Selection of Views to Materialize Under a
Maintenance Cost Constraint

Himanshu Gupta'* and Inderpal Singh Mumick?

! hgupta@db.stanford.edu, Stanford University, Stanford, CA 94305
2 mumick@savera.com, Savera Systems, Summit, NJ 07901

Abstract. A data warehouse stores materialized views derived from
one or more sources for the purpose of efficiently implementing decision-
support or OLAP queries. One of the most important decisions in de-
signing a data warehouse is the selection of materialized views to be
maintained at the warehouse. The goal is to select an appropriate set
of views that minimizes total query response time and/or the cost of
maintaining the selected views, given a limited amount of resource such
as materialization time, storage space, or total view maintenance time.

In this article, we develop algorithms to select a set of views to materialize
in a data warehouse in order to minimize the total query response time
under the constraint of a given total view maintenance time. As the
above maintenance-cost view-selection problem is extremely intractable,
we tackle some special cases and design approximation algorithms. First,
we design an approximation greedy algorithm for the maintenance-cost
view-selection problem in OR view graphs, which arise in many practical
applications, e.g., data cubes. We prove that the query benefit of the
solution delivered by the proposed greedy heuristic is within 63% of
that of the optimal solution. Second, we also design an A* heuristic,
that delivers an optimal solution, for the general case of AND-OR view
graphs. We implemented our algorithms and a performance study of the
algorithms shows that the proposed greedy algorithm for OR view graphs
almost always delivers an optimal solution.

1 Introduction

A data warehouse is a repository of integrated information available for query-
ing and analysis [IK93,HGMWT95,7]. Figure 1 illustrates the architecture of a
typical warchouse [WGL196]. The bottom of the figure depicts the multiple in-
formation sources of interest. Data that is of interest to the client(s) is derived
or copied and integrated into the data warehouse, depicted near the top of the
figure. These views stored at the warehouse are often referred to as materialized
views. The integerator, which lies in between the sources and the warehouse, is
responsible for maintaining the materialized views at the warehouse in response
to changes at the sources [ZGMHW95,CW91,GM95]. This incremental main-
tenance of views incurs what is known as maintenance cost. We use the term
maintenance cost interchangeably with maintenance time.

* Supported by NSF grant IRI-96-31952.

One of the advantages of such a system is that user queries can be answered
using the information stored at the warehouse and need not be translated and
shipped to the original source(s) for execution. Also, warehouse data is available
for queries even when the original information source(s) are inaccessible due to
real-time operations or other reasons. Widom in [Wid95] gives a nice overview
of the technical issues that arise in a data warehouse.

Integrator

Information Information Informa
Source Source L Source

Fig. 1. A typical data warehouse architecture

The selection of which views to materialize is one of the most important
decisions in the design of a data warehouse. Earlier work [Gup97] presents a
theoretical formulation of the general “view-selection” problem in a data ware-
house. Given some resource constraint and a query load to be supported at
the warehouse, the view-selection problem defined in [Gup97] is to select a set
of derived views to materialize, under a given resource constraint, pthat will
minimize the sum of total query response time and maintenance time of the se-
lected views. [Gup97] presents near-optimal polynomial-time greedy algorithms
for some special cases of the general problem where the resource constraint is
disk space.

In this article, we consider the view-selection problem of selecting views to
materialize in order to optimize the total query response time, under the con-
straint that the selected set of views incur less than a given amount of total main-
tenance time. Hereafter, we will refer to this problem as the maintenance-cost
view-selection problem. The maintenance-cost view-selection problem is much
more difficult than the view-selection problem with a disk-space constraint, be-
cause the maintenance cost of a view v depends on the set of other materialized
views. For the special case of “OR view graphs,” we present a competitive greedy
algorithm that provably delivers a near-optimal solution. The OR view graphs,
which are view graphs where exactly one view is used to derive another view,
arise in many important practical applications. A very important application
is that of OLAP warehouses called data cubes, where the candidate views for

precomputation (materialization) form an “OR boolean lattice.” For the general
maintenance-cost view-selection problem that arises in a data warehouse, i.e.,
for the general case of AND-OR view graphs, we present an A* heuristic that
delivers an optimal solution.

The rest of the paper is organized as follows. The rest of this section gives a
brief summary of the related work. In Section 2, we present the motivation for the
maintenance-cost view-selection problem and the main contributions of this arti-
cle. Section 3 presents some preliminary definitions. We define the maintenance-
cost view-selection problem formally in Section 4. In Section 5, we present an
approximation greedy algorithm for the maintenance-cost view-selection prob-
lem in OR view graphs. Section 6 presents an A* heuristic that delivers an
optimal set of views for the maintenance-cost view-selection problem in general
AND-OR view graphs. We present our experimental results in Section 7. Finally,
we give some concluding remarks in Section 8.

