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Abstract—In cellular networks, a recent trend in research is environment, buyers may spend a lot of time/effort in predic
to make spectrum access dynamic in the spatial and temporal ing the behavior of other buyers and planning against them.
dimensions, for the sake of efficient utilization of spectrm. Inone 1, “yis article, our focus is on designing spectrum auction
such model, the spectrum is divided into channels and periad - .
cally allocated to competing base stations using an auctielbased mec_hamsms that not only encourage tr_uthful behaV|_0r tadt al
market mechanism. An “efficient” auction mechanism is esseial ~ Provide some form of guarantee on either the social-welfare

to the success of such a dynamic spectrum access model. A keyr the revenue.
objective in designing an auction mechanism is “truthfulnes.” o ) .
Combining this objective with an optimization of some socia Model and Contributions. In a spectrum auction, the items

choice function (such as the social-welfare or the generate being sold are various channels corresponding to certatkbl
revenue) is highly-desirable. In this article, we design pgnomial-  of frequency. The base stations bid for these channelsdbase
time spectrum auction mechanisms that are truthful and yiel o, yhair valuations. The auctioneer assigns channels te bas
an allocation with O(1)-approximate social-welfare or revenue. . ithin the “wirel . f inttl ale
Our mechanisms generalize to general interference model§o stgtlons within the ere.ess Interference constraint ter.-
the best of our knowledge, ours is the first work to design Mines payments from bidders. In the above context, we wish to
polynomial-time truthful spectrum auction mechanisms with a design polynomial-time auction mechanisms that (i) enager
constant-factor approximation of either the expected revaue buyers to be truthful (i.e., ensure that the buyers “bendfi”
or the social-welfare. We demonstrate the performance of au  q¢t \when their bid is equal to their actual valuation), aid (
designed mechanism through simulations. S . :
maximize either the social-welfare or the revenue. However
when the bidder valuations are completely private, no falth
|. Introduction auction mechanism can give any performance guarantee on

Usage of wireless spectrum has long been governedd%_l&? revenue (seg Sectioq IV?' Ke?pmg the ab.ove in mind, we
governmental regulatory authorities (e.g., FCC in USA ake the foIIow!ng contrlbu.t|ons n th? paper. _

Ofcom in UK) who divide the spectrum into fixed size chunks ¢ When the bidder valuations are private, we design truthtul
to be used strictly for specific purposes, such as broadcast SPectrum auctions with approximate social-welfare.
radio/TV, cellular/PCS services, wireless LAN, etc. Thipa  * We design truthful spectrum auctions with approximate
cation is very long-term and space-time invariant, and isrof revenue, under the relaxed Bayesian setting wherein the
based on peak usage. Such long-term allocation of spectrum Pidder valuations are drawn from publicly-known proba-
introduces significant inefficiencies in utilization [1]hTs, a bility distributions. _ _

new policy trend [2] is to make spectrum access dynamic. In® We extend our above designed mechanisms to general
case of cellular networks, centralized architectures{%] 3or interference models and other generalizations.

dynamic spectrum access have gained a lot of interest. m sU® the best of our knowledge, ours is the first work to
models, a spectrum broker periodically allocates spectrugsign polynomial-time truthful spectrum auctions theeif

to competing base stations using an auction-based mar&ketonstant-factor approximation on the social-welfareher t
mechanism. Success of such a model depends on the desigpected revenue.

(r:::rizlfl zgas%nndsif;'f':n;rsei?gsrsu?Onr;xlgztit?iﬁga;;rg&az\fgaper Organizatio_n. We start our disc_ussion wit_h some
lead to significant market inefficiencies and adverse ecdmor%%iﬁ%f“?dwr:zf;aln ?r%tﬁ?ueicr:gg]aﬁg;?jvi t(hSre1Cetr:1?-r:)|;1|Ii)r.n In
impacts. This happened in the restructured electricityketan ' g

N . . X . social-welfare, and in Section IV, we consider the Bayesian
California in 2.000 which made international headlinesding setting and design a truthful mechanism with near-optimal
to many studies [6—10].

