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Abstract—In cellular networks, a recent trend in research is
to make spectrum access dynamic in the spatial and temporal
dimensions, for the sake of efficient utilization of spectrum. In one
such model, the spectrum is divided into channels and periodi-
cally allocated to competing base stations using an auction-based
market mechanism. An “efficient” auction mechanism is essential
to the success of such a dynamic spectrum access model. A key
objective in designing an auction mechanism is “truthfulness.”
Combining this objective with an optimization of some social
choice function (such as the social-welfare or the generated
revenue) is highly-desirable. In this article, we design polynomial-
time spectrum auction mechanisms that are truthful and yield
an allocation with O(1)-approximate social-welfare or revenue.
Our mechanisms generalize to general interference models.To
the best of our knowledge, ours is the first work to design
polynomial-time truthful spectrum auction mechanisms with a
constant-factor approximation of either the expected revenue
or the social-welfare. We demonstrate the performance of our
designed mechanism through simulations.

I. Introduction

Usage of wireless spectrum has long been governed by
governmental regulatory authorities (e.g., FCC in USA or
Ofcom in UK) who divide the spectrum into fixed size chunks
to be used strictly for specific purposes, such as broadcast
radio/TV, cellular/PCS services, wireless LAN, etc. This allo-
cation is very long-term and space-time invariant, and is often
based on peak usage. Such long-term allocation of spectrum
introduces significant inefficiencies in utilization [1]. Thus, a
new policy trend [2] is to make spectrum access dynamic. In
case of cellular networks, centralized architectures [1, 3–5] for
dynamic spectrum access have gained a lot of interest. In such
models, a spectrum broker periodically allocates spectrum
to competing base stations using an auction-based market
mechanism. Success of such a model depends on the design
of scalable and efficient spectrum market mechanisms. Flawed
market designs for a precious commodity like spectrum can
lead to significant market inefficiencies and adverse economic
impacts. This happened in the restructured electricity market in
California in 2000 which made international headlines, leading
to many studies [6–10].

A natural objective of an auction-based mechanism is to
maximize the generatedsocial-welfare(total ”valuation” of
the goods sold) or the generatedrevenue(total payments by
the buyers) [4, 5, 11, 12]. However,a mechanism considering
such an objective alone can encourage the spectrum buyers to
lie about their real valuations (i.e., an “untruthful” auction),
instill fear of market manipulation, and indirectly possibly
lower revenue or social-welfare. Moreover, in a competitive

environment, buyers may spend a lot of time/effort in predict-
ing the behavior of other buyers and planning against them.
In this article, our focus is on designing spectrum auction
mechanisms that not only encourage truthful behavior but also
provide some form of guarantee on either the social-welfare
or the revenue.

Model and Contributions. In a spectrum auction, the items
being sold are various channels corresponding to certain blocks
of frequency. The base stations bid for these channels, based
on their valuations. The auctioneer assigns channels to base
stations within the “wireless interference constraint” and deter-
mines payments from bidders. In the above context, we wish to
design polynomial-time auction mechanisms that (i) encourage
buyers to be truthful (i.e., ensure that the buyers “benefit”the
most when their bid is equal to their actual valuation), and (ii)
maximize either the social-welfare or the revenue. However,
when the bidder valuations are completely private, no truthful
auction mechanism can give any performance guarantee on
the revenue (see Section IV). Keeping the above in mind, we
make the following contributions in the paper:

• When the bidder valuations are private, we design truthful
spectrum auctions with approximate social-welfare.

• We design truthful spectrum auctions with approximate
revenue, under the relaxed Bayesian setting wherein the
bidder valuations are drawn from publicly-known proba-
bility distributions.

• We extend our above designed mechanisms to general
interference models and other generalizations.

To the best of our knowledge, ours is the first work to
design polynomial-time truthful spectrum auctions that offer
a constant-factor approximation on the social-welfare or the
expected revenue.

Paper Organization. We start our discussion with some
background material on spectrum auctions (Section II). In
Section III, we design truthful mechanisms with near-optimal
social-welfare, and in Section IV, we consider the Bayesian
setting and design a truthful mechanism with near-optimal
expected revenue. Finally, we compare the performance of our
proposed mechanisms with known works in Section V.

II. Background and Related Works

In this section, we present some background material related
to our work, and introduce basic terms and definitions from
both the spectrum allocation and the auction theory literature.
We also discuss related work.
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Dynamic Spectrum Access.In the dynamic spectrum ac-
cess architectures, the spectrum is allocated dynamicallyin
spatial and temporal domains, to be more responsive to user
demands, and thus, improving utilization. Buddhikot et al.[1],
introduced thecoordinated dynamic spectrum access(CDSA)
model for cellular networks. In the CDSA model, there is a
centralized entity known as thespectrum brokerwho owns
a part of the spectrum called thecoordinated access band
(CAB). The spectrum broker divides the CAB into channels
(contiguous or non-contiguous blocks of frequency). The base
stations bid for these available channels by specifying a
bidding price. Periodically, the spectrum broker allocates the
channels to the base stations under the “wireless interference
constraint” such that the total revenue (sum of payments by
the base stations) is maximized. The above auction-based
approach allows the base stations to bid according to the
spectrum demands, and the spectrum broker to maximize the
revenue. However, to eliminate the fear of market manipulation
and allow the bidders to have simple bidding strategies,
truthful auction mechanisms are desired.

A. Truthful Auction Mechanisms

In this subsection, we formally define the concepts of (truth-
ful) auction mechanisms. We also discuss the most general
example of truthful auction mechanisms.

Auction Mechanism. In an auction [13], a set of rational
bidders compete over one or more items through a bidding
system. An auction is described by the following:

• A finite setO of allowed outcomes.
• Each bidderi has a privately-known real functionvi :

O 7→ R called its valuation function, which quantifies
the bidder’s benefit from each outcome.

• Bidders are asked to declare their valuation functions;1

let wi denote thedeclared valuation functionof the
ith bidder. The bidders may lie about their valuation
functions; thuswi may not be equal tovi.

• An auction mechanismchooses an outcomeo based on
some criteria over the declared valuation functions.

• In addition to choosing an outcome, the auction mecha-
nism also charges each bidderi a paymentpi.

• Utility ui of a bidderi is the difference between its true
valuation of the chosen outcomeo and its paymentpi,
i.e., ui = vi(o) − pi. Each bidder’s goal is to maximize
its utility.

Definition 1: (Auction Mechanism.) LetO be the set of
possible outcomes of an auction. An auction mechanism is a
pair of functions(x, p) such that:

• The winner determination functionx accepts as input a
vectorw = (w1, . . . ,wn) of bidding (declared valuation)
functions and returns an outputx(w) ∈ O.

• The payment functionp(w) = (p1(w), . . . , pn(w)) re-
turns a real vector quantifying the payment charged by
the mechanism to each of the bidders.

1Such auctions (wherein bidders declare their valuations) are calleddirect
revelationauctions. Though more general types of auctions exist, in this paper
we focus only on direct revelation auctions.

Definition 2: (Social-Welfare; Revenue) The social-
welfare of an outcomeo is defined as the sum of the
valuations, i.e.,

∑

i vi(o). On the other hand, therevenue
of an auction mechanism(x, p) is the sum of the payments
∑

i pi(w) charged to the bidders for a given declared valuation
vectorw.

Truthful Auction Mechanisms. In a selfish environment,
bidders may not declare their valuation functions truthfully,
if it were to their advantage (result in increase of their utility).
Such a behavior may severely damage the resulting welfare
and force each bidder to have complex bidding strategies
based on its belief/knowledge about the strategies of other
bidders. A truthful mechanism enforces bidders to behave
truthfully by offering them incentives in the form of reduced
payments. These incentives are based on the presumption that
each bidder’s objective is to maximize its utility. We now
formally define the notion of truthful auction mechanism.