1.1 Related Work

Recently, there has been a lot of interest on the problem of selecting views to
materialize in a data warehouse. Harinarayan, Rajaraman and Ullman [HRU96]
provide algorithms to select views to materialize in order to minimize the total
query response time, for the case of data cubes or other OLAP applications when
there are only queries with aggregates over the base relation. The view graphs
that arise in OLAP applications are special cases of OR view graphs. The au-
thors in [HRU96] propose a polynomial-time greedy algorithm that delivers a
near-optimal solution. Gupta et al. in [GHRU97] extend their results to selec-
tion of views and indexes in data cubes. Gupta in [Gup97] presents a theoretical
formulation of the general view-selection problem in a data warehouse and gener-
alizes the previous results to (i) AND view graphs, where each view has a unique
execution plan, (ii) OR view graphs, (iii) OR view graphs with indexes, (iv)
AND view graphs with indexes, and some other special cases of AND-OR view
graphs. All of the above mentioned works ([HRU96,GHRU97,Gup97]) present
approximation algorithms to select a set of structures that minimizes the total
query response time under a given space constraint; the constraint represents
the maximum amount of disk space that can be used to store the materialized
views.

Other recent works on the view-selection problem have been as follows. Ross,
Srivastava, and Sudarshan in [RSS96], Yang, Karlapalem, and Li in [YKLI7],
Baralis, Paraboschi, and Teniente in [BPT97], and Theodoratos and Sellis in
[TS97] provide various frameworks and heuristics for selection of views in order to
optimize the sum of query response time and view maintenance time without any
resource constraint. Most of the heuristics presented there are either exhaustive
searches or do not have any performance guarantees on the quality of the solution
delivered.

Ours is the first article to address the problem of selecting views to materi-
alize in a data warehouse under the constraint of a given amount of total view
maintenance time.

2 Motivation and Contributions

Most of the previous work done ([HRU96, GHRU97,Gup97]) on designing polynomial-
time approximation algorithms that provably deliver a near-optimal solution for
the view-selection problem suffers from one drawback. The designed algorithms
apply only to the case of a disk-space constraint.

Though the previous work has offered significant insight into the nature of the
view-selection problem, the constraint considered therein makes the results less
applicable in practice because disk-space is very cheap in real life. In practice,
the real constraining factor that prevents us from materializing everything at
the warehouse is the maintenance time incurred in keeping the materialized
views up to date at the warehouse. Usually, changes to the source data are
queued and propagated periodically to the warehouse views in a large batch
update transaction. The update transaction is usually done overnight, so that
the warehouse is available for querying and analysis during the day time. Hence,
there is a constraint on the time that can be alloted to the maintenance of
materialized views.

In this article, we consider the maintenance-cost view-selection problem which
is to select a set of views to materialize in order to minimize the query response
time under a constraint of maintenance time. We do not make any assump-
tions about the query or the maintenance cost models. It is easy to see that the
view-selection problem under a disk-space constraint is only a special case of the
maintenance-time view-selection problem, when maintenance cost of each view
remains a constant, i.e., the cost of maintaining a view is independent of the set
of other materialized views. Thus, the maintenance-cost view-selection problem
is trivially NP-hard, since the space-constraint view-selection problem is NP-hard
[Gup9T].

Now, we explain the main differences between the view-selection problem un-
der the space constraint and the maintenance-cost view-selection problem, which
makes the maintenance-cost view-selection optimization problem more difficult.
In the case of the view-selection problem with space constraint, as the query
benefit of a view never increases with materialization of other views, the query-
benefit per unit space of a non-selected view always decreases monotonically
with the selection of other views. This property is formally defined in [Gup97]
as the monotonicity property of the benefit function and is repeated here for
convenience.

Definition 1. (Monotonic Property) A benefit function B, which is used to
prioritize views for selection, is said to satisfy the monotonicity property for a
set of views M with respect to distinct views Vi and Vo if B({V1,Va}, M) is less
than (or equal to) either B({V1}, M) or B({Va}, M).

In the case of the view-selection problem under space constraint, the query-
benefit per unit space function satisfies the above defined monotonicity property
for all sets M and views V; and V5. However, for the case of maintenance-
cost view-selection problem, the maintenance cost of a view can decrease with

selection of other views for materialization and hence, the query-benefit per unit
of maintenance-cost of a view can actually increase. Hence, the total maintenance
cost of two “dependent” views may be much less than the sum of the maintenance
costs of the individual views, causing the query-benefit per unit maintenance-cost
of two dependent views to be sometimes much greater than the query-benefit
per unit maintenance-cost of either of the individual views. The above described
non-monotonic behavior of the query-benefit function makes the maintenance-
problem view-selection problem intractable. The non-monotonic behavior of the
query-benefit per unit maintenance-cost function is illustrated in Example 2 in
Section 5, where it is shown that the simple greedy approaches presented in
previous works for the space-constraint view-selection problem could deliver an
arbitrarily bad solution when applied to the maintenance-cost view-selection
problem.

Contributions In this article, we have identified the maintenance-cost view-
selection problem and the difficulty it presents. We develop a couple of algo-
rithms to solve the maintenance-cost view-selection problem within the frame-
work of general query and maintenance cost models. For the maintenance-cost
view-selection problem in general OR view graphs, we present a greedy heuris-
tic that selects a set of views at each stage of the algorithm. We prove that
the proposed greedy algorithm delivers a near-optimal solution. The OR view
graphs, where exactly one view is used to compute another view, arise in many
important practical applications. A very important application is that of OLAP
warehouses called data cubes, where the candidate views for precomputation
(materialization) form an “OR boolean lattice.” We also present an A* heuris-
tic for the general case of AND-OR graphs. Performance studies indicate that
the proposed greedy heuristic almost always returns an optimal solution for OR
view graphs. The maintenance-cost view-selection was one of the open problems
mentioned in [Gup97]. By designing an approximate algorithm for the problem,
this article essentially answers one of the open questions raised in [Gup97].