A natural obiective of an tion-based mechanism i xpected revenue. Finally, we compare the performancerof ou
[hatural objective of an auction-base Y echa S S E%posed mechanisms with known works in Section V.
maximize the generatedocial-welfare (total "valuation” of

the goods sold) or the generatexenue(total payments by

the buyers) [4,5, 11, 12]. Howevea, mechanism considering Il. Background and Related Works

such an objective alone can encourage the spectrum buyers tim this section, we present some background material celate
lie about their real valuations (i.e., an “untruthful” aiect), to our work, and introduce basic terms and definitions from
instill fear of market manipulation, and indirectly podgib both the spectrum allocation and the auction theory liteeat
lower revenue or social-welfare. Moreover, in a compeditiwVe also discuss related work.



Dynamic Spectrum Access.In the dynamic spectrum ac- Definition 2: (Social-Welfare; Revenug¢ The social-
cess architectures, the spectrum is allocated dynamigallywelfare of an outcomeo is defined as the sum of the
spatial and temporal domains, to be more responsive to usaluations, i.e.,> . Vv;(0). On the other hand, theevenue
demands, and thus, improving utilization. Buddhikot e{H]. of an auction mechanisrfx, p) is the sum of the payments
introduced thecoordinated dynamic spectrum acc¢&¥DSA) . p;(w) charged to the bidders for a given declared valuation
model for cellular networks. In the CDSA model, there is gectorw. O

centralized entity known as thepectrum brokemwho owns ryyihfyl Auction Mechanisms. In a selfish environment,

a part of the spectrum called trevordinated access bandpijgers may not declare their valuation functions trutyful
(CAB). The spectrum broker divides the CAB into channels i \yere to their advantage (result in increase of theilityli
(contiguous or non-contiguous blocks of frequency). Theebag,ch 5 hehavior may severely damage the resulting welfare
stations bid for these available channels by specifying 4 force each bidder to have complex bidding strategies
bidding price. Periodically, the spectrum broker allosalee a5eq on its belief/knowledge about the strategies of other
channels to the base stations under the “wireless inteiéere yijqers. A truthful mechanism enforces bidders to behave
constraint” such that the total revenue (sum of payments Ry iy by offering them incentives in the form of redute
the base stations) is maximized. The above auction-basedments. These incentives are based on the presumption tha
approach allows the base stations to bid according 1o tgeh pigder's objective is to maximize its utility. We now
spectrum demands, and the spectrum broker to maximize {inaly define the notion of truthful auction mechanism.
revenue. However, to eliminate the fear of market manimiat  pefinjtion 3: (Truthful Auction Mechanisms.)Given the

and allow the bidders to have simple bidding strategiega|yation functions, in a truthful auction mechanism, each

truthful auction mechanisms are desired. bidder’s utility is maximized when it truthfully declaressi
valuation functionv;.
A. Truthful Auction Mechanisms More formally, let the true valuation functions of the bidsle
In this subsection, we formally define the concepts of ('erut}k?ev ~ (Vl’_ e ’_V")' Consider wo declared valuation function
ful) auction mechanisms. We also discuss the most geneX%\Fto,rs' viz., ()W = (Wi, ..., Wi—1, Vi, Wit1, ..., Wy), and
example of truthful auction mechanisms. ) W= (W, . Wio1, Wi, Wi, W) (Wherew; & ;).
A mechanism(x,p) is consideredtruthful if v;(x(w)) —
Auction Mechanism. In an auction [13], a set of rational p,(w) > v;(x(wW')) — p; (W) for all v, i, andw;. O

bidders competg OVer one or more items thr.ough a biddi%G Mechanisms.The only general mechanism that guaran-
system. An auction is described by the following: tees truthfulness is due to Vickrey-Clarke-Groves (VCGH1
« A finite setO of allowed outcomes 16]. Informally, the celebrated VCG mechanism finds the
« Each bidderi has a privately-known real functiow;, :  gutcomeo with maximum social-welfare, and charges each
O — R called its valuation function which quantifies winner; an amount equal to the total “damage” that it causes
the bidder's benefit from each outcome. to the other bidders, i.e., the difference between the bkocia
« Bidders are asked to declare their valuation functionsjelfare of the others with and withous participation.
let w; denote thedeclared valuation functiorof the Definition 4: (VCG Mechanism.) A VCG mechanism is
i'" bidder. The bidders may lie about their valuatiomn auction mechanistfx, p) that satisfies the following two

functions; thusw; may not be equal to;. conditions, for any given declared valuation functioms=
« An auction mechanisnchooses an outcome based on (Wi, ..., W,).

