
Deductive Approach to Processing High-Level
Video Activity Queries in UAV Networks

Himanshu Gupta
Department of Computer Science, Stony Brook University, NY, USA.

Abstract—We envision a network of airborne video sensors
(AVSs) being used for detection of unusual activities in
emergency and disaster control situations, monitoring of un-
planned events, etc. In this preliminary work, we address the
problem of declarative specification and optimized evaluation
of high-level video activities. In particular, we propose use
of a declarative deductive framework, wherein high-level
activities are defined in terms of the low-level events using
deductive rules. Here, the low-level events are the primitive
events generated at individual AVS nodes using computer
vision techniques. In our envisioned system, the high-level
activities are essentially translated into a distributed collec-
tion of AVS operations run on individual AVS nodes. We
propose certain optimization opportunities that prune the
set of targets being tracked or events being detected by an
AVS node. In effect, our envisioned system can form a basis
of macro-programming of AVS applications and automatic
translation into energy-efficient distributed code.

I. INTRODUCTION

Often there is a need for remote monitoring or video
surveillance of a large geographic area. For instance,
in case of an emergency or disaster situation, we may
want to monitor the affected area to effectively control
and manage the disaster situation. Or, we may want to
monitor a sports event, a carnival, or a parade. A static
infrastructure consisting of cameras mounted at strategic
locations cannot be much helpful in ad hoc situations such
as the disaster or emergency situations described above.
Also, the capabilities of an infrastructure composed of
physically mounted static cameras is vastly limited, as the
area to be covered by the system has to be pre-determined
and is inflexible. In such ad hoc or emergency situations,
one of the ways to provide unconstrained remote video
surveillance over an affected area is to deploy on demand
a wireless network of airborne video sensor (AVS) nodes.
Here, each video sensor node may be equipped with a
camera, a processing unit, battery, and a wireless radio,
and mounted on an unmanned aerial vehicle (UAV) such as
blimp or a drone. Such an airborne system can effectively
cover a much larger area, and provide instant and ad hoc
deployability.

In this preliminary work, we discuss use of the deductive
approach for high-level specification of video activities,
and propose techniques for energy-efficient evaluation of
such high-level queries by automatically translating the
given queries into distributed code for individual nodes.

To aid high-level activity recognition, we need to tailor to
our context standard computer vision techniques to detect
primitive events (e.g., detection of individual objects).

II. MOTIVATING SCENARIOS AND AVS SYSTEM

In this section, we briefly discuss motivating scenarios
for an AVS system, and describe the overall functioning
of the AVS system.
Motivating Scenarios. There are many situations in which
vast and/or inaccessible areas should be visually monitored
to detect unusual events over time. Consider a scenario
when we wish to track and monitor a mobile group of
objects such as people or vehicles. Since the objects to be
monitored are themselves mobile, a wireless network of
AVS nodes may be the only effective means to track them.
The purpose of an AVS network in the above scenario
could be to detect certain high-level activities, such as a
pair of vehicles on a collision course or a person chasing
another person. Let us consider a second scenario: a
disaster situation arising due to a natural disaster such as a
flood, earthquake, etc. Again, an ad hoc AVS network may
be the only effective way to monitor such a situation. Here,
people may begin to evacuate the region in automobiles
or by foot, and an example of a visual event of interest
could be a stalled or interrupted crowd/traffic flow. Other
examples include traffic control in freeways, forest fire,
toxic locations, attack aftermath, etc.
Overall Functioning of an AVS Network. Our envisioned
AVS network system consists of a set of fully equipped
and programmed AVS nodes, and a central computer on
the ground. The network of AVS nodes is designed to be
instantly deployed in an ad hoc manner over an affected
area. The central computer also runs a query engine that
takes in high-level specification of activity queries from the
user, and automatically translates them into appropriate de-
tection tasks to be run on the individual AVS nodes. Once
deployed, the set of AVS nodes form an ad hoc wireless
network, and the nodes position themselves to provide
coverage of the region to be monitored, as determined
by the initial specifications. Once positioned, the AVS
nodes gather images or video streams, detect primitive
visual events, and transmit detected events to the central
computer for further query evaluation. When requested,
nodes may transmit the video stream or certain images to

the central computer for it to run more enhanced vision
algorithms. Thus, the AVS network as a whole becomes
responsible for executing the high-level activity queries in
an efficient distributed manner.