3 Preliminaries

In this section, we present a refinement of a few definitions from [Gup97] used
in this article. Throughout this article, we use V(G) and E(G) to denote the set
of vertices and edges respectively of a graph G.

Definition 2. (Expression AND-DAG) An expression AND-DAG for a view,
or a query, V is a directed acyclic graph having the base relations (and materi-
alized views) as “sinks” (no outgoing edges) and the node V as a “source” (no
incoming edges). If a node/view u has outgoing edges to nodes vy, va, ..., vk,
then u can be computed from all of the views vy,vs,...,vx and this depen-
dence s indicated by drawing a semicircle, called an AND arc, through the edges
(u,v1), (u,v32), ..., (u,vg). Such an AND arc has an operator' and a query-cost

! The operator associated with the AND arc is actually a k-ary function involving
operations like join, union, aggregation etc.

associated with it, which 1s the cost incurred during the computation of u from
V1,V2,...,V%.

Fig.2. a) An expression AND-DAG b) An expression ANDOR-DAG

Definition 3. (Expression ANDOR-DAG) An ezpression ANDOR-DAG
for a view or a query V 1is a directed acyclic graph with V as a source and
the base relations as sinks. FEach non-sink node v has associated with it one or
more AND arcs, where each AND arc binds a subset of the outgoing edges of
node v. As in the previous definition, each AND arc has an operator and a cost
associated with it. More than one AND arc at a node depicts multiple ways of
computing that node.

Figure 2 shows an example of an expression AND-DAG as well as an expres-
sion ANDOR-DAG. In Figure 2 (b), the node a can be computed either from
the set of views {b,c,d} or {d,e, f}. The view a can also be computed from the
set {j,k, f}, as d can be computed from j or k and e can be computed from k.

Definition 4. (AND-OR View Graph) A directed acyclic graph G having
the base relations as the sinks is called an AND-OR view graph for the views
(or queries) Vi, Va, ..., Vi if for each V;, there is a subgraph? G; in G that is an
expression ANDOR-DAG for V;. Fach node v in an AND-OR view graph has
the following parameters associated with it: query-frequency f, (frequency of the
queries on v), update-frequency g, (frequency of updates on v), and reading-
cost R, (cost incurred in reading the materialized view v). Also, there is a
maintenance-cost function UC? associated with G, such that for a view v and a

2 An AND-OR view graph H is called a subgraph of an AND-OR view graph G if
V(H) C V(G), E(H) C E(G), and each edge e; in H is bound with the same set
of edges through an AND-arc as it is bound through an AND-arc in G. That is, if
e1,e2 € E(G), e1 € E(H), and e; and ey are bound by an AND-arc (which may
bind other edges too) in G, then e; € E(H), and €; and e; are bound with the same
AND-arc in H. For example, Figure 2 (a) is a subgraph of Figure 2 (b), but Figure 2
(a) without the edge (c, h) is not.

% The function symbol “UC” denotes update cost.

set of views M, UC (v, M) gives the cost of maintaining v in presence of the set
M of materialized views.

Gliven a set of queries Q1,Q2, . . ., Qg to be supported at a warchouse, [Gup97]
shows how to construct an AND-OR view graph for the queries.

Definition 5. (Evaluation Cost) The evaluation cost of an AND-DAG H
embedded in an AND-OR view graph G 1is the sum of the costs associated with the
AND arcs in H, plus the sum of the reading costs associated with the sinks/leaves
of H.

Definition 6. (OR View Graphs) An OR view graph is a special case of an
AND-OR view graph, where each AND-arc binds exactly one edge. Hence, in OR
view graphs, we omit drawing AND arcs and label the edges, rather than the AND
arcs, with query-costs. Also, in OR view graphs, instead of the maintenance cost
function UC' for the graph, there is a maintenance-cost value associated with
each edge (u,v), which is the maintenance cost incurred in maintaining u using
the materialized view v. Figure 3 shows an example of an OR wview graph G.

4 The Maintenance-Cost View-Selection Problem

In this section, we present a formal definition of the maintenance-cost view-
selection problem which is to select a set of views in order to minimize the total
query response time under a given maintenance-cost constraint.

Given an AND-OR view graph G and a quantity S (available maintenance
time), the maintenance-cost view-selection problem is to select a set of views M,
a subset of the nodes in GG, that minimizes the total query response time such
that the total maintenance time of the set M is less than S.

More formally, let @Q(v, M) denote the cost of answering a query v (also a
node of GG) in the presence of a set M of materialized views. As defined before,
UC(v, M) is the cost of maintaining a materialized view v in presence of a set
M of materialized views. Given an AND-OR view graph G and a quantity S,
the maintenance-cost view-selection problem is to select a set of views/nodes M,
that minimizes 7(G, M), where

TG M)= > f,Q(v, M),

veV(G)

under the constraint that U(M) < S, where U(M), the total maintenance time,
is defined as
UM)= > gUC(v, M).
vEM

The view-selection problem under a disk-space constraint can be easily shown
to be NP-hard, as there is a straightforward reduction [Gup97] from the minimum
set cover problem. Thus, the maintenance-cost view-selection problem, which
is a more general problem as discussed in Section 2, is trivially NP-hard.

