

d

√
σc (4)

We refer to σc as the slack factor, a parameter that can be
used by the infrastructure provider to control the revenue-
performance trade-off. If the flow sizes have a non-uniform
known distribution, then we estimate the λmax by using the
same above equation, but use d as the average flow size;
our simulations have shown that this estimation approach is
quite accurate. Based on this, we enforce the constraint that
the aggregate arrival rate over any “unit-link” of the substrate
network is at most λmax. We define a unit-link of a substrate
network as any set C of candidate links wherein every pair
of links in C conflict with each other (i.e., only one link in
C can be active at any time). E.g., in the case of FSO-based
networks [7], [8], any set of candidate links sharing an FSO
device is a conflicting set of links. More formally, for a set of
conflicting links C, we enforce the constraint:

λmax ≥
∑
e′∈C

∑
e∈S(e′)

w(e, e′) · ae (5)

where S(e′) is the set of VN links that are mapped to a path
containing e′, ae is the arrival rate of VN link e, and w(e, e′)
is the aggregate weight of all the paths (of e’s embedding) that
contain e′.

Handling Short Flows. Network reconfiguration incurs a de-
lay which can be on the order of few microseconds [8] to a few
milliseconds [7]. Thus, reconfiguring the network to efficiently
route a short flow (e.g., < 10MB flows) may not be effective.
There are two possible approaches to effectively handle short
flows in reconfigurable networks: (i) Use appropriate network
management techniques to ensure network connectivity at all
times [7], and then reconfigure the network only for large flows
(short flows will be automatically routed via some route in the
connected graph); (ii) Reserve a static backbone/subnetwork
of sufficient bisection bandwidth exclusively for short flows.
In the latter approach, embedding with runtime-binding of VN
links should be done only with respect to the large flows, i.e.,
in the above Eqn. 5, the value d used is the average size of
large flows. Also, each VN link will have an implicit (without
any explicit reservation) embedding in the static backbone to
route the short flows.

B. ST-RB Problem and Algorithm

We now formulate ST-RB, the VNE problem of embedding
ST-VNs with runtime-binding in reconfigurable networks.

ST-RB Problem Formulation. Given a reconfigurable sub-
strate network with ST-VNs arriving, the (online) ST-RB
problem is to either reject, or accept and embed the ar-
riving ST-VN with runtime-binding, so as to maximize the
total revenue from accepted ST-VNs. The ST-RB problem

6

is essentially the same as the FXD problem except for two
differences: (i) The arriving VNs are actually ST-VNs which
have a different model for link demands, and (ii) the VN
embedding is runtime-binding, as defined above. In the ST-RB
problem, the revenue of an accepted ST-VN is defined as the
sum of CPU demands plus the aggregate expected-traffic (=
average flow size times arrival rate) of all links.

ST-RB Algorithm. At a high-level, the ST-RB Algorithm is
similar to the FXD Algorithm of previous section, except for
two key differences: (i) the node ranking formula is adjusted
slightly to account for the stochastic traffic model, and (ii)
the link embedding in ST-RB is more involved, as it entails
embedding with runtime-binding of a ST-VN link. We discuss
each of the these in more detail below.

ST-RB Node Ranking. The ranking of nodes in ST-RB is
similar to the one for FXD, except that we need to replace the
effective bandwidth b̂ in Eqn. 1 with effective arrival-rates as
defined below. First, note that in the ST-RB problem, can-
didate links are not activated during the embedding process,
and thus, the reconfiguration constraints do not play a role. We
define the effective arrival-rate as follows: (i) For a ST-VN
link l, it is just the arrival-rate demand of l; (ii) For a candidate
link l′ of substrate network, it is the available arrival-rate of
l′ at that point, which is the maximum arrival rate λmax minus
the used up arrival rate by previous running embeddings.

Embedding with Runtime-binding of a ST-VN Link. Recall
that embedding of an ST-VN with runtime-binding involves
mapping each link onto a set of paths in the substrate network
with appropriate weights. Runtime-binding embedding of a
single ST-VN link e = (u, v) thus entails searching for a set
of paths between substrate nodes u′ and v′ (to which the VN
nodes u and v are mapped to) and assigning them weights. In
particular, the mapping of a ST-VN link e = (u, v) onto a set
of paths p1, p2, . . . , pk between u′ and v′ require the following
considerations: (i) The number of chosen paths (k) should
not be very small so as to provide sufficient “flexibility” to
the runtime-binding; in our evaluations, we choose about 50
paths. (ii) The path lengths should be minimal, to minimize
the usage of substrate network resources. (iii) Since each
path is assigned a weight of 1/k, the links on the paths
should have at least ae/k available arrival-rate (assuming
edge-disjoint paths) where ae is the arrival rate demand of
e. The combination of the above considerations makes the
problem of finding such paths for runtime-binding embedding
challenging. We use the following heuristic.