some criteria over the declared valuation functions. « X(W) € argmax, Y, w;(0), i.e., the winner determina-

« In addition to choosing an outcome, the auction mecha-  tijon functionx chooses an outcome that maximizes the
nism also charges each biddea paymenip;. social-welfare according ta.

o Utility u; of a bidderi is the difference between its true , The payment functions are determined by the VCG
valuation of the chosen outcomeand its paymenp;, formulap;(w) = (=, , w;(X(W))) + hi(w—;), where
i.e., u; = v;(0o) — p;. Each bidder’s goal is to maximize each h;(w_;) is an Jarbitrary function ofw_, =
its Utlllty (Wl, ey Wi, Wi, . 7Wn)-

Definition 1: (Auction Mechanism.) LetO be the set of O
possible outcomes of an auction. An auction mechanism is at can be shown that VCG mechanisms maximize social-
pair of functions(x, p) such that: welfare. In fact, VCG mechanisms are the only general tulthf

« The winner determination functiorn accepts as input a mechanisms with optimal social-welfare allocations. Heeve
vectorw = (wy, ..., w,,) of bidding (declared valuation) they require solving an optimization problem which can be
functions and returns an outpxtw) € O. NP-hard in many settings, as is the case in our context of

« The payment functiop(w) = (pi(W),...,p,(W)) re- spectrum auctions. Furthermore, they may result in lowr{eve
turns a real vector quantifying the payment charged I#gro) revenue in some cases.

the mechanism to each of the bidders. ]
B. Related Works on Spectrum Auctions

1Such auctions (wherein bidders declare their valuatiors)calleddirect .
revelationauctions. Though more general types of auctions existignpeaper 1 TUthful Spectrum Auctions . To the best of our knowledge,

we focus only on direct revelation auctions. there has been only four works till date, viz., [17-20], thate



designed truthful mechanisms for spectrum auction. Bel®v, is sold to bidders who value it the most and hence, are likely
discuss each one of them. to utilize it most efficiently.

The truthful mechanism designed by Zhou et al. [17] As mentioned before, VCG mechanism for spectrum auc-
does not attempt to maximize the revenue or social-welfat@ans requires solving an NP-complete problem. Solving the
Moreover, their approach is limited to only simple pairwise NP-hard optimization problem using an approximation algo-
terference model. As observed in [17,21], it is rather glvei  rithm is not helpful, since it destroys the truthfulness loé t
forward to design a truthful auction mechanism without anypechanism [13]. To circumvent this, the authors of [13] de-
regard for revenue or social-welfare. However, the authorslop the below described maximal-in-range (MIR) techeiqu
in [17] do show through simulations that their mechanisnvhich can be used to design polynomial-time truthful mecha-
returns better revenue and social-welfare compared to plsimnisms with near-optimal social-welfare in certain setsing

truthful mechanism. Recently, this work has been extended t . .
consider double auctions [22]. Maximal-In-Range Mechanisms.In [13], the authors show

. . . that an auction mechanism is truthful if it (i) chooses an
In a recent work, Jia et al. [18] present a simple extension 0 - . :
i outcome that optimizes social-welfare over a fixbsetof
. . o : e[ e outcomes, and (i) uses VCG payments (as defined in
the extension results in an exponential-time mechanismgesi L ) .
. . Lo Definition 4). Such mechanisms are ternMaximal-In-Range
the corresponding virtual-surplus maximizing problem B-N .
gYIIR) and formally defined below.

hard. Realizing the seriousness of this shortcoming, [1 Definition 5: (Maximal-In-Range (MIR) Mechanism.) Let

presents a polynomial-time mechanism based on the gree‘t;%e the set of all possible valuation functions of bidéleand

mechanism of [24]. However, the expected revenue deIiverE”d: [1" V; be the space of all possible valuation functions.

h hani itraril h . o .
g)é;il:; I&Bmec anism can be arbitrarily bad, as shown L'gtO denote the range of the winner determination funckon