Computing Q(v,M) The cost of answering a query v in presence of M, Q(v, M),
in an AND-OR view graph G is actually the evaluation cost of the cheapest AND-
DAG H, for v, such that H, is a subgraph of G and the sinks of H, belong to
the set M U L, where L is the set of sinks in G. Here, without loss of generality,
we have assumed that the nodes in L, the set of sinks in G, are always available
for computation as they represent the base tables at the source(s). Thus, Q(v, ¢)
is the cost of answering a query on v directly from the source(s). For the special
case of OR view graphs, @Q(v, M) is the minimum query-length of a path from v
to some u € (M U L), where the query-length of a path from v to u is defined as
Ry, the reading cost of u, plus the sum of the query-costs associated with the
edges on the path.

Computing UC(v,M)} in OR view Graphs The quantity UC(v, M), as defined
earlier, denotes the maintenance cost of a view v with respect to a selected
set of materialized views M, i.e., in presence of the set M U L. As before, we
assume that the set L of base relations in G is always available. In general AND-
OR view graphs, the function UC, which depends upon the maintenance cost
model being used, is associated with the graph. However, for the special case of
OR view graphs, UC (v, M) is computed from the maintenance costs associated
with the edges in the graph as follows. The quantity UC'(v, M) is defined as the
minimum maintenance-length of a path from v to some u € (M UL) —{v}, where
the maintenance-length of a path is defined as the sum of the maintenance-costs
associated with the edges on the path.* The above characterization of UC(v, M)
in OR view graphs is without any loss of generality of a maintenance-cost model,
because in OR view graphs a view u uses at most one view to help maintain
itself.

In the following example, we illustrate the above definitions of @ and UC on
OR view graphs.

\%
Vg3 4

8 10
7 Maintenance-cost of edges (V1, B) and (Vo , B) = 4.

Vi V2 0 11 All other maintenance costs and query costs are 0
All query and update frequencies = 1
12

L abels associated with nodes are their
reading-costs.

Fig.3. G: An OR view graph

Ezample 1. Consider the OR view graph G of Figure 3. In the given OR view
graph G, the maintenance-costs and query-costs associated with each edge is

* Note that the maintenance-length doesn’t include the reading cost of the destination
as in the query-length of a path.

zero, except for the maintenance-cost of 4 associated with the edges (Vi, B)
and (Va, B). Also, all query and update frequencies are uniformly 1. The label
associated with each of the nodes in G is the reading-cost of the node. Also, the
set of sinks L = {B}.

In the OR view graph G, Q(V;, ¢) = 12 for all i < 5, because as the query-
costs are all zero, the minimum query-length of a path from V; to B is just the
reading-cost of B. Note that Q(B, ¢) = 12. Also, as the minimum maintenance-
length of a path from a view V; to B is 4, UC(V;,¢) = 4 for all i <5.

Knapsack Effect We simplify the view-selection problem as in prior discussions
([HRU96,GHRU97,Gup97]) by allowing that a solution may consume “slightly”
more than the given amount of constraint. This assumption is made to ignore
the knapsack component of the view-selection problem. However, when proving
performance guarantee of a given algorithm, we compare the solution delivered
by the algorithm with an optimal solution that consumes the same amount of
resource as that consumed by the delivered solution.

5 Inverted-Tree Greedy Algorithm

In this section, we present a competitive greedy algorithm called the Inverted-
Tree Greedy Algorithm which delivers a near-optimal solution for the maintenance-
cost view-selection problem in OR view graphs.

In the context of view-selection problem, a greedy algorithm was originally
proposed in [HRU96] for selection of views in data cubes under a disk-space
constraint. Gupta in [Gup97] generalized the results to some special cases of
AND-OR view graphs, but still for the constraint of disk space. The greedy
algorithms proposed in the context of view-selection work in stages. At each
stage, the algorithm picks the “most beneficial” view. The algorithm continues
to pick views until the set of selected views take up the given resource constraint.
One of the key notions required in designing a greedy algorithm for selection of
views is the notion of the “most beneficial” view.

In the greedy heuristics proposed earlier ([HRU96,GHRU97,Gup97]) for se-
lection of views to materialize under a space constraint, views are selected in
order of their “query benefits” per unit space consumed. We now define a simi-
lar notion of benefit for the maintenance-cost view-selection problem addressed
in this article.

Most Beneficial View

Consider an OR view graph G. At a stage, when a set of views M has
already been selected for materialization, the query benefit B(C, M) associated
with a set of views C' with respect to M is defined as 7(G, M) — (G, M U C).
We define the effective maintenance-cost EU(C', M) of C' with respect to M as
UM UC)—U(M).5 Based on these two notions, we define the view that has

5 The effective maintenance-cost may be negative. The results in this article hold
nevertheless.

the most query-benefit per unit effective maintenance-cost with respect to M as
the most beneficial view for greedy selection at the stage when the set M has
already been selected for materialization.

We illustrate through an example that a simple greedy algorithm, that at
each stage selects the most beneficial view, as defined above, could deliver an
arbitrarily bad solution.

Erample 2. Consider the OR view graph G shown in Figure 3. We assume
that the base relation B is materialized and we consider the case when the
maintenance-cost constraint is 4 units.