Definition 3: (Truthful Auction Mechanisms.)Given the
valuation functions, in a truthful auction mechanism, each
bidder’s utility is maximized when it truthfully declares its
valuation functionvi.

More formally, let the true valuation functions of the bidders
bev = (v1, . . . , vn). Consider two declared valuation function
vectors, viz., (i)w = (w1, . . . ,wi−1, vi,wi+1, . . . ,wn), and
(ii) w′ = (w1, . . . ,wi−1,wi,wi+1, . . . ,wn) (wherewi 6= vi).
A mechanism(x, p) is consideredtruthful if vi(x(w)) −
pi(w) ≥ vi(x(w′))− pi(w′) for all v, i, andwi.

VCG Mechanisms.The only general mechanism that guaran-
tees truthfulness is due to Vickrey-Clarke-Groves (VCG) [14–
16]. Informally, the celebrated VCG mechanism finds the
outcomeo with maximum social-welfare, and charges each
winner i an amount equal to the total “damage” that it causes
to the other bidders, i.e., the difference between the social-
welfare of the others with and withouti’s participation.

Definition 4: (VCG Mechanism.) A VCG mechanism is
an auction mechanism(x, p) that satisfies the following two
conditions, for any given declared valuation functionsw =
(w1, . . . ,wn).

• x(w) ∈ argmaxo
∑

i wi(o), i.e., the winner determina-
tion function x chooses an outcome that maximizes the
social-welfare according tow.

• The payment functions are determined by the VCG
formula pi(w) = (−∑j 6=i wj(x(w))) + hi(w−i), where
each hi(w−i) is an arbitrary function ofw−i =
(w1, . . . ,wi−1,wi+1, . . . ,wn).

It can be shown that VCG mechanisms maximize social-
welfare. In fact, VCG mechanisms are the only general truthful
mechanisms with optimal social-welfare allocations. However,
they require solving an optimization problem which can be
NP-hard in many settings, as is the case in our context of
spectrum auctions. Furthermore, they may result in low (even
zero) revenue in some cases.

B. Related Works on Spectrum Auctions

Truthful Spectrum Auctions . To the best of our knowledge,
there has been only four works till date, viz., [17–20], thathave
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designed truthful mechanisms for spectrum auction. Below,we
discuss each one of them.

The truthful mechanism designed by Zhou et al. [17]
does not attempt to maximize the revenue or social-welfare.
Moreover, their approach is limited to only simple pairwisein-
terference model. As observed in [17, 21], it is rather straight-
forward to design a truthful auction mechanism without any
regard for revenue or social-welfare. However, the authors
in [17] do show through simulations that their mechanism
returns better revenue and social-welfare compared to a simple
truthful mechanism. Recently, this work has been extended to
consider double auctions [22].

In a recent work, Jia et al. [18] present a simple extension of
Myerson’s mechanism [23] for spectrum auctions. However,
the extension results in an exponential-time mechanism, since
the corresponding virtual-surplus maximizing problem is NP-
hard. Realizing the seriousness of this shortcoming, [18]
presents a polynomial-time mechanism based on the greedy
mechanism of [24]. However, the expected revenue delivered
by such a mechanism can be arbitrarily bad, as shown in
Section IV-B.

In another work, Wu et al. [19] design a spectrum auction
mechanism based on the truthful VCG mechanism [13]. They
focus on modifying the VCG payment function to eliminate
colluding attacks by losing bidders and to improve the total
revenue. However, their altered payment scheme destroys the
truthfulness property of the VCG scheme. In addition, their
mechanism requires solving an integer linear programming
(NP-hard) problem, which makes their approach impractical
for large networks. Note that in practice, cellular networks
may have thousands of base stations [25]. Finally, they assume
either a single-channel system or that each bidder is interested
in only one channel in a multi-channel system.

Finally, in a recent concurrent and complementary work,
Hoefer et al. [20] design approximation algorithms for alloca-
tion of channels to wireless nodes to maximize the social wel-
fare (without worrying about truthfulness), when nodes bidfor
sets of channels. They suggest combining their technique with
the framework of [26] to obtainrandomizedmechanisms that
are truthful inexpectation. They do not consider maximization
of revenue. Also, we note that the physical interference model
considered in [20] is unsuitable for cellular networks,2 which
is our main focus.

Other Works. Recently there have been lots of works on
dynamic spectrum allocation [4, 5, 11, 12, 27] using either
auction-based or pricing-based mechanisms, but all of these
works have ignored the truthfulness property.

III. Social-Welfare Maximization

In this section, we design a truthful spectrum auction
with near-optimal social-welfare. The objective of maximizing
social-welfare is justified in many settings and is extensively
studied in economics [13, 28]. In particular, a spectrum auction
mechanism with high social-welfare ensures that the spectrum

2In cellular networks, for a base stationx, the intended receivers areany
mobile devices that are within a certain distance ofx (as in Section III-B).

is sold to bidders who value it the most and hence, are likely
to utilize it most efficiently.

As mentioned before, VCG mechanism for spectrum auc-
tions requires solving an NP-complete problem. Solving the
NP-hard optimization problem using an approximation algo-
rithm is not helpful, since it destroys the truthfulness of the
mechanism [13]. To circumvent this, the authors of [13] de-
velop the below described maximal-in-range (MIR) technique,
which can be used to design polynomial-time truthful mecha-
nisms with near-optimal social-welfare in certain settings.

Maximal-In-Range Mechanisms. In [13], the authors show
that an auction mechanism is truthful if it (i) chooses an
outcome that optimizes social-welfare over a fixedsubsetof
the outcomes, and (ii) uses VCG payments (as defined in
Definition 4). Such mechanisms are termedMaximal-In-Range
(MIR) and formally defined below.

Definition 5: (Maximal-In-Range (MIR) Mechanism.) Let
Vi be the set of all possible valuation functions of bidderi, and
V =

∏n
i Vi be the space of all possible valuation functions.

Let O denote the range of the winner determination functionx
at V , i.e.,O = {x(v)|v ∈ V }. We say thatx is maximal in its
range if for every v ∈ V , x(v) maximizes the social-welfare
overO.

MIR for Multi-Unit Auctions. In a multi-unit auction (MUA),
a set ofm identical items are up for auction among bidders,
and each bidder expresses interest for certainquantities of
the items, without any preference to any specific item. Thus,
the valuation function of a bidderi can be represented3 as
vi : {1, . . . ,m} 7→ R, wherevi(q) is the value for obtaining
q items. In [29], the authors design an MIR mechanism for
multi-unit auctions that is truthful and yields an allocation
with approximate social-welfare. We use their technique for
our auction mechanism design, as described below.

Our Approach. Our approach utilizes the geographical nature
of the spectrum auction problem to re-formulate it as a
set of multi-unit auction instances. Then, we use the MIR
mechanisms for multi-unit auctions from [29] to solve each
instance, i.e., independently determine spectrum allocation
with approximate social-welfare for each instance. We ensure
truthfulness by using VCG payments. Finally, we combine
the allocations over these independent instances in a way
that preserves truthfulness and the approximation ratio ofthe
social-welfare.

A. Truthful Spectrum Auction with Approximate Social-
Welfare

Throughout the article, we use the terms “bidder” and “base
station” interchangeably.

Spectrum Auction Model. Our model of a cellular network
consists of a set of geographically distributed base stations.
Spectrum is divided intoorthogonalchannels of the same type,
and thespectrum auctioninvolves each base station bidding
for a certain number of channels.