Based on detection of any events or activities, the central
computer may issue appropriate commands to the nodes
in the AVS network to change their locations, coverage,
detection tasks, etc. In particular, when certain events
of interest are detected, one or more airborne sensor
nodes may fly lower over the area where the event was
reported and zoom in to monitor the event area more
closely. The coverage area lost by these cameras will
then be automatically taken over by other AVS nodes
through appropriate change of locations and/or camera
resolution (zoom) levels. Also, when the battery power
of an AVS node is depleted, it may fly back towards
the command center for recharging, and the lost coverage
area will automatically be compensated by other (possibly,
additionally deployed) AVS nodes. In our past works [1],
[2], we have addressed the camera coverage problems in
this context; in this work, we focus on the problem of
optimized evaluation of high-level video activities.

III. REPRESENTATION AND RECOGNITION OF
HIGH-LEVEL VIDEO ACTIVITIES

In this section, we present a framework for represen-
tation and recognition of high-level video activities in
the context of our AVS system. These high-level activi-
ties are represented in terms of the primitive (low-level)
image events detected using standard computer vision
techniques. In particular, one could consider detection of
single “objects” (humans, vehicles, group of indistinguish-
able humans, etc.) as primitive events. These primitive
events may be associated with attributes such as absolute
locations, time instant (or interval) of detection, etc. For
instance, consider an AVS network deployed to track
human activities over a public region. Here, the primitive
events may be detection of individual persons or static
cars along with associated attributes such as velocity,
(probability distribution of) absolute location, time interval
of detection, etc. On the other hand, an interesting high-
level activity could be: two persons approaching a common
location from opposite directions, getting into a single
(static) car, and then driving away. Precise demarkation
between primitive and high-level events depends on the
application and the computer vision techniques used on
individual nodes. We start with a discussion on related
work.

Related Work. There has been quite a bit of work done
specifically on representation of high-level video activities
from camera images. Hidden Markov Models (HMMs)
have largely been used for tackling the problem of gesture
recognition [3], [4]. Moreover, parameters in the HMMs
need to be learned through training data, which may not be

possible in an ad hoc system such as ours. Context free
grammers (CFGs) have also been used for representing
high-level activities [5], [6]. Both HMMs and CFGs have
limited expressive power; for instance, they can’t be easily
used to represent activities involving partially ordered
primitives with parallel tracks. Nevatia et al. [7], [8]
focus on representation of spatio-temporal events using
temporal sequencing, and spatial/temporal/logical relation-
ships, and [9] discusses representation of multi-stream
activities. In other works, [10] uses concepts of events,
scenes and scenarios, and [11], [12] propose systems for
representation of soccer and football scenes. All the above
works have limited expressibility – for instance, none of
the above systems is capable of representing trajectories of
vehicles (for further manipulation). Moreover, all existing
works on activity recognition are based on a centralized
architecture and assume fixed video cameras. In our past
work [13], we proposed use of the deductive framework
for programming sensor networks; here, we explore opti-
mization techniques specifically for AVS networks.

Deductive Approach. We explore use of the deductive
approach for representation of high-level video activities.
The proposed approach is declarative and expressive, and
has been used with success for declarative specification
of network routing protocols [14] and overlay architec-
tures [15], and for declarative programming of sensor
networks [13]. The deductive approach allows for high-
level specification of video activities, and is amenable to
query optimizations in our context. We start with giving a
brief overview on deductive programming.

Overview of Deductive Programming. Predicate logic is
a way to represent “knowledge” and can be used as a
language to manipulate tables of facts. In our framework,
we use full first-order logic, which consists of logic rules
with recursion and allows use of function symbols in
arguments of predicates. Example 1 illustrates the need for
function symbols. In general, allowing function symbols
makes the deductive framework Turing complete [16].
More formally, in first-order logic, the arguments of a
predicate may be arbitrary terms, where a term is re-
cursively defined as follows. A term is either a constant,
variable, or f(t1, t2, . . . , tn) where each ti is a term and
f is a function symbol. A logic rule is now written as:
H : − G1, G2, . . . , Gk, where H is called the head
and G1, . . . , Gk are the body subgoals. The head and the
subgoals are of the form p(t1, t2, . . . , tm) where p is a
predicate and t’s are arbitrary terms.