We first compute the query benefit of V7 at the initial stage when only
the base relation B is available (materialized). Recall from Example 1 that
Q(Vi,0) = 12 for all i < 5 and Q(B,¢) = 12. Thus, 7(G,¢) = 12 x 6 = 72,
as all the query frequencies are 1. Also, Q(V1,{Vi}) = 7, as the reading-cost
of V1 is 7, Q(V;,{V1}) = 12 for i = 2,3,4,5, and Q(B,{V1}) = 12. Thus,
7(G,{V1}) = 12x547 = 67 and thus, the initial query benefit of V7 is 72—67 = 5.
Similarly, the initial query benefits of each of the views V5, V3, Vy, and Vi can be
computed to be 4.

Also, U({Vi}) = UC(V;, {Vi}) = 4 as the minimum maintenance-length of a
path from any V; to B is 4. Thus, the solution returned by the simple greedy
algorithm, that picks the most beneficial view, as defined above, at each stage,
18 {Vl}

It is easy to see that the optimal solution is {V2, V3, V4, V5} with a query
benefit of 11 and a total maintenance time of 4. To demonstrate the non-
monotonic behavior of the benefit function, observe that the query-benefits per
unit maintenance-cost of sets {Va},{Vs}, {Va, Va} are 1, 1, and 7/4 respectively.
This non-monotonic behavior is the reason why the simple greedy algorithm
that selects views on the basis of their query-benefits per unit maintenance-cost
can deliver an arbitrarily bad solution. Figure 4 illustrates through an extended
example that the optimal solution can be made to have an arbitrarily high query
benefit, while keeping the simple greedy solution unchanged.

Von1
N
n
N
/D Maintenance-cost of edges (V1, B) and (Vo , B) = 4.

% . All other edge maintenance costs and query costs are 0
All query and update frequencies= 1

Vs Reading-cost of B = 12.
Vq C\ rf “ Reading-cost of V; = 3, if i isodd, else 12.
C\\ /D Vo Maintenance-time constraint = 4
E? Optimal solution isthe set of all views except V ¢

Simple Greedy solution={ V4 }

Fig.4. An OR view graph, H, for which simple greedy performs arbitrarily bad

Note that the nodes in the OR view graphs G and A, presented in Figure 3
and Figure 4 respectively, can be easily mapped into real queries involving
aggregations over the base data B. The query-costs associated with the edges
in G and H depict the linear cost model, where the cost of answering a query
on v using its descendant u is directly proportional to the size of the view wu,
which in our model of OR view graphs is represented by the reading-cost of u.
Notice that the minimum query-length of a path from u to v in G or H is R,,
the reading-cost of v. As zero maintenance-costs in the OR view graphs G and
H can be replaced by extremely small quantities, the OR view graphs G and
H depict the plausible scenario when the cost of maintaining a view u from a
materialized view v be negligible in comparison to the maintenance cost incurred
in maintaining a view u directly from the base data B.

Definition 7. (Inverted Tree Set) A set of nodes R is defined to be an in-
verted tree set in a directed graph G if there is a subgraph (not necessarily in-
duced) Tg in the transitive closure of G such that the set of vertices of Tr is R,
and the inverse graph® of Tr is a tree.”

In the OR view graph G of Figure 3, any subset of {Va, Va,Va, Vs5} that in-
cludes V5 forms an inverted tree set. The Tgr graph corresponding to the inverted

tree set R = {Va, V3, V5} has the edges (Va, Vs) and (Va, V3) only.

The motivation for the inverted tree set comes from the following observation,
which we prove in Lemma 1. In an OR view graph, an arbitrary set O (in
particular an optimal solution O), can be partitioned into inverted tree sets such
that the effective maintenance-cost of O with respect to an already materialized
set M is greater than the sum of effective-costs of inverted tree sets with respect
to M.

Based on the notion of an inverted tree set, we develop a greedy heuristic
called Inverted-tree Greedy Algorithm which, at each stage, considers all inverted
tree sets in the given view graph and selects the inverted tree set that has the
most query-benefit per unit effective maintenance-cost.

Algorithm 1 Inverted-Tree Greedy Algorithm

Given: An OR view graph (G), and a total view maintenance time constraint .S
BEGIN
M = ¢; Be =0;
repeat
for each inverted tree set of views 7T in G such that TN M = ¢
if (EU(T,M) < S) and (B(T,M)/EU(T,M) > B¢)
Be = B(T,M)/EU(T, M);
Cc=T,
endif

endfor

5 The inverse of a directed graph is the graph with its edges reversed.
T A tree is a connected graph in which each vertex has exactly one incoming edge.

M=MU C,
until (U(M) > S);
return M ;

END. <&

We prove in Theorem 1 that the Inverted-tree greedy algorithm is guaranteed
to deliver a near-optimal solution. In Section 7, we present experimental results
that indicate that in practice, the Inverted-tree greedy algorithm almost always
returns an optimal solution. We now define a notion of update graphs which is
used to prove Lemma 1.

Definition 8. (Update Graph) Given an OR view graph G and a set of
nodes/views O in G. An update graph of O in G is denoted by US and is a
subgraph of G such that V(US) = O, and E(U§) = {(v,u) | u,v € O and
v(€ O) is such that UC(u,{v}) < UC(u,{w}) for all w € O}. We drop the

superscript G of US| whenever evident from contert.