3Note that such a representation can be easily mapped to the original form
wherein a valuation function maps outcomes to real numbers.
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Representation of Valuation and Bidding Functions.In a
spectrum auction of channels of the same type, a bidderi’s
valuation of an outcome/allocationo depends only on the
number of channelsi is getting in o. Thus, we represent
bidder i’s valuation function asvi : {1, . . . ,m} 7→ R,
wherem is the total number of channels andvi(q) denotes
bidder i’s value for obtainingq channels. Recall that the
bidding functionwi for a bidder i is a declaration of its
privately-known valuation functionvi. Thus, the bidding
function is represented similarly aswi : {1, . . . ,m} 7→ R.
We assume free disposal (i.e., valuation for higher number of
channels is larger than smaller number of channels), and that
valuation of zero channels is zero.

General-Minded andk-minded Bidding Functions. In the
most general model, a bidder has a valuation for any number
of channels, and thus, the bidding functions are represented
by m real numbers – one for each quantity of channels. For
efficiency and practicality issues, another model is commonly
assumed in the literature, viz., thek-minded bidding function,
wherein the bidder expresses its valuations for at mostk
quantities of channels.

Interference Graph. Each base station is associated with a
region around it called itscoverage-cell; each base station
serves its clients in its coverage-cell. To communicate, the
base station and the client must operate “interference-free” on
a channel. In cellular networks, wireless interference at aclient
may arise due to multiple near-by base stations operating on
the same channel. In a simple model ofpairwise interference,
pairs of base stations with intersecting coverage-cells are said
to interferewith each other if operating on the same channels,
and thus, must not be assigned a common channel. Such a
relationship between pairs of base stations can be represented
by edges in an interference graph, as defined below.

Definition 6: (Interference GraphGt.) The interference
graphGt = (Nt, Et) is an undirected graph where each vertex
represents a base station and there is an edge(i, j) ∈ Et

betweeni and j if the coverage-cells of the corresponding
base stations intersect.

If the coverage-cells of the base stations are unit-radius
disks, then the interference graph is aunit-disk graph. For
clarity of presentation, we assume unit-disk interference graph
below. Our technique can be easily generalized to more
involved pairwise interference models [30]; in Section III-B,
we present the generalization of our technique to the physical
interference model.

Valid Spectrum Allocation. Given an interference graph, the
spectrum allocation must be done in such a way that no pair of
interfering base stations are allocated a common channel. This
interference constraintis incorporated in the below definition
of a valid spectrum allocation.

Definition 7: (Valid Spectrum Allocation.) LetV and C
be the set of base stations and available channels, and let
P (C) denote the power set ofC. A spectrum allocation vector
(x1, . . . , x|V |) is consideredvalid if there is an assignment
a : V 7→ P (C) such that (i)|a(i)| ≥ xi for all i, and (ii)
a(i) ∩ a(j) = ∅ if (i, j) is in Et.

It can be shown it is NP-complete to test whether a given al-
location vector is valid, through a reduction from the problem
of partitioning a graph into minimum number of independent
sets. Thus, it is desirable for the auction mechanism to output
the assignment functiona in addition (or in lieu of) to the
allocation vector.

TSA-MSW (Truthful Spectrum Auctions with Maximum
Social-Welfare) Problem.Given an interference graph,num-
berof channels, and the bidding functions for the base stations,
the TSA-MSW problemis to design a truthful auction mecha-
nism that returns a valid spectrum allocation with maximum
social-welfare.

TSA-MSW problem is NP-hard even without the truthful-
ness objective [11]. Thus, we focus on designing a truthful
mechanism that yields approximate social-welfare.

Truthful Mechanism with Approximate Social-Welfare.
Given a network with base stations, the unit-disk interference
graph, and the bidding functions, we first determine a valid al-
location with approximate social-welfare as follows. Basically,
we divide the entire network into small hexagonal regions,
solve the simpler optimization problem in each hexagon inde-
pendently, and then, “combine” the solutions. At a high-level,
our algorithm consists of the follows steps.

1) Divide the entire network region into small hexagons of
unit side-length.

2) Uniformly-color the hexagons with seven colors. See
Figure 1.

3) Allocate channels to base stations in each hexagon
independently, treating it as a multi-unit auction (MUA)
and using techniques similar to [29]. Note that the
interference subgraph in each hexagon is actually a
complete graph.

4) For each color, combine the results from all hexagons
of that color.

5) Pick the color that has the highest total social-welfare
and allocate the channels to the winners accordingly.

6) Charge the winners VCG payments (see Definition 4).

Properties of Coloring.In the coloring suggested in Step 2
above, the following two properties hold.

Property 1 Every pair of base stations in the same
hexagon interfere with each other.

Property 2 Base stations in different co-colored
hexagons do not interfere with each other.

Property 1 follows directly from the definition of unit-
disk interference, whileProperty 2 follows from the fact
that the distance between base stations in different co-colored
hexagons will be at least(

√

3(7)− 2) > 2 (from Lemma 2).

Details of Step 3.The above properties imply that the chan-
nels cannot be re-used inside the same hexagon, but can be
fully re-used across different hexagons of the same color. Thus,
allocation in each hexagon can be treated as an MUA. Thus,
we use [29]’s techniques within each hexagon as described
below for general-minded andk-minded bidding functions.

General-Minded Bidding Function.In case of general-
minded bidding model, the availablem channels are split into
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Fig. 1. Hexagons uniformly-colored using 7 colors.
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each, whereNH is the number of
base stations in hexagonH , and a single bundle of remaining
channels. Using dynamic programming, we canoptimallyallo-
cate these bundles to theNH bidders in polynomial time. This
yields an allocation with 1/2-approximate social-welfare[29]
within a hexagon.
k-minded Bidding Function.For k-minded bidding func-

tions, a restricted form of allocation known as thet-round
allocation is used. For a givent (wheret is a PTAS parameter),
a t-round allocation allocatesl (l ≤ m) channels to a subset
T of the bidders where|T | ≤ t; this part of the allocation
is done optimally by exhaustive search for eachl and T .
Also, for eachl and T , the remaining(m − l) channels are
divided into equi-sized bundles and distributed optimallyto the
remaining bidders using dynamic programming. Finally, the
best allocation among thetN t

Hkt such allocations is picked as
the optimalt-round allocation. The above allocation algorithm
runs in polynomial time for a fixedt, and yields a

(

1− 1
t+1

)

-
approximate allocation [29] within a hexagon.

Proof of Truthfulness and Approximation.
Theorem 1:For the TSA-MSW problem under the pair-

wise interference with unit-disk model, the above described
auction mechanism is truthful and returns a valid spectrum
allocation whose social-welfare is 14-approximate for the
general-minded bidding model and is7(1 + ǫ)-approximate
for the k-minded bidding model for a givenǫ > 0. Also,
the mechanism’s running time is polynomial inn and logm,
where n is the number of nodes andm is the number of
channels.

Proof: Truthfulness.Our allocation algorithm picks at-

round allocation with the highest social-welfare, for a given t
(for the case of general-bidding functions,t can be considered
to be zero). Thus, our allocation algorithm is maximal in its
range, where the range of allocations/outcomes is restricted to
t-round allocations. Thus, our auction mechanism is truthful
since MIR allocations with VCG payments are truthful [13].

Approximate Social-Welfare. First, note that by
Property 1 andProperty 2 of the hexagonal division,
the allocation returned by our algorithm is valid. Now, let
us prove the approximation factor for the general-minded
bidding model; the proof fork-minded bidding model is
similar. Consider a particular colorc, and for the set of all
hexagons coloredc, let Ac be the allocation constructed
by our algorithm andOc be the allocation with optimal
social-welfare. We show that the social-welfare ofAc is
within a factor of 2 of that ofOc. Note that, for any particular
hexagon cell, our algorithm constructs an allocation whose

social-welfare is within a factor of 2 of the optimal for that
hexagon. SinceAc’s (Oc’s) social-welfare is the sum of the
social-welfares of the constructed (optimal) allocationsfor the
individual c-colored hexagons, we get that the social-welfare
of Ac is within a factor of 2 of that ofAc. Now, since there
are seven colors and we pick the best of the seven allocations,
the social-welfare of the returned allocation is within a factor
of 14 of the overall optimal social-welfare.