Certain predicates that are given a conventional interpre-
tation such as X < Y , are called built-in and can appear
in the body subgoals. In general, such built-in predicates
may be defined by the user herself, in which case the user
provides the procedural code to evaluate the predicate. For
sake of ease in programming, we also allow restricted use

of negated subgoals. We now illustrate our approach with
the help of an example.

Example 1: High-Level Activity Over Trajectories.
Let us represent the high-level activity we had mentioned
before: Two persons approaching a common location from
opposite directions, getting into a single (static) car, and
then driving away. See Figure 1. Here, the primitive (base)
events are detection of individual persons and vehicles,
with associated location and time instant of detection.
More specifically, the base events are represented as
report(R), where R is a data structure containing the object
type (R.type), the location (R.loc), and time instant (R.t)
of object detection.

For clarity, we use lists instead of function symbols;
the list notation [X|Y] signifies X as the head-sublist
and Y as the tail-element. For clarity, we have used a
few built-in predicates/functions: close(R1, R2) checks
if the two reports can be consecutive points on a tra-
jectory (i.e., close enough in the spatial and temporal
domains), createS(R1, R2) creates a stationary object
with the time interval [R1.t, R2.t], append(S,R) appends
the interval of S with R.t, static(S,R) checks if the
new report R can be appended to the stationary fact S,
convergeFromDiffDirs(T1, T2, S) checks if the trajectories
T1 and T2 are of type “person” and if they converge
from different directions to S of type “car.” The above
program can be easily written using atomic types (rather
than object classes), and the built-in predicates can be
easily defined using appropriate arithmetic predicates over
attributes. Also, the arithmetic predicates can be defined
in a way to embed some amount of uncertainity. However,
beyond the rules in the above program are deterministic
(non-probabilistic). To keep our efforts focussed, we do
not consider probabilistic events in this project.

Evaluation of Activity Queries. A query engine could be
built using a deductive engine such as the XSB deductive
engine [17], which evaluates the logic queries in a top-
down manner. The engine is run at the query server,
which could be at the central command or one of the
AVS nodes since each AVS node has sufficient processing
resources. The sensor operations to synthesize of primitive
events (using computer vision techniques) are run at the
individual nodes and generate a stream of primitive-event
tuples. The tuples generated at an AVS node corresponding
to the primitive events are transmitted to the query server
for remaining query evaluation, which is done in an
incremental manner using well-known techniques [18]–
[20]. To facilitate the above query evaluation strategy, we
should automatically translate (at compile time) a high-
level activity query into a specific collection of sensor
operations that run on individual AVS nodes.

Optimization Objectives. In our context, the key met-
rics of interest are computation time and total energy

consumption; the latter metric is important due to the
untethered (and thus, battery-operated) nature of the AVS
nodes. The above described evaluation scheme entails only
transmission of tuples (to the query server), and thus,
incurs minimal energy cost. Computation of primitive
events, one of the main sources of energy consumption,
is naturally distributed across the AVS nodes in a load-
balanced manner and is discussed in more detail be-
low. Transmission/gathering of images [21], to facilitate
synthesis of primitive events, can be energy consuming
and is done largely on an on-demand basis. Finally, the
movement of AVS nodes (e.g., blimps), the remaining
dominant source of energy consumption, is driven by
independent coverage specifications or the need to track
targets; the target-tracking can be optimized and embedded
in query optimization techniques, as discussed below.
Minimizing Synthesis of Low-level Events. To conserve
energy, we should explore optimization opportunities to
detect only those primitive events that may result in the
user-defined activity. For instance, consider our high-level
activity: two persons approach each other from different
directions towards a stationary car, and drive away. Let us
assume that the above is the only activity that needs to
be recognized, and that detecting a car is more energy-
intensive than detecting a person. Thus, it is prudent to
not detect cars, until two persons have been detected to
be approaching each other from different directions. Even
after the detection of the event involving two persons,
the detection of car can be restricted to a small spatial
region (where the two persons meet), and hence only a
small set of neighboring AVS nodes need to be involved.
In the above scheme, initially we attempt to detect all
persons. But, over time, we can also prune the number
of persons being tracked, since we are only interested
in persons that are approaching each other. Such pruning
will depend upon the definition of the built-in predicate
convergeFromDiffDirs in Example 1.