It is easy to see that an update graph is an embedded forest in GG. An update
graph of O is useful in determining the flow of changes when maintaining the set
of views O. An edge (v,u) in an update graph Up signifies that the view u uses
the view v (or its delta tables) to incrementally maintain itself, when the set O
is materialized. Figure 5 shows the update graph of {V;, V5, V5} in the OR view
graph G of our running example in Figure 3.

Fig.5. The update-graph for {Vi, V2, V5, Vs} in G

Lemma 1 For a giwen set of views M, a set of views O in an OR view graph G
can be partitioned into inverted tree sets 01,03, ..., O, such thaty ;> | EU(O;, M) <
EU(O, M).

Proof. Consider the update graph Ug of O in GG. By definition, Up is a forest
consisting of m trees, say, U, ..., Uy, for some m < |0|. Let, O; = V(U;), for
1 < m.

An edge (y,z) in the update graph Up implies presence of an edge (z,y) in
the transitive closure of G. Thus, an embedded tree U; in the update graph Up
is an embedded tree in the transitive closure of the inverse graph of G. Hence,
the set of vertices O; is an inverted tree set in GG.

For a set of views C, we use UC(C, M) to denote the maintenance cost of
the set C' wrt. M,ie, UC(C,M)=3%" .- 9,UC(v,MUC), where UC(v, M)
for a view v 1s as defined in Section 3. Now, the effective maintenance-cost of a
set O; with respect to a set M can be written as FU(O;, M) = (UC(0;, M) +
UC(M,0;)) —UM) = UC(O;, M) — (UM) —UC(M,0;)) = UC(O;, M) —
Rd(M, O;), where Rd(M,C) is used to denote the reduction in the maintenance
time of M due to the set of views C, i.e., RA(M,C) =U(M)—-UC(M, C).

As, no view in a set O; uses a view in a different set O; for its maintenance,
UC(O,M) = 37, UC(O;, M). Also, the reduction in the maintenance cost
of M due to the set O 1s less than the sum of the reductions due to the sets
O1,...,0m, Le., RA(M,0) <> Rd(M,O;).

Therefore, as EU(O, M) = UC(O, M) — Rd(M, O), we have EU(O, M) >
Yot EU(O;, M). |

Theorem 1 Given an OR wview graph G and a total maintenance-time con-
straint S. The Inverted-tree greedy algorithm (Algorithm 1) returns a solution
M such that U(M) < 2S and M has a query benefit of at least (1 —1/e) = 63%
of that of an optimal solution that has a maintenance cost of at most U(M),
under the assumption that the optimal solution doesn’t have an wnverted tree set

O; such that U(O;) > S. -

The simplifying assumption made in the above algorithm is almost always
true, because U(M) is not expected to be much higher than S. The following
theorem proves a similar performance guarantee on the solution returned by the
Inverted-tree greedy algorithm without the assumption used in Theorem 1.

Theorem 2 Given an OR wview graph G and a total maintenance-time con-
straint S. The Inverted-tree greedy algorithm (Algorithm 1) returns a solution
M such that U(M) < 2S and B(M,$)/U(M) > 0.5B(0,$)/S, where O is an
optimal solution such that U(O) <= S. "

Dependence of Query and Update Frequencies Note that we have not made any
assumptions about the independence of query frequencies and update frequencies
of views. In fact, the query frequency of a view may decrease with the material-

ization of other views. It can be shown that the above performance guarantees
hold even when the query frequency of a view decreases with the materialization
of other views.

Time Complexity Let G be an OR view graph of size n and A, be the number
of ancestors of a node v € V(). The number of inverted tree sets in G that are
formed by a node v € V() as its root is 247, because any set of ancestors of v
(which become a set of descendants in the inverse graph) form an inverted tree
with v and any inverted tree set that has v as its root is formed from v and a
subset of its ancestors. Therefore, the total number of inverted tree sets in an OR
view graph GG and also, the total time complexity of a stage of the Inverted-tree
greedy algorithm is EUEV(G) (24v), which is in the worst case exponential in n.

We note that for the special case of an OR view graph being a balanced binary
tree, each stage of the Inverted-tree greedy algorithm runs in polynomial time
O(n?), where n is the number of nodes in the graph. The number of inverted tree
sets, T'(h), in a general balanced tree of height h can also be computed using the
following recursion: T'(h) = ((2r)" —1)/(r—1) = ((n+1)2=1)/(r—1) = O(n?/r),
where r > 1 is the branching factor of the tree.

As discussed in Section 7, our experiments show that the Inverted-tree greedy
approach takes substantially less time than the A* algorithm presented in the
next section, especially for sparse graphs. Also, the space requirements of the
Inverted-tree greedy algorithm is polynomial in the size of graph while that of
the A* heuristic is exponential in the size of the input graph.

6 A* Heuristic

In this section, we present an A* heuristic that, given an AND-OR view graph
and a quantity S, deliver a set of views M that has an optimal query response
time such that the total maintenance cost of M is less than S. Recollect that an
A* algorithm [Nil80] searches for an optimal solution in a search graph where
each node represents a candidate solution. Roussopoulos in [Rou82] also demon-
strated the use of A* heuristics for selection of indexes in relational databases.