Pseudo-polynomial Algorithms.Note that instead of the above
allocation algorithms from [29] within a hexagon, we could
also use the optimal dynamic programming approach which
runs in O(m4NH) time. Since the size of the input is
O(logm), this optimal dynamic programming algorithm has a
pseudo-polynomial time complexity. However, in our simula-
tions, we observe that this pseudo-polynomial algorithm does
not perform any better than our polynomial algorithms.

B. Extensions

Our technique can be easily generalized to more involved
pairwise interference models and non-orthogonal channels, as
shown in [30]. In this subsection, we present the generalization
of our technique to the physical interference model.

Physical Interference Model. In the physical interference
model, a reception from a base stationi is successful at a
point p if and only if,

P/δαi
N +

∑

j∈B′ P/δ
α
j

≥ β, (1)

whereP is the uniform transmission power,B′ is the set of
other base stations operating on the same channel asi, δx is
the distance of the pointp from a base stationx, N is the
ambient noise, andα is the path loss exponent.

Communication Radius (r). The communication radius [11]
r of a base stationi is the maximum distance fromi within
which wewant the SINR fromi to be at least as large asβ.
Essentially, the above is based on the stipulation that the cell of
base stationi is a disk of radiusr. In our context, the value of
r can be arbitrarily large (but finite), since the approximation
ratio and time complexity of our designed algorithms are
independent ofr. Thus, the concept of communication radius
must not be looked upon as an assumption.

Valid Spectrum Allocation. In the physical interference
model, a spectrum allocation vector(x1, . . . , xn) is considered
valid if there is an assignment functiona : V 7→ P (C)
such that (i)|a(i)| ≥ xi for all i, and (ii) for any i and c
such thatc ∈ a(i), the SINR of channelc at any pointp
within a distance ofr from i should be greater thanβ, i.e.,
(P/δαi )/(N +

∑

j∈B P/δαj ) ≥ β whereB is the set of base
stationsj such thatc ∈ a(j) andδx is the distance ofx from
p.

Hexagonal Division and Coloring.Here, we need to do the
hexagonal division and coloring in a way so as to satisfy
the following two properties:Property 3: No two base
stations in a hexagon can be allocated the same channel,
and (ii) Property 4: If one node from each hexagon of
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the same color is concurrently active on the same channel,
then transmission from these nodes is successful within their
communication radius.

Plane Division and Coloring.It is easy to see from the SINR
Equation 1 that dividing the network region into hexagons of
side-length

r′ =
( α
√
β + 1)r

2
(2)

would ensureProperty 3. Here (and in Lemma 1 below),
for simplicity, we have assumed the ambient noiseN to
be zero; nonzero noise can be incorporated using techniques
similar to [31]. Now, to determine appropriate coloring needed
to satisfyProperty 4, we state the following three lemmas.

Lemma 1:Given a division of the region into hexagons
of side-lengthr′, Property 4 is satisfied if the minimum
distance between co-colored hexagons is at least

√

3q′1r
′,

whereq′1 is

q′1 =

(

4
√
7

(3
√
7− 6)( α

√
β + 1)

)2
(

6β

(α− 2)

)
2

α

. (3)

Proof: Consider a base stationi in a hexagonH of color c.
Partition allc-colored hexagons surroundingH into hierarchi-
cal levels. In a uniform-coloring, the first level will contain 6
hexagons of colorc and each such hexagonH ′ is at distance4

of at least(
√
3q1 − 2)r′ from H (from Lemma 2). Similarly,

the second level contains12 hexagons at a distance of at least
(3
√
q1 − 2)r′ from H . In general, thelth level contains6l

hexagons at a distance of at least(32
√
q1l − 2)R from H .

Now consider a pointp within the communication radiusr
from the base stationi. Then, the total signal received at the
pointp due to all other base stations (at most one perc-colored
hexagon) active on the same channel asi is at most:

∞
∑

l=1

6l · P
(

( 3

2

√
q1l−2)( α

√
β+1)

2 − 1
)α

rα

≤ 6P

rα

∞
∑

l=1

l
(

l
√
q1(3

√
7−4)( α

√
β+1)

4
√
7

− 1
)α

≤ 6P

rα

∞
∑

l=1

l
(

l
√
q1(3

√
7−6)( α

√
β+1)

4
√
7

)α

=
6P

α− 2
·
(

4
√
7

√
q1(3

√
7− 6)( α

√
β + 1)r

)α

.

Above, the second equation follows from the following
two facts: (i) 3

2

√
q1l ≥ 3

√
7/2 (since q1 ≥ 7), and (ii) for

x ≥ 3
√
7/2, we have(x − 2) ≥ x

3
√
7/(3

√
7−4)

. And, the third

equation follows from the following facts: (i)l
√
q1(3

√
7 −

4)( α
√
β+1)/4

√
7 ≥ (3

√
7− 4)/2, sinceq1 ≥ 7 and α

√
β ≥ 1,

and (ii) for x ≥ (3
√
7− 4)/2, (x− 1) ≥ x

(3
√
7−4)/(3

√
7−6)

.

For simplicity, we assume ambient noise to be zero; non-
zero noise can be incorporated using techniques similar

4By distance between two hexagons we mean that the distance between
any point in H′ andany point in H.

to [31]. Now, using the value ofq1 from Equation 4, the SINR
at pointp due to the transmission at base stationi is at least:

P

rα
· α− 2

6P
·
(√

q1(3
√
7− 6)( α

√
β + 1)r

4
√
7

)α

≥ β

The following two lemmas are derived from [25, 32].
Lemma 2: In a hexagonal division with side-lengthr′ and

uniformly-colored with x colors, the distance between the
centers of co-colored hexagons is at least

√
3xr′.

Lemma 3:A hexagonal division can be uniformly colored
usingc colors if and only ifc is of the formi2 + j2 + ij for
some positive integersi andj.

The below theorem follows from the above three lemmas.
Theorem 2:Given a division of the region into hexagons

of side-lengthr′, the number of colorsq1 required to satisfy
Property 4 is given5 by:

q1 = min{x | x ≥ max(7, q′1), and x = i2 + j2 + ij (4)

where i, j ∈ Z
+}.

Overall Allocation Algorithm. As discussed above, dividing
the region into hexagons of side-lengthr′ (Equation 2) and col-
oring them uniformly usingq1 (Equation 4) colors, allows us
to satisfyProperty 3 and Property 4. Property 3
ensures that allocation in each hexagon can be treated as a
multi-unit auction, whileProperty 4 allows us to re-use
channels across hexagons of the same color. Now, using the
same allocation algorithm as before, we have the following.

Theorem 3:For the TSA-MSW problem under the physical
interference model, the above described mechanism is truthful
and returns a valid spectrum allocation whose social-welfare
is 2q1-approximate for the general-minded bidding model and
is q1(1 + ǫ)-approximate for thek-minded bidding model for
a givenǫ > 0, whereq1 is as defined in Equation 4.

IV. Revenue Maximization under the Bayesian Setting

We now design a truthful spectrum auction mechanism
with near-optimal revenue. In an auction setting, wherein
the bidder’s valuation is private, it is impossible to design
truthful auctions with any guarantee on revenue [21, 33]. To
circumvent this, researchers have considered the Bayesian
setting wherein each bidder’s valuation is drawn from a
known probability distribution [28]. In a seminal work [23],
Myerson presents a truthful optimal mechanism for a single-
item auction under the Bayesian setting. In this section, we
essentially extend this classical result to spectrum auctions.