Let m be the shortest path length between u′ and v′, and
m′ be some given threshold on the largest path length to
consider for embedding. Then, for each d between m and
m′ in increasing order: Find (as described later) a set Pd of
d-length paths (called valid) such that if each path in Pd is
assigned a weight of ae/|Pd|, there is no substrate link e′ that
gets an aggregate weight of more than the available arrival-
rate of e′. We pick the smallest d that yields a valid Pd. Now,
for a given d, we find a valid set of paths Pd as follows.
For a path p, let ap be mine′∈p ae′ where ae′ is the available

arrival-rate on e′. Now, first, find a sufficiently large set of
d-length paths, and sort them in decreasing order of their ap’s
to yield the sorted list p1, p2, . . . , pm. Let’s first assume these
paths to be pairwise edge-disjoint. Then, it’s easy to see that a
sublist p1, p2, . . . , pn is a valid set of paths Pd iff apn

≥ ae/n.
If the paths p1, p2, . . . , pm are not pairwise disjoint, then we
greedily pick one path at a time, in the above order, to create
Pd while ensuring that the Pd remains valid at each stage.

V. EVALUATION RESULTS

We now discuss the performance evaluation of our models
and techniques. The objective of our evaluation study is to
demonstrate the following: (i) Our developed algorithms per-
form well (by comparison with ILP-based algorithm for small
networks); (ii) Even the traditional VN model with recon-
figurable substrate network offers a performance advantage;
(iii) Our proposed models, namely, the ST-VN as well as em-
bedding with runtime-binding, offer significant performance
advantage compared to the traditional models. To evaluate our
techniques, we use a custom-built flow-level simulator over
an FSO-based datacenter network architecture, and use traffic
and VN request traces from production datacenters. We start
with describing our evaluation setting in more detail.

Substrate Network. For our evaluation, we consider the Fire-
Fly [7] or ProjectTor [8] like free-space optics (FSO) based
reconfigurable network. In such FSO-based DC networks, each
rack is equipped with a ToR and a number of FSO devices
(equal to the number of servers on the rack), and each FSO
device can be steered at runtime to target another FSO device
on another rack. Our default network is a 512 server network,
organized in 64 racks of 8 servers each. Each rack is equipped
with a ToR switch connected to 8 FSO devices. Each FSO
device is connected to 8 candidate links—only one of which
is active at a time. Thus, each rack has 64 candidate links, and
hence, we create a candidate link between every pair of racks,
with the grouping of candidate links to FSO devices done
randomly. Each link has a 10Gbps bidirectional bandwidth.

Virtual Network Requests. There are two components to gen-
erating VN requests: VN topology, and CPU and bandwidth
demands on nodes and links respectively. We pick VN topolo-
gies directly from the DeterLab [9] dataset which contains
anonymized virtual network requests made by actual clients.
The CPU demand is randomly picked between 0 and 0.25
units, where 1 represents the CPU capacity of one server. We
choose the arrival-rate demands of ST-VNs randomly between
0 and λmax (as defined in Eqn 5), based on a slack factor
of 10%. This λmax corresponds to 3.3Gbps expected traffic;
thus, we choose the fixed bandwidth demands in traditional
VN model randomly between 0 and 3.3Gbps.

Runtime Simulation. For scalability, we use a custom-built
flow-level simulation using a fluid model, which does not
model any packet-level or TCP effects as they are not im-
portant in our context. Following prior works [5], [7], we use
synthetic traffic models based on DC measurements [26]. In
particular, we treat each VN link independently, and generate

7

Fig. 4: (a) Revenue, (b) Throughput, (c) Network Utilization, (d) Flow completion times, of various algorithms, for a 512 server (64-rack,
with 8 servers each) network, for varying arrival rates of VNs.