In another work, Wu et al. [19] design a spectrum auctioarlutv’ |:e.,(’) = {x(V)v € V}. We say Fhalx IS maxw_nal In Its
mechanism based on the truthful VCG mechanism [13]. They 9¢ if for every v € V, x(v) maximizes the social-welfare
focus on modifying the VCG payment function to eliminate ero. =
colluding attacks by losing bidders and to improve the totMIR for Multi-Unit Auctions. In a multi-unit auction (MUA),
revenue. However, their altered payment scheme destreys #set ofm identical items are up for auction among bidders,
truthfulness property of the VCG scheme. In addition, theind each bidder expresses interest for certpiantities of
mechanism requires solving an integer linear programmifg items, without any preference to any specific item. Thus,
(NP-hard) problem, which makes their approach impractickie valuation function of a bidder can be representéds
for large networks. Note that in practice, cellular netweorkvi  {1,...,m} — R, wherev;(q) is the value for obtaining
may have thousands of base stations [25]. Finally, theynassu¢ items. In [29], the authors design an MIR mechanism for
either a single-channel system or that each bidder is istiede multi-unit auctions that is truthful and yields an allocati
in only one channel in a multi-channel system. with approximate social-welfare. We use their technique fo
Finally, in a recent concurrent and complementary worRUr auction mechanism design, as described below.

Hoefer et al. [20] design approximation algorithms for @le oy Approach. Our approach utilizes the geographical nature
tion of channels to wireless nodes to maximize the social wefs the spectrum auction problem to re-formulate it as a
fare (without worrying about truthfulness), when nodestid et of multi-unit auction instances. Then, we use the MIR
sets of channels. They suggest combining their techniqtfe Winechanisms for multi-unit auctions from [29] to solve each
the framework of [26] to obtainandomizedmechanisms that instance, i.e., independently determine spectrum ailocat
are truthful inexpectationThey do not consider maximization,yith approximate social-welfare for each instance. We ensu
of revenue. Also, we note _that the physical interferenc<_ae:rhoqruthfmnesS by using VCG payments. Finally, we combine
considered in [20] is unsuitable for cellular networfkahich the allocations over these independent instances in a way

is our main focus. that preserves truthfulness and the approximation ratithef

Other Works. Recently there have been lots of works ofocial-welfare.
dynamic spectrum allocation [4,5,11,12,27] using either

auction-based or pricing-based mechanisms, but all ofethgs. Truthful Spectrum Auction with Approximate Social-
works have ignored the truthfulness property. Welfare

Throughout the article, we use the terms “bidder” and “base
I1l. Social-Welfare Maximization station” interchangeably.

In this section, we design a truthful spectrum auctiogpectrum Auction Model. Our model of a cellular network
with near-optimal social-welfare. The objective of maximg  consists of a set of geographically distributed base statio
social-welfare is justified in many settings and is exteei§iv gpectrum is divided intorthogonalchannels of the same type,

studied in economics [13, 28]. In particular, a spectruntianc and thespectrum auctiorinvolves each base station bidding
mechanism with high social-welfare ensures that the spectrfor 5 certain number of channels.

2|n cellular networks, for a base statian the intended receivers agmy 3Note that such a representation can be easily mapped toitfieadiform
mobile devices that are within a certain distancerdfas in Section 1lI-B).  wherein a valuation function maps outcomes to real numbers.



Representation of Valuation and Bidding Functiondn a It can be shown it is NP-complete to test whether a given al-
spectrum auction of channels of the same type, a bidder location vector is valid, through a reduction from the peshl
valuation of an outcome/allocation depends only on the of partitioning a graph into minimum number of independent
number of channels is getting in o. Thus, we represent sets. Thus, it is desirable for the auction mechanism toututp
bidder i's valuation function asv; : {1,...,m} — R, the assignment function in addition (or in lieu of)to the
wherem is the total number of channels ang¢) denotes allocation vector.

bidder i's value for obtainingq channels. Recall that the

bidding functionw; for a bidderi is a declaration of its Social-Welfare) Problem.Given an interference graphym-
privately-known valuation functionv;,. Thus, the bidding S . graphum-.