A. Truthful Auction Mechanisms under the Bayesian Set-
ting

In this subsection, we briefly present the key points [28]
of Myerson’s mechanism applied to the more general single-
parameter auctions. We start with basic definitions.

Single-parameter Auctions. In a single-parameterauction,
each bidderi has a publicly-known set of outcomesOi ⊂ O

5Note that in our context we should use at least 7 colors, irrespective of
the values ofα andβ.
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known as itswinning alternativesand a privatevaluation-value
vi (a single value)such thatv(o) = vi for every o ∈ Oi

and v(o) = 0 for every o 6∈ Oi. Bidders declare (perhaps,
untruthfully) their valuation-value as theirbid wi.

(Valid) Allocation Vector. In a single-parameter auction, an
outcome can be represented by anallocation vectorof n binary
variablesx = (x1, . . . , xn), wherexi is 1 if the bidderi wins
and zero otherwise. However, not all 0-1 vectors of lengthn
may correspond to an outcome of the mechanism. The 0-1
vectors that correspond to an outcome are referred to asvalid
allocation vectors. For instance, in a single-item auction with
4 bidders, wherein the item is given to one of the 4 bidders,
(0,0,0,1) is a valid allocation vector while (0,1,1,0) is not a
valid allocation vector.

Myerson’s Optimal Mechanism. Given, for each bidderi,
the winning alternativesOi, declared valuation-value (bid)
wi, and the distributionFi of the private valuation-valuevi,
the mechanism finds an allocation vector and payments such
that truthfulness is maintained and the expected revenue is
optimal where the expectation is taken over the randomness
in bidders’ valuations [28]. Myerson’s mechanism is based
on the following characterization of truthful mechanisms for
single-parameter auctions.

Theorem 4 ([28, Theorem 13.6]):Consider a single-
parameter auction, wherein the losers pay nothing (i.e.,
xi = 0 implies pi = 0). Under the Bayesian setting, a
mechanism is truthful if and only if, for any bidderi and any
fixed choice of bids by the other bidders:

(i) xi is monotonic nondecreasing inwi, and
(ii) the paymentpi for any winning bidderi is set to the

critical value ti, which is the minimum valuei needs
to bid in order to win. Note that, in general,ti depends
upon the bids of the other bidders.

Given the above theorem, to specify a truthful mechanism,
we need to only specify a winner determination function
that satisfies the first condition of the theorem; the payments
can be derived from the second condition. In [23], Myerson
specifies the winner-determination function based on “virtual-
bids,” and shows that it leads to optimal expected revenue, if
the payments are determined as described above.

Virtual Bids and Surplus.Myerson’s mechanism [28] starts by
replacing each bidwi with a virtual-bid φi(wi) as follows.

φi(wi) = wi −
1− Fi(wi)

fi(wi)
, (5)

wherefi(x) = d
dxFi(x) is the probability density function.

For a given outcomeo = (x1, x2, . . . , xn), the virtual
surplus is defined as the sum of winning virtual-bids, i.e.,
∑

i xiφi(wi). The following theorem is key to the design of
an optimal truthful mechanism.

Theorem 5 ([28, Theorem 13.10]):The expected revenue
of any truthful mechanism under the Bayesian setting is equal
to its expected virtual surplus. Here, the expectations aretaken
over the distributions of the valuations.

Myerson’s Mechanism, and its Extensions.Myerson’s mech-
anism essentially determines an outcome that maximizes the

virtual surplus, and uses payments based on condition (ii) of
Theorem 4. By the virtue of the above two theorems, such a
mechanism will be truthful and optimal, if (and only if) the
φi(wi)’s are monotonically nondecreasing inwi [28].

Myerson’s technique can be easily extended to more general
single-parameter auctions [34–36]. Some other works have
also extended Myerson’s technique to simple multi-parameter
settings [37–39].

B. Truthful Spectrum Auction with Approximate Expected
Revenue

We consider the same model as before, except for the
bidding function described below.

Bidding Function.Each base station (bidder)i has a publicly-
known demand for di number of channels. Any outcome
wherein i gets at leastdi channels is awinning alternative
for i. Each bidderi also declares its valuation-value (bid)wi

for the winning alternatives, which may be different than its
private valuation-valuevi. Note that the outcomes wherein
i gets less thandi channels are valued at zero byi. Here,
we consider theBayesian setting, wherein the valuation-value
vi is drawn randomly from a publicly-known probability
distributionFi. The above bidding model is much simpler than
the bidding functions considered in previous section, since
Myerson’s technique is limited to the simple single-parameter
setting. In Section IV-C, we generalize our technique to certain
more general bidding functions.

TSA-MER (Truthful Spectrum Auctions with Maximum
Expected Revenue) Problem.Given an interference graph,
the number of available channels, and the bid-demand pair
of each base station along with the distribution from which
the valuation was drawn, theTSA-MER problemis to design
a truthful auction mechanism that returns a valid spectrum
allocation with maximum expected revenue.

The TSA-MER problem can be shown to be NP-hard, by a
reduction from the maximum independent set problem, since
maximizing expected revenue is equivalent to maximizing
virtual surplus (sum of virtual-bids).

Recent Work on TSA-MER.In a recent work, Jia et al. [18]
extended Myerson’s mechanism for the TSA-MER problem.6

However, since maximization of virtual surplus is NP-hard
due to the interference constraint, Myerson’s technique only
yields an exponential-time mechanism. Thus, [18] designed
a Greedy-heuristic mechanism for the TSA-MER problem,
which considers nodes in decreasing order of virtual-bid
per channel (i.e.,φi(wi)/di) and allocates channels to them
if the interference constraint is not violated. To check the
interference constraint efficiently, we need to maintain the
channels-to-bidders assignment function. Finally, the payments
by the winners are determined as suggested in Theorem 4. The
above mechanism is truthful, but the revenue yielded can be
arbitrarily bad. (see Figure 2).

6We note that [18] actually considers a more general model wherein bid-
demand pairs are associated with a service provider which controls multiple
base stations. We consider such a generalization in SectionIV-C2.
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(1,1)(1,1)

(1,1)

(m,m)(m,m)

(m m)
(1,1)

(m,m)

(m,m)

Fig. 2. Counter example for the Greedy mechanism. The figure shows the
interference graph over given base stations. The (demand, bid) pair for the
“inner” bidders is(m,m), while for the “outer” bidders is(1, 1); herem is
the total number of channels. The bids are constant, and hence, virtual-bid
of each bidder is equal to its bid. Since all the bidders have the same rank
(= virtual-bid/demand), the Greedy mechanism may pick all the outer bidders
and yield a total revenue ofm/2, while the optimal revenue ism2/4.

Outline of the Truthful Mechanism with Approximate Ex-
pected Revenue.Based on Theorems 4 and 5 of Section IV-A,
our method for designing a truthful spectrum auction mech-
anism with approximate expected revenue is outlined in the
following two steps:

1) Determine a valid spectrum allocation with approximate
virtual surplus, satisfying condition (i) of Theorem 4.

2) Determine payments using condition (ii) of Theorem 4.
We discuss the above steps in the following paragraphs.