Fig. 5: Revenue and throughput comparison for synthetic VNs with
varying sizes.

flows with an empirically-derived flow size distribution. We
focus only on large flows, assuming small flows are handled
as discussed in previous section, and their impact is negligible
on the large flows’ performance if they are handled in the same
subnetwork. As in prior works [5], [7], we use a Poisson
distribution to model flow arrival times. For fixed demand
links, the arrival rate is chosen appropriately to match with the
bandwidth demand. We run the simulation for 5000 seconds.
For embedding with runtime-binding schemes, we route a flow
of a VN link on the least congested “realizable” path from the
set of paths the link was mapped to. A path p is realizable
if the candidate links on the path can be activated without
needing to deactivate any already-used active links. If there are
no realizable paths among the mapped paths, then we delay

the flow until a realizable path becomes available.

Algorithms. To address our evaluation objectives stated above,
we consider the following six algorithms. In essence, we
consider three useful combinations6 of demand (fixed or
stochastic) and embedding (runtime or arrival-time binding;
see §IV) models. For each of these three combinations, we
consider both types of networks, i.e., reconfigurable and static
(non-reconfigurable), yielding six algorithms. We label these
six algorithms as FXD-R, FXD-S, ST-RB-R, ST-RB-S,
ST-AB-R, and ST-AB-S, where R or S suffix refers to
reconfigurable or static network. Note that, here, FXD-*
algorithms correspond to the fixed demand and arrival-time
binding combination, and the ST-AB-* algorithms refer to
the stochastic demands and arrival-time binding combination.7

Finally, we also consider two ILP-based algorithms, labeled as
ILP-FXD-R and ILP-ST-RB-R. The ILP-based algorithms
use, for each arriving VN L, an ILP formulation to embed L
plus all the already-embedded VNs with minimum resource
(CPU capacity plus network bandwidth) usage if possible (if
not, L is rejected).

Performance Results. We evaluate the above algorithms for
the following performance metrics: (i) Revenue (as defined
below) derived from accepted VNs, (ii) Total network through-
put averaged over time, (iii) Flow Completion Time (FCT)
statistics across all flows (for clarity, we only show the FCT of
reconfigurable network schemes), and (iv) Network utilization
(total bandwidth usage over all network links) averaged over
time. Above, we define the revenue derived from an accepted
VN as the sum of (i) total (fractional) CPU demands of the

6By Observation 1, the fourth combination (of fixed-bandwidth demand
with runtime-binding) is not useful and hence, not considered.

7For the ST-AB-* algorithms, we reuse the FXD algorithm of §III with
the following modifications: (i) map the substrate network’s link bandwidths
to maximum arrival rate λmax, as per the above Eqn 5, and (ii) use arrival
rates instead of bandwidths in the embedding constraint.

8

Fig. 6: Revenue and throughput comparison with ILP-based ap-
proaches, for small networks.
VN nodes, and (ii) total bandwidth (or expected traffic for ST-
VNs) demands of the VN links normalized by the bandwidth
capacity of a substrate network link. Note that the revenue
metric is a more generalized and meaningful metric than
fraction of VNs accepted, especially for VNs of varying
sizes and topologies. Figure 4(a-d) show the performance
of various algorithms for each of the above metrics, in the
default setting of 64 racks with 8 FSOs on each rack and
each FSO with 8 candidate link (single link for the fixed
networks). We make two key observations: (i) ST-RB-R, the
algorithm, which incorporates the stochastic traffic VNs as
well as embedding with runtime-binding model, significantly
outperforms the other algorithms in terms of revenue, the key
performance metric. Not surprisingly, it also results in best net-
work throughput, while exhibiting similar FCT performance to
other schemes. (ii) There is a significant revenue advantage (up
to 30-40%) due to reconfigurable networks, as evidenced by
the performance difference between the corresponding *-R
and *-S algorithms. Similarly, we note that embedding with
runtime-binding model by itself (see ST-RB-* vs. ST-AB-*)
also offers significant revenue advantage (up to 30-40%). The
above observations validate the effectiveness of our proposed
models and techniques. We do not directly compare the VN-*
vs. ST-* approaches, as they have slightly different input and
revenue models.
Synthetic VNs of Varying Sizes. The above results are for the
DeterLab [9] dataset containing VNs with a mix of sizes,
ranging from 2 to 1000 (average 20) nodes. To corroborate
our observations for more typical (smaller) VN sizes, we
plot performance comparison (see Figure 5) for synthetically
created VNs of certain sizes up to 25; here, we use topologies
with linear number of links. We observe that ST-RB-R easily
outperforms the other algorithms, with the performance gap,
as expected, increasing with increase in the size of VNs.
Comparison with ILP for Small Networks. To demonstrate
the absolute performance of our techniques, we compare the
revenue and throughput performance of our algorithms with
the ILP-based algorithms, for small network sizes (simulating
ILP-based approaches for larger networks was infeasible).
See Figure 6; here, for clarity, we only show the two main
algorithms, FXD-R and ST-RB-R, and their ILP versions.
We observe that the revenue as well as throughput of our
algorithms is within a factor of 0.5 to 0.75 of the ILP
approaches, which gives some confirmation of absolute per-
formance efficiency of our algorithms.