To illustrate another optimization opportunity, consider
another query that seeks to compute trajectories of enemy
vehicles that have encircled a given region multiple times.
Detecting whether a vehicle is friendly or enemy may
be easy and efficient to determine, possibly, by the color
of the vehicle. However, determining whether a target
encircled a region multiple times may involve tracking
(i.e., detection) the target over a long period of time. In
such cases, energy could be conserved by first determining
the set of enemy targets, and then tracking the trajectory
only for these targets.

The above examples illustrate the need to synthesize
and process primitive-events in an efficient order by a
combination of following techniques: (i) detect objects in
a particular order, (ii) prune objects being tracked based
on given predicates in the corresponding rules, and (iii)
evaluate predicates in an order that is conducive to optimal

traj([R1, R2]) : − report(R1), report(R2), close(R1, R2), NOT notStartReport(R1)
notStartReport(R2) : − report(R1), report(R2), close(R1, R2)
traj([X|R1, R2]) : − traj([X|R1]), report(R2), close(R1, R2)
completeTraj([X|R]) : − traj([X|R]), NOT notLastReport(R)
notLastReport(R1) : − report(R1), report(R2), close(R1, R2)
stationary(createS(R1, R2)) : − report(R1), report(R2), static(R1, R2)
stationary(append(S,R.t)) : − stationary(S), report(R), static(S,R)
FinalStatic(S,R) : − stationary(S), report(R), NOTstatic(S,R)
activity(T1, T2, S) : − traj(T1), traj(T2), F inalStatic(S), convergeFromDiffDirs(T1, T2, S)

Fig. 1: Representation of a high-level video activity in the deductive framework

pruning of targets. The temporal and spatial conditions in
the inference rules will play a particularly important role
in the the above mechanisms. The above issues are akin to
the well-studied problem of efficient subgoal ordering [22]
in logic programs. However, in our context, we should de-
velop cost models for various built-in predicates, synthesis
of primitive events, and use these measures to optimize
query evaluation. Eventually, such optimizations will be
encoded in the automatically generated distributed code at
the nodes, so that generation of a primitive event at a node
is transmitted to other nodes which take appropriate action
(synthesizing other primitive events, stop tracking a target,
etc) in response. Finally, detection of objects in a particular
order entails that certain primitive events will only be
synthesized at a later time, if and when required. Thus,
some nodes may be required to archive the video stream
for later use in synthesis of primitive events; this should be
feasible due to sufficient memory available at each node.
However, appropriate optimizations can be done to save
space; e.g., to infer presence of a stationary car, a node
only needs to save one frame for every few seconds. Such
parameters can be inferred from the given activity query.

In our future work, we plan to develop a comprehensive
query evaluation scheme based on the above suggested
optimizations, and embed them in the generated distributed
code for the individual nodes. These optimizations indi-
rectly optimize the movement of blimps by minimizing
the number of targets to be tracked.

Leader Selection. Finally, to save computation cost, only
one node should track a target that may be within the view
of multiple nodes. Thus, there is a need to select a “leader
AVS node” for each such target. Determination of such a
leader node requires consideration of balancing computa-
tion load and possibly, predicting target movement. The
problem becomes more challenging in a heterogeneous
or an already unbalanced network where AVS nodes
may have different computational capabilities or energy
resources. In some cases, we many want a certain number
of nodes to track each target for data fusion and/or fault-
tolerance.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored use of deductive frame-
work for optimized evaluation of high-level video activity
queries in the context of a network of unmanned aerial
vehicles. We believe that our envisioned system can form
a basis of macro-programming of AVS applications and
automatic translation into energy-efficient distributed code.
In our future work, we plan to make the above vision
a reality, by developing a framework to represent high-
level video queries, and developing a query engine that
generates optimized code to run at desired points of time
on individual nodes.