Valid Allocation with Approximate Virtual Surplus. Given
a network with base stations, the unit-disk interference graph,
the demand-bid pairs, and the probability distributions of
the bidder valuations, we determine a valid allocation with
approximate virtual surplus using a technique similar to the
one used in Section III-A except for the following changes.
First, we have a pre-processing step in which we replace each
bid wi with a virtual-bid φi(wi) as defined by Equation 5.
Second, the problem of optimally allocating channels to base
stations within each hexagon is treated as a Knapsack problem
(rather than a MUA) where the virtual-bids are the “values”
of items to be placed in the knapsack and the demands
are their “weights.” The well-known fully polynomial-time
approximation scheme (FPTAS) [40] can be used to get a
(1 + ǫ)-approximate virtual surplus of each hexagon for any
ǫ > 0. Third, we pick the color that has the highest total virtual
surplus (rather than social-welfare). And finally, we perform a
post-processing step to greedily satisfy the demands of more
base stations and charge the winners payments computed using
condition (ii) of Theorem 4, as described below.

Post-Processing Step.We will show in Theorem 6 that the
above allocation algorithm satisfies the monotonicity ofxi’s
(i.e., the first condition of Theorem 4). Incidentally, we can
further improve the above allocation algorithm,without violat-
ing the monotonicity ofxi’s (as will be shown in Theorem 6),
by allocating more bidders in a greedy manner. In particular,
we sort theremainingbidders by their virtual-bids per demand
(i.e.,φi(wi)/di), and consider them for allocation in that order
without violating the interference constraint. To efficiently
implement the above, we would need to maintain the channels-
to-bidders assignment function. We note that the above post-
processing however does not improve the approximation factor
of our algorithm.

Determining Payments. The payments are determined ac-
cording to Theorem 4 as follows. For each winneri, we
use a binary search to find its critical valueti (for the given
fixed bids of other bidders) such thati wins if wi ≥ ti and
loses otherwise. Note that such a valueti is guaranteed to
exist, since our allocation algorithm results in monotonically
nondecreasingxi’s. Then, for each such winning bidder, we
set its paymentpi as ti. Losing bidders pay zero.

The critical values for bidders who win in the post-
processing step can be determined using ideas based on the
“critical neighbor” technique of [18]. The critical value for
a bidderi who wins in the first step (involving coloring of
hexagon cells) can be computed using at mostlogwmax runs
of the allocation within its hexagon cell7 followed by the above
“critical neighbor” technique; herewmax is the maximum
valuation-value of any bidder. The latter part may be needed
to determine the critical value fori’s win due to the post-
processing step; note that even if lowering the bid ofi makes
its hexagon color a loser in the first step, bidderi can still win
due to the post-processing step.

Proof of Truthfulness and Approximation.
Theorem 6:For the TSA-MER problem under the Bayesian

setting and the pairwise interference with unit-disk model,
the above described mechanism is truthful and returns a valid
spectrum allocation whose expected revenue is at least1

7(1+ǫ)
of the optimal expected revenue, for a givenǫ > 0. Also, the
mechanism runs in time polynomial in1/ǫ, n, and logm.
Proof: The approximation proofs follow from the same ar-
guments as in the proof of Theorem 1. Truthfulness.By

Theorem 4, we need to only show that our allocation algorithm
results in monotonically nondecreasingxi’s. First, note that the
FPTAS algorithm used in each hexagon is monotonic since the
FPTAS algorithm is an optimal algorithm over “scaled-down”
values and the optimal algorithm is trivially monotonic. Now,
to show the monotonicity of our overall mechanism, we need
to consider two cases: (i) when a bidderi is selected as a
winner in the first step, and (ii) when a bidderi is selected
as a winner in the post-processing step. In the first case, if
the bids of all other bidders remain fixed, then an increase
in the bid of i would not change (a) the presence ofi in the
FPTAS knapsack-solution (due to its monotonicity), and (b)
the winning of the color ofi’s hexagon. In the second case,
increasing the bid ofi will maintain its inclusion in the greedy
post-processing step until the color ofi’s hexagon becomes
a winning color. However, when the color ofi’s hexagon
becomes a winning color (due to the increase ini’s bid), i must
still remain a winner in its hexagon (otherwise its hexagon’s
color would not have become a winning color).

Valid Spectrum Allocation.By virtue of Property 2 and
the fact that the allocation within each hexagon is a Knapsack
solution, the allocation constructed before the post-processing
step is valid. Since the post-processing step does not violate
the interference constraints, the spectrum allocation returned
by the designed mechanism is valid.

7Note that the allocation within other hexagon cells does notchange with
the variation ini’s bid.
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C. More General Bidding Functions

The above mechanism can be extended to more involved
pairwise interference and physical interference models using
techniques similar to [30] and Section III-B. Here, we discuss
generalization to more general bidding functions.

1) Beyond Single-Minded Bidding: We now extend our
technique beyond single-minded bidding by handlingfrac-
tional demands. More formally, a bidderi’s declared demand-
bid is of the form(ďi, d̂i, wi), signifying that the bidder would
accept any number of channels betweenďi and d̂i at a price
of at mostwi per channel. For simplicity, we first assume that
ďi = 0 for every bidderi; we relax this assumption later.

For the above setting, the mechanism’s output is an allo-
cation vector(x1, . . . , xn) whereinxi ∈ [0, 1] represents the
fraction of demand satisfied, i.e., for a givenxi, the number of
channels allocated isxid̂i. Also, for a given allocation vector,
the virtual surplus is defined as

∑

i φi(wi)d̂ixi. For this setting
of fractional demands, Theorems 4 and 5 can be generalized
(based on [28]) as follows. Below, we use the notationxi(wi)
to denotexi for a givenwi and fixed bids of other bidders.

Theorem 7:A mechanism (wherein losing bidders pay
zero, i.e.,xi = 0 implies pi = 0) is truthful iff for any bidder
i and any fixed choice of bids by other bidders,

• xi(wi) is monotonically nondecreasing inwi.
• The payment is set as follows

pi(wi) = wid̂ixi(wi)−
∫ wi

0

d̂ixi(t)dt. (6)

Proof: For simplicity, we drop the subscripti. To show
truthfulness, we only need to show that the utility of truthful
bidding v is no smaller than bidding any other valuew. I.e.,

vd̂x(v) − p(v) ≥ vd̂x(w) − p(w)
∫ v

0

d̂x(t)dt ≥ vd̂x(w) − wd̂x(w) +

∫ w

0

d̂x(t)dt.

For w > v, the above is true since(w − v)(d̂x(w)) ≥
∫ w

v
d̂x(t)dt follows from the monotonicity ofx, while for

w < v, the above is true since(v − w)(d̂x(w)) ≤
∫ v

w
d̂x(t)dt

also follows from the monotonicity ofx.
Now to show the other direction, we take the truthfulness

constraints atv, vd̂x(v) − p(v) ≥ vd̂x(w) − p(w), and at
w, wd̂x(v) − p(v) ≤ wd̂x(w) − p(w). Rearranging these
inequalities gives

vd̂(x(w) − x(v)) ≤ p(w) − p(v) ≤ wd̂(x(w) − x(v)). (7)

From this, we get(w − v)(x(w) − x(v)) ≥ 0 which implies
the monotonicity ofx.

We now derive Equation 6. Letw = v+ǫ, then, by dividing
Equation 7 byǫ and taking the limit, we get

vd̂
dx

dv
≤ dp

dv
≤ vd̂

dx

dv
.

Now, sincep(w) = 0 for anyw smaller than the critical value,
we get

p(w) =

∫ w

0

td̂x′(t)dt.

Integrating the above equation by parts gives Equation 6.

Theorem 8:Under the Bayesian setting with fractional de-
mands, the expected revenue of any truthful mechanism is
equal to its expected virtual surplus, where the virtual surplus
is as defined above.

Overall Mechanism.On the basis of the above two theorems,
our mechanism from the previous subsection can be extended
to the case of fractional demands, by solving the appropriate
allocation problem within each hexagon. In fact the resulting
allocation problem within each hexagon can now be solvedop-
timally in polynomial-time using a greedy approach, yielding
a truthful auction mechanism with a 7-approximate expected
revenue.