Let G be an AND-OR view graph instance and S be the total maintenance-
time constraint. We first number the set of views (nodes) N of the graph in
an inverse topological order <wi,vs,...,v,> so that all the edges (v;,v;) in G
are such that i > j. We use this order of views to define a binary tree Tg of
candidate feasible solutions, which is the search tree used by the A* algorithm to
search for an optimal solution. Each node x in Tg has a label <N,,, M;>, where
Ny = {vi,v9,...,v4} is a set of views that have been considered for possible
materialization at and M, (C N;), is the set of views chosen for materialization
at z. The root of T has the label <¢, ¢>, signifying an empty solution. Each
node z with a label <N,, M;> has two successor nodes {(z) and r(z) with the
labels <Ng U {v4y1}, My> and <Ny U {vgy1}, My U {vayq}> respectively. The
successor r(z) exists only if My U {vg41} has a total maintenance cost of less
than S, the given cost constraint.

We define two functions® g : V(Tg) — R, and h : V(Tg) — R, where R
is the set of real numbers. For a node 2 € V(T¢g), with a label <N, M;>, the
value g(z) is the total query cost of the queries on N, using the selected views
in M. That is,

Gz = Z fle('L’iaMx)~

vi€Ng

The number h(z) is an estimated lower bound on A*(z) which is defined as the
remaining query cost of an optimal solution corresponding to some descendant of
z in Tg. In other words, h(z) is a lower bound estimation of h*(z) = 7(G, M) —

8 The function g is not to be confused with the update frequency g, associated with
each view in a view graph.

g(z), where M, is an optimal solution corresponding to some descendant y of
n T(;.

Algorithm 2 A* Heuristic

Input: G, an AND-OR view graph, and S, the maintenance-cost constraint.
Output: A set of views M selected for materialization.
BEGIN
Create a tree T having just the root A. The label associated with A is <¢, ¢>.
Create a priority queue (heap) L = <A>.
repeat
Remove z from I, where z has the lowest g(z) 4+ h(z) value in L.
Let the label of 2 be <Ny, M;>, where N, = {vy,vs,...,v4} for some d < n.
if (d = n) RETURN M,.
Add a successor of z, [(z), with a label <Ny U {vgy1}, My> to the list L.
if (U(Mg) < S)
Add to I a successor of z, r(z), with a label <Ny U {v441}, My U {vap1}>.
until (L is empty);
RETURN NULL;
END. <&

We now show how to compute the value A(z) for a node z in the binary
tree Tg. Let N = V(G) be the set of all views/nodes in G. Given a node z, we
need to estimate the optimal query cost of the remaining queries in N — N;.
Let s(v) = g,UC(v, N), the minimum maintenance time a view v can have in
presence of other materialized views. Also, if a node v € V(G) is not selected for
materialization, queries on v have a minimum query cost of p(v) = f,Q(v, N —
{v}). Hence, for each view v that is not selected in an optimal solution M,
containing M, the remaining query cost accrues by at least p(v). Thus, we fill
up the remaining maintenance time available S — U (M) with views in N — N,
in the order of their p(v)/s(v) values. The sum of the f,Q(v, N — {v}) values
for the views left out will give a lower bound on A*(z), the optimal query cost
of the remaining queries. In order to nullify the knapsack effect as mentioned in
Section 4, we start with leaving out the view w that has the highest f,Q(v, N —
{v}) value.

Theorem 3 The A* algorithm (Algorithm 2) returns an optimal solution. g

The above theorem guarantees the correctness of A* heuristic. Better lower
bounds yield A* heuristics that will have better performances in terms of the
number of nodes explored in T¢g. In the worst case, the A* heuristic can take
exponential time in the number of nodes in the view graph. There is no better
bounds known for the A* algorithm in terms of the function A(z) used.

7 Experimental Results

We ran some experiments to determine the quality of the solution delivered and
the time taken in practice by the Inverted-tree Greedy algorithm for OR view

graphs that arise in practice. We implemented both the algorithms, Inverted-
tree Greedy and A* heuristic, and ran them on random instances of OR view
graphs that are balanced trees and directed acyclic OR view graphs with varying
edge-densities, and random query and update frequencies. We used a linear cost
model [HRU96] for the purposes of our experiments.

We made the following observations. The Inverted-tree Greedy Algorithm
(Algorithm 1) returned an optimal solution for almost all (96%) view graph
instances. In other cases, the solution returned by the Inverted-tree greedy al-
gorithm had a query benefit of around 95% of the optimal query benefit. For
balanced trees and sparse graphs having edge density less than 40%), the Inverted-
tree greedy took substantially less time (a factor of 10 to 500) than that taken by
the A* heuristic. With the increase in the edge density, the benefit of Inverted-
tree greedy over the A* heuristic reduces and for very dense graphs, A* may
actually perform marginally better than the Inverted-tree greedy. One should
observe that OR view graphs that are expected to arise in practice would be
very sparse. For example, the the OR view graph corresponding to a data cube
having n dimensions has Y, ((})2) = 3" edges and 2" vertices. Thus, the
edge density is approximately (0.75)", for a given n.