REFERENCES

[1] G. Fusco and H. Gupta, “Selection and orientation of directional
sensors for coverage maximization,” in IEEE SECON, 2009.

[2] ——, “Placement and orientation of rotating directional sensors,”
in IEEE SECON, 2010.

[3] T. Starner and A. Pentland, “Real-time american sign language
recognition from video using hidden markov models,” in Proceed-
ings of the International Symposium on Computer Vision, 1995.

[4] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov
models for complex action recognition,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR),
1997.

[5] Y. A. Ivanov and A. F. Bobick, “Recognition of visual activities
and interactions by stochastic parsing,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 22, no. 8, 2000.

[6] D. Lymberopoulos, A. S. Ogale, A. Savvides, and Y. Aloimonos,
“A sensory grammar for inferring behaviors in sensor networks,”
in Proceedings of the International Workshop on Information
Processing in Sensor Networks (IPSN), 2006.

[7] R. Nevatia and T. Zhao, “Hierarchical language-based represen-
tation of events in video streams,” in IEEE Workshop on Event
Mining, 2003.

[8] S. Hongeng, R. Nevatia, and F. Bremond, “Video-based event
recognition: activity representation and probabilistic recognition
methods,” Computer Vision and Image Understanding, vol. 96,
no. 2, 2004.

[9] Y. Shi and A. Bobick, “P-net: A representation for partially-
sequenced, multi-stream activity,” in Proc. of the Workshop on
Event Mining in CVPR, 2003.

[10] N. Rota and M. Thonnat, “Activity recognition from video sequence
using declarative models,” in In Proc. of the European Conf. on
Artificial Intelligence, 2000.

[11] G. Herzog, “Utilizing interval-based event representations for in-
cremental high-level scene analysis,” in Proc. of the Intl. Workshop
on Semantics of Time, Space, and Movement and SpatioTemporal
Reasoning, 1992.

[12] S. Intille and A. Bobick, “Visual recognition of multi-agent action
using binary temporal relations,” in IEEE Proc. of Computer Vision
and Pattern Recognition, 1999.

[13] H. Gupta, X. Zhu, and X. Xu, “Deductive framework for program-
ming sensor networks,” in IEEE ICDE, 2009.

[14] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan,
“Declarative routing: extensible routing with declarative queries,”
in SIGCOMM, 2005.

[15] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing declarative overlays,” SIGOPS Oper. Syst.
Rev., vol. 39, no. 5, pp. 75–90, 2005.

[16] S. A. Tarnlund, “Horn clause computability,” BIT, vol. 17, no. 2,
1977.

[17] K. Sagonas, T. Swift, and D. S. Warren, “XSB as an efficient
deductive database engine,” in Proceedings of SIGMOD, May 1994,
pp. 442–453.

[18] A. Gupta, I. Mumick, and V. Subrahmanian, “Maintaining views
incrementally,” in Proceedings of the ACM SIGMOD Conference
on Management of Data (SIGMOD), 1993.

[19] D. Saha and C. R. Ramakrishnan, “Incremental evaluation of tabled
logic programs,” in International Conference on Logic Program-
ming, 2003.

[20] X. Zhu, H. Gupta, and B. Tang, “Join of multiple data streams
in sensor networks,” IEEE Transactions on knowledge and Data
Engineering, vol. 21, no. 12, 2009.

[21] X. Zhu, B. Tang, and H. Gupta, “Delay efficient data gathering in
sensor networks,” in International Conference on Mobile Ad-Hoc
and Sensor Networks. Springer, 2005, pp. 380–389.

[22] R. Ramakrishnan, D. Srivastava, and S. Sudarshan, “Rule ordering
bottom-up fixpoint evaluation of logic programs,” in Proceedings
of the International Conference on Very Large Data Bases (VLDB),
1990.