Non-zero Minimum Demands.We handle non-zero minimum
demands{ďi} by defining a new allocation vector(y1, . . . , yn)
whereinyi is equal toxi if xi ≥ ďi/d̂i and zero otherwise.
The arguments of this subsection straightforwardly apply to
this new allocation vector.

2) Service-Provider Based Bidding: Till now, we have
implicitly assumed the base stations (i.e., their demands)
are independent. We now consider a more general model
considered in [18], wherein base stations belonging to the
same service provider bid collectively. More formally, each
given base station belongs to a unique service provider,
and the demand of each service provideri is given by
(di1, di2, . . . , dij , . . . , dil, wi) where dij is the number of
channels required for thejth base station of theith service
provider, l is the total number of base stations for theith

service provider, andwi is the bid (payment made) ifall the
above demands are satisfied. For simplicity, we assume a unit-
disk interference graph between the base stations. Now, to
extend our techniques for the above model, we need to assume
that the distance between base stations of a service provider
is bounded. In other words, all the base stations belonging to
a particular service provideri can be enclosed in anR-radius
disk centered at a pointzi, whereR is a given constant.

Our techniques generalize to the above model as follows.
First, as before, we divide the region into hexagons of unit
side-length, but useq2 colors to uniformly color them where

q2 = min{x | x ≥ max(7, 4R2/3), and x = i2 + j2 + ij

where i, j ∈ Z
+}. (8)

Using q2 colors ensures that if a hexagon contains base
stations from different service providersi and j, then their
corresponding disk-centerszi andzj (as defined above) are in
hexagons of different colors. The allocation algorithm works
as follows.

For each hexagonh, we formulate and solve the following
multi-dimensional knapsack (MDKP) problem. Consider the
set of hexagonsf(h) such thatf(h) contains a base station
of a service provideri whose disk-centerzi lies in h. The
MDKP problem has|f(h)| dimensions, and each dimension
has the size-constraint ofM/7 whereM is the total number
of available channels. An item of the MDKP is af(h)-
dimensional object corresponding to a demand-bid vector ofa
service provideri whose disk-centerzi lies inh; here, demands
for base stations ofi belonging to the same hexagon have
been aggregated yielding af(h)-dimensional object. Note that
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|f(h)| is bounded due to boundedR. Solution to the above
MDKP problem yields near-optimal allocation of channels to
base stations inf(h) that belong to service provider with disk-
centers inh.

We solve the above MDKP problem for each hexagonh in
the network region. Then, from theq2 colors, we pick the color
c such that the combination of the MDKP-solutions of thec-
colored hexagons yields the most virtual surplus. Below, we
prove that the picked allocation is valid and has a7q2(1 + ǫ)-
approximate expected revenue.

To show the validity of the returned allocation, we need to
prove that: (i) for each hexagon separately, the MDKP-solution
is valid, and (ii) the combination of the MDKP-solutions for
each color is valid. To show part (i), we divide theM available
channels into 7 groups and uniformly distribute them among
the hexagons off(h).8 Now, we have an MDKP problem
where each dimension corresponds to a hexagon off(h) with
the M/7 constraint corresponding to the number of channels
available in that hexagon.

As for part (ii), it follows from satisfying a modified
version ofProperty 2 where base stations belonging to two
different service providers each falling in a different hexagon
with the same color do not interfere. This is satisfied if the
distance between any two points in different hexagons of the
same color is greater than2R. By Lemma 2, this is guaranteed
if the number of colors is at least4R2/3. Then, by Lemma 3,
the minimum number of colors required would be given by
q2 as defined in Equation 8.

Finally, the 7q2(1 + ǫ)-approximate expected revenue fol-
lows from similar arguments as in the proof of Theorem 6,
except for the fact that we useq2 colors here (instead of 7)
and the extra 7 factor is due to theM/7 constraint on each
dimension of the MDKP problems.

V. Simulation Results

The main purpose of our simulations is to compare the
performance of our mechanisms with other mechanisms in
the literature under various settings and performance metrics.
Our simulations are split into two parts, one for the TSA-
MSW problem and one for the TSA-MER problem. It should
be noted here that since no simple auction mechanisms are
known for the physical interference model, we restrict our
attention to the unit-disk pairwise interference model.

A. Comparing Mechanisms for the TSA-MSW Problem

We start by describing our simulations set-up.

Network Topology and Model. We consider two types of
networks, as described below.

• Random Networks:We randomly place 50 to 1000 (de-
fault being 500) base stations within a fixed area of
1000×1000 square units. The unit-disk interference graph
is based on 50-unit radius disks.

8To help visualize this step, imagine that we apply a second layer of
coloring on the hexagons off(h) using 7 colors (see Figure 1). Then, we
assign each color one of the 7 groups ofM/7 channels.

• Real Networks:We use locations of real cellular base
stations available in FCC public GIS database [41] and
choose the 843 base stations deployed in the state of
Massachusetts. Here, we choose a realistic cell radius of
10 kilometers.

In both networks, we set up an auction of up to 1000 orthogo-
nal single-type channels with the default being 500 channels.

Bidding Functions. We generate general-minded bidding
functions for each base stationi as follows. First, for each
i, we pick li (the maximum number of channels bid byi)
randomly from the range[1,m], wherem is the total number
of available channels. Then, we randomly generatei’s bid
for the first channel and “marginal” bids for each additional
channel till li. Beyond li, marginal bids for each additional
channel is assigned zero (to satisfy the free-disposal property).
Each marginal bid is chosen from the range[0, 100].

Auction Mechanisms Compared.We compare our auction
mechanism for the TSA-MSW problem with two auction
mechanisms, viz., (i) Greedy, the best known (non-truthful)
approximation spectrum allocation algorithm for maximiz-
ing social-welfare and/or revenue, and (ii) Naive, a sim-
ple truthful spectrum auction mechanism. In addition, we
also considertwo versions of our auction mechanisms: (i)
ours-poly, based on the polynomial-time allocation algo-
rithm in each hexagon, and (ii)ours-pseudo-poly, based
on the pseudo-polynomial time algorithm (optimal within each
hexagon).

Greedy Auction Mechanism (from [11]).Greedy is a non-
truthful mechanism, whose winner determination function
allocates channels iteratively to the highest available bid
without violating the interference constraint. This allocation
results in a 6-approximate social-welfare [11] for the unit-
disk model and non-complementary bidding functions, making
it the best approximation algorithm known for maximizing
social-welfare. If we charge each bidder a payment equal
to its bid (declared valuation) for the allocated number of
channels, then Greedy’s revenue is also within a factor of
6 of the optimal revenue possible.9 Thus, Greedy’s social-
welfare is equal to its revenue. Note that Greedy is a pseudo-
polynomial algorithm since its running time is polynomial in
m, the number of channels, while the other algorithms are
polynomial in log(m).

Naive Auction Mechanism (based on [17]). We now describe
a simple auction mechanism (called Naive) that is truthful,
but has no performance guarantee on the social-welfare and
revenue. Naive’s allocation algorithm divides the entire net-
work region into square grid of unit side-length,10 uniformly
colors the resulting square cells using 4 colors, and assigns
each color(1/4)th of the available channels. Now, for each
square cellH , Naive allocates all the channels usable inH
to the bidder with the maximum bid for that many channels,
and charges it a payment equal to the second highest bid in

9For computing the optimal revenue, we assume that bidder’s payment in
an outcome must not be more than its declared valuation for the outcome.