The comparison of the times taken by the Inverted-tree greedy and the A*
heuristic is briefly presented in Figure 6. In all the plots shown in Figures 6, the
different view graph instances of the maintenance-cost view-selection problem
are plotted on the z-axis. A view graph instance G is represented in terms of
N, the number of nodes in G, and S, the maintenance-time constraint. The
view graph instances are arranged in the lexicographic order of (N, S), i.e., all
the view graphs with smallest N are listed first, in order of their constraint S
values. In all the graph plots, the number N varied from 10 to 25, and S varied
from the time required to maintain the smallest view to the time required to
maintain all views in a given view graph.

8 Conclusions

One of the most important decisions in design of a data warehouse is the se-
lection of views to materialize. The view-selection problem in a data warehouse
i1s to select a set of views to materialize so as to optimize the total query re-
sponse time, under some resource constraint such as total space and/or the total
maintenance time of the materialized views. All the prior work done on the view
selection problem considered only a disk-space constraint. In practice, the real
constraining factor 1s the total maintenance time. Hence, in this article, we have
considered the maintenance-cost view-selection problem where the constraint is
of total maintenance time.

As the maintenance-cost view-selection problem is intractable, we designed
an approximation algorithms for the special case of OR view graphs. The OR
view graphs arise in many practical applications like data cubes, and other OLAP
applications. For the general case of AND-OR view graphs, we designed an A*
heuristic that delivers an optimal solution.

Performance on Balanced Trees Performance on Graphs with 10% Edge Density

20000 20000
18000 1 18000}
14000¢ 14000+
10000} 10000}
@ b A* Heuristic 8 00007 A* Heuristic
B N /\ - 600, N /\
S0 o I PV /\w !
= 180¢ £ 5 :
£ [g Inverted Tree Greedy
= 140 |nverted TreeGr%dy 1 F sl N 1
100) L]
60/ f /] 20 / I
i : 10! / /]
20 ///f/r[[/ *////// 1
(N,S) (N,S)

Time taken by A*
Time taken by Inverted —tree Greedy

) on Random Graphs

Performance Ratios (

180
400 Edge Density = 15% 1 1200 Edge Density = 25% 1
E300 £
g 8100
£200 £
B } 60
100
20
0 (N,S) ° (N,S)
50 ' 5 —
- Edge Density = 40% 1
s 9 y=aum - Edge Density = 80% -
£ 30 g3 1
g 8
£20 €20 1
2 S
& 10 § 1t \M\‘A 1
0 0
(N,S) (N.S)

Fig.6. Experimental Results. The z-axis shows the view graph instances in lexico-
graphic order of their (N, S) values, where N is the number of nodes in the graph and
S is the maintenance-time constraint.

Our preliminary experiment results are very encouraging for the Inverted-
tree Greedy algorithm. Also, the space requirement of the Inverted-tree greedy
heuristic 1s polynomial in size of the graph, while that of the A* heuristic grows
exponentially in the size of the graph.

References

[BPT97] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection
in a multidimensional database. In Proc. of the VLDB, 1997.

[CWI1] S. Ceri and J. Widom. Deriving production rules for incremental view
maintenance. In Proc. of the VLDB, 1991.

[GHRU97] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection
in OLAP. In Proc. of the Intl. Conf. on Data Engineering, 1997.

[GM95] A. Gupta and [.S. Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEFE Data Eng. Bulletin, Special Issue on
Materialized Views and Data Warehousing, 18(2), 1995.

[Gup97] H. Gupta. Selection of views to materialize in a data warehouse. In

Proceedings of the Intl. Conf. on Database Theory, Delphi, Greece, 1997.

[HGMW195] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The

[HRU96]
[TK93]

[MQMO97]

[Ni180]
[Rou82]

[RSS96]

[TS97]

[WGL*96]

[Wid9s5]

[YKL97]

Stanford Data Warehousing Project. IEEFE Data Eng. Bulletin, Special
Issue on Materialized Views and Data Warehousing, 1995.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes
efficiently. In Proceedings of the ACM SIGMOD, June 1996.

W.H. Inmon and C. Kelley. Rdb/VMS: Developing the Data Warehouse.
QED Publishing Group, Boston, Massachussetts, 1993.

I. Mumick, D. Quass, and B. Mumick. Maintenance of data cubes and
summary tables in a warehouse. In Proceedings of the ACM SIGMOD
International Conference of Management of Data, 1997.

Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers, Inc., 1980.

N. Roussopoulos. View indexing in relational databases. ACM Transac-
tions on Database Systems, 7(2):258-290, June 1982.

K. A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized view
maintenance and integrity constraint checking: Trading space for time.
In Proceedings of the ACM SIGMOD, 1996.

D. Theodoratos and T'. Sellis. Data warehouse configuration. In Proceed-
ings of the 23rd Intl. Conf. on Very Large Data Bases, 1997.

J. Wiener, H. Gupta, W. Labio, Y. Zhuge, H. Garcia-Molina, and
J. Widom. A system prototype for warehouse view maintenance. In
Workshop on Materialized Views: Techniques and Applications, 1996.

J. Widom. Research problems in data warehousing. In Proc. of the Intl.
Conf. on Information and Knowledge Management, 1995.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view
design in data warehousing environment. In Proc. of the VLDB, 1997.

[ZGMHWO95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View main-

tenance in a warehousing environment. In Proc. of the ACM SIGMOD
International Conference on Management of Data, 1995.