VI. CONCLUSIONS

In this work, we have explored the design space of VN and
embedding models to give effective formulations of the VNE
problem in reconfigurable networks. We designed algorithms
for the formulated problems, and evaluated our models and
techniques over real data traces to demonstrate their significant
performance advantage over traditional models. Ours is the
first work in this space, and many improvements of our
techniques and open questions remain. E.g., can we generalize
the technique of runtime-binding to VN nodes too? I.e., embed
a VN node to multiple substrate nodes at arrival time, and
then pick one of them at runtime. This would require efficient
migration techniques, in addition to efficiently solving the
corresponding VNE problem. Moreover, could delaying the
acceptance or rejection of a VN be an effective way of
circumventing the intractability of VNE problems?

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, 2005.

[2] D. G. Andersen, “Theoretical approaches to node assignment,” 2002,
unpublished Manuscript.

[3] G. Wang et al., “c-Through: Part-time optics in data centers,” in ACM
SIGCOMM, 2010.

[4] D. Halperin et al., “Augmenting data center networks with multi-gigabit
wireless links,” in ACM SIGCOMM, 2011.

[5] X. Zhou et al., “Mirror mirror on the ceiling: Flexible wireless links for
data centers,” in ACM SIGCOMM, 2012.

[6] N. Hamedazimi, H. Gupta, V. Sekar, and S. R. Das, “Patch panels in
the sky: A case for free-space optics in data centers,” in HotNets, 2013.

[7] N. Hamedazimi et al., “FireFly: A reconfigurable wireless data center
fabric using free-space optics,” in ACM SIGCOMM, 2014.

[8] M. Ghobadi et al., “ProjecToR: Agile Reconfigurable Data Center
Interconnect,” in ACM SIGCOMM, 2016.

[9] J. Mirkovic, H. Shi, and A. Hussain, “Reducing allocation errors in
network testbeds,” in IMC, 2012.

[10] “Amazon Web Services EC2 Instance Types.”
[11] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network

resources to virtual network components,” in IEEE INFOCOM, 2006.
[12] M. Yu et al., “Rethinking virtual network embedding: substrate support

for path splitting and migration,” Comp. Comm. Review, 2008.
[13] N. F. Butt et al., “Topology-awareness and reoptimization mechanism

for virtual network embedding,” in IFIP TCNC, 2010, pp. 27–39.
[14] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Com-

munications Surveys and Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.
[15] S. Zhang et al., “An opportunistic resource sharing and topology-aware

mapping framework for virtual networks,” in IEEE INFOCOM, 2012.
[16] X. Cheng et al., “Virtual network embedding through topology-aware

node ranking,” Computer Communication Review, vol. 41, no. 2, 2011.
[17] L. Gong et al., “Toward profit-seeking virtual network embedding

algorithm via global resource capacity,” in IEEE INFOCOM, 2014.
[18] F. Bianchi and F. L. Presti, “A markov reward model based greedy

heuristic for the VNE problem,” in IEEE MASCOTS, 2016.
[19] J. Lischka and H. Karl, “A virtual network mapping algorithm based on

subgraph isomorphism detection,” in VISA, 2009.
[20] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed

mapping problem,” SIGCOMM Comput. Commun. Rev., 2003.
[21] M. Wang et al., “Consolidating virtual machines with dynamic band-

width demand in data centers,” in IEEE INFOCOM, 2011, pp. 71–75.
[22] S. Hegde et al., “Dynamic embedding of virtual networks in hybrid

optical-electrical datacenters,” in 23rd, ICCCN, 2014, pp. 1–8.
[23] Wikipedia, “Comptetitive analysis (online algorithm).”
[24] X. Zhu, B. Tang, and H. Gupta, “Delay efficient data gathering in sensor

networks,” in Intl. Conf. on Mobile Ad-Hoc and Sensor Networks, 2005.
[25] M. Cygan, Ł. Jeż, and J. Sgall, “Online knapsack revisited,” Theory of

Computing Systems, 2016.
[26] A. Greenberg et al., “VL2: A scalable and flexible data center network,”

in ACM SIGCOMM, 2009.

9