10To ensure validity of the resulting allocation, the square cells are open
from one side and closed from the other.
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Fig. 3. Performance comparison of various auction mechanisms for the TSA-MSW problem. The first six plots (in the first tworows) are for random networks
with varying number of nodes (with 500 channels) and varyingnumber of channels (with 500 nodes). The last three plots arefor the cellular network in
Massachusetts with 843 base stations and varying number of channels. Recall thatOurs-poly andOurs-pseudo-poly refer to the polynomial-time and
the pseudo-polynomial time versions of our auction mechanism. Note that the plots ofOurs-poly andOurs-pseudo-poly overlap with each other due
to negligible performance difference.Also, note that the Greedy algorithm runs in pseudo-polynomial algorithm.

H . This is a simple generalization of Vickrey’s auction [14]
in each square cell.

Simulation Results. In our simulation, we compare Greedy,
Naive, and Our (based on hexagonal division and coloring)
auction mechanisms for the following three performance met-
rics: (i) social-welfare, (ii) revenue, and (iii) spectrumutiliza-
tion. Spectrum utilization[17], defined as the total number of
allocation pairs in the spectrum allocation, gives a measure of
the spatial reuse of a spectrum allocation.

In Figure 3, we plot results for the above three metrics.
For the random network, we vary the number of base stations
(nodes) as well as the number of available channels, while for
the fixed real network we only vary the number of available
channels. We observe that Greedy performs the best in all
three performance metrics, but is only within a factor of 2 to
3 of that of our auction mechanism. Note that both Greedy and
ours deliver an approximate social-welfare, and Greedy also
delivers an approximate revenue, but is untruthful. Secondly,
our auction mechanism outperforms the Naive mechanism
by an order of magnitude, in all three performance metrics.
Finally, we note that the difference in performance of the
ours-poly andours-pseudo-poly is negligible. This

is due to the fact that in practiceours-poly performs much
better than its worst-case approximation ratio of 1/2 (within
a hexagon) for random parameter values, especially when the
number of base stations in the hexagon is small and/or the
valuations of the bidders are “similar.”

Thus, apart from the key properties of truthfulness and
provably approximate social-welfare, our auction mechanism
also delivers near-optimal revenue.

B. Comparing Mechanisms for the TSA-MER Problem

Network Topology and Model. As with the previous subsec-
tion, we consider two types of networks:

• Random Networks:We randomly place 100 to 1500
(default being 1000) base stations within a fixed area of
1000× 1000 square units. We vary the uniform radius of
the disk from 20 to 100 (default being 50) units.

• Real Networks:We use locations of real cellular base
stations available in FCC public GIS database [41], and
choose base stations deployed in 4 different regions:

– R1: 843 base stations in the state of MA.
– R2: 2412 base stations in the New England area.
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Fig. 4. Performance comparison of our mechanism with the Greedy mechanism for the TSA-MER problem. Generated revenue (left-sidey-axis; black solid
lines) and the spectrum utilization (right-sidey-axis; red dotted lines) on random (top three plots) and real (bottom three plots) networks. The default number
of channels is 1000. For random networks, the default numberof base stations is 1000, while for real networks, the default region is R2. The default uniform
radius of the coverage-cells is 50 units and 5 Km for random and real networks respectively.

– R3: 4467 base stations in New England and NY.
– R4: 8618 base stations in North East USA.

The default region is R2. For all regions, we choose a
realistic coverage-cell radius of 5 Kms.

Channels, Demands, and Bids.We set up an auction of
up to 1500 orthogonal single-type channels with the default
being 1000 channels; this is a reasonable range based on
the past FCC auctions [21, 42]. The demandsdi are each
chosen randomly from the interval[1,m], wherem is the total
number of available channels, and the valuationsvi are chosen
randomly (and uniformly) from [0,di] so that the valuation per
channel of each bidder is in the uniform range of [0,1]. For
simplicity, we have chosen the valuation-distributionsFi’s to
be the uniform distributions.

Auction Mechanisms Compared. In our experiments, we
compare the below-described enhanced version of our auction
mechanism with the Greedy mechanism of [18], the only
mechanism in the literature for the TSA-MER problem. The
Greedy mechanism is truthful, but has no guarantees on the
expected revenue. We note that computing theoptimalrevenue
was computationally infeasible even for small networks.

Our Enhanced Mechanism.To further improve the empirical
performance of our auction mechanism, we have modified the
way we combine the independent solutions of the hexagons. In
particular, instead of picking all the hexagons with one of the
seven colors, we pick the set of hexagons in a greedy manner
as follows. Basically, we pick the hexagons in order of their
virtual surplus, while ignoring hexagons that “conflict” with
an already picked hexagon; here, two hexagons are considered
conflicting if they contain a pair of interfering (and winning)
base stations. The above approach certainly yields a valid
spectrum allocation. To see the monotonicity (and hence, the
truthfulness) of the above approach, note that increasing the
bid wi of a winning bidderi (for fixed bids of other bidders)

does not change (a) the presence ofi in the FPTAS knapsack-
solution, and (b) the winning status ofi’s hexagon.

Simulation Results.We compare our enhanced auction mech-
anism with the Greedy [18] mechanism, in terms of the
generated revenue and spectrum utilization (total number of
allocated channels across all bidders). We conduct experi-
ments for varying: (i) number of base stations, (ii) number of
channels, and (iii) the uniform radius of the coverage-cells.
See Figure 4. We observe that our mechanism significantly
outperforms Greedy in terms of revenue as well as spectrum
utilization by an average factor of about 50%, for all parameter
values. Moreover, the performance gap generally increases
with the increase in the number of channels/base stations or
with the decrease in coverage-cells’ radius.

Experiments With “Lop-Sided” Demands. In the above
experiments with randomly generated demands and bids, our
mechanism outperforms the Greedy mechanism by about
50-60%. However, in some cases (as shown in Figure 2),
Greedy mechanism can perform arbitrarily bad compared
to our mechanism. We now try to generate quasi-random
instances, wherein the performance of our mechanism is much
better compared to the Greedy mechanism. In particular, we
consider randomly generated networks as before, but assign
“lop-sided” demands and almost-equal bids to bidders as
follows. First, we randomly choose the demandsdi from
([1, Im]∪[m−Im,m]), whereI is some value between1/m
and 1. Then, we assign the low-demand biddersi (i.e., bidders
with di in [1, Im]) a per-channel bid chosen randomly from
[0.95,1]; the (high-demand) bidders get a per-channel bid from
[0.9,0.95]. The above assignment of bids is intended to give
a slight advantage to the low-demand bidders. Note that, in
practice, there is no reason why the bids and demands should
have a random distribution. The above specialized setting may
reflect a scenario where small start-up concerns compete with
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Fig. 5. Performance ratio for “lop-sided” demands in the TSA-MER problem.
The demandsdi are randomly chosen from([1, Im]∪ [m−Im,m]) where
I ∈ [0, 1]. We use random networks of size 1500 base stations with a uniform
radius of 50 for the coverage-cells, distributed uniformlyin a region of1000×
1000. Number of channels is 1000.

large service providers.
In Figure 5, we show the performance ratio of our mech-

anism to the Greedy mechanism, in networks of 1500 base
stations with coverage-cells of radius 50 units randomly dis-
tributed in an region of1000×1000 units. Number of available
channels is 1000. We see that the performance ratio is as high
as 2.5, for low values ofI, and as expected, the ratio decreases
with increase inI .

VI. Conclusions

The recent trend of dynamic spectrum access creates a
setting for auctioning pieces of wireless spectrum to competing
base stations. To mitigate market manipulation, a truthful
spectrum auction is highly desired. We designed truthful spec-
trum auctions that deliver allocations with either near-optimal
expected revenue in the Bayesian setting, or near-optimal
social-welfare. We demonstrated the superior performanceof
our mechanisms through extensive simulations. In future work,
we plan to consider more general bidding models.
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