LT - berof channels, and the bidding functions for the base stations
function is represented similarly as; : {1,...,m} = R. the TSA-MSW problens to design a truthful auction mecha-
We assume free disposal (i.e., valuation for higher number Tsm that returgs a valid s ect?um allocation with maximum
channels is larger than smaller number of channels), ard tha P

. : social-welfare.
I f h I : . .
vajuation of zero channels Is zero TSA-MSW problem is NP-hard even without the truthful-

General-Minded and-minded Bidding Functions. In  the ness objective [11]. Thus, we focus on designing a truthful
most general model, a bidder has a valuation for any numhgechanism that yields approximate social-welfare.
of channels, and thus, the bidding functions are repredente

by m real numbers — one for each quantity of channels. Fofuthful Mechanism with Approximate Social-Welfare.
efficiency and practicality issues, another model is comgnor®Ven & network with base stations, the unit-disk interiees
assumed in the literature, viz., theminded bidding function, 9raph, and the bidding functions, we first determine a valid a

wherein the bidder expresses its valuations for at miostlocation with approximate social-welfare as follows. Badiy,
quantities of channels. we divide the entire network into small hexagonal regions,

solve the simpler optimization problem in each hexagon-inde
Interference Graph. Each base station is associated with pendently, and then, “combine” the solutions. At a highelev
region around it called itxoverage-cejl each base station our algorithm consists of the follows steps.
serves its clients in its coverage-cell. To communicate, th 1) Divide the entire network region into small hexagons of
base station and the client must operate “interferencs-trp unit side-length.
a channel. In cellular networks, wireless interferencediemt 2) Uniform|y_co|or the hexagons with seven colors. See
may arise due to multiple near-by base stations operating on  Figure 1.
the same channel. In a simple modelpafirwise interference  3) Allocate channels to base stations in each hexagon
pairs of base stations with intersecting coverage-cedissaid independentlytreating it as a multi-unit auction (MUA)
to interferewith each other if operating on the same channels,  and using techniques similar to [29]. Note that the
and thUS, must not be aSSigned a common channel. Such a interference Subgraph in each hexagon is actua”y a
relationship between pairs of base stations can be repsssen complete graph.

TSA-MSW (Truthful Spectrum Auctions with Maximum

by edges in an interference graph, as defined below. 4) For each color, combine the results from all hexagons
Definition 6: (Interference GraphG:.) The interference of that color.

graphG, = (Ny, E;) is an undirected graph where each vertex 5) Pick the color that has the highest total social-welfare

represents a base station and there is an ddge < FE; and allocate the channels to the winners accordingly.

between: and j if the coverage-cells of the corresponding 6) Charge the winners VCG payments (see Definition 4).

base stations intersect. . . . .
. . Properties of Coloringln the coloring suggested in Step 2
If the coverage-cells of the base stations are unit-ra e Tthe Tollowing two proberties hold
disks, then the interference graph isunit-disk graph For ' 9 prop '

clarity of presentation, we assume unit-disk interference graph Property 1 Every pair of base stations in the same

below. Our technique can be easily generalized to more hexagon interfere with each other.
involved pairwise interference models [30]; in SectionBll  Property 2 Base stations in different co-colored
we present the generalization of our technique to the physic hexagons do not interfere with each other.

interference model. Property 1 follows directly from the definition of unit-

Valid Spectrum Allocation. Given an interference graph, thedisk interference, whilér operty 2 follows from the fact
spectrum allocation must be done in such a way that no pairtBgt the distance between base stations in different cored|
interfering base stations are allocated a common chanhil. Thexagons will be at least,/3(7) — 2) > 2 (from Lemma 2).
interference constrainis incorporated in the below definition Details of Step 3The above properties imply that the chan-
of a valid spectrum allocation. nels cannot be re-used inside the same hexagon, but can be
Definition 7: (Valid Spectrum Allocation.) Letl’ and C' fully re-used across different hexagons of the same colarsT
be the set of base stations and available channels, andalé&cation in each hexagon can be treated as an MUA. Thus,
P(C) denote the power set 6f. A spectrum allocation vector we use [29]'s techniques within each hexagon as described
(w1,...,my)) is consideredvalid if there is an assignmentbelow for general-minded antminded bidding functions.
a:V — P(C) such that (i)|a(i)| > =; for all ¢, and (ii) General-Minded Bidding Functionln case of general-
a(i) Na(j) =0if (¢,5) isin Ey. O minded bidding model, the availabte channels are split into



social-welfare is within a factor of 2 of the optimal for that
hexagon. Sinced.’s (O.'s) social-welfare is the sum of the
social-welfares of the constructed (optimal) allocatiforsthe
individual c-colored hexagons, we get that the social-welfare
of A, is within a factor of 2 of that ofd.. Now, since there
are seven colors and we pick the best of the seven allocations
the social-welfare of the returned allocation is within atéa

of 14 of the overall optimal social-welfare. "

Pseudo-polynomial Algorithm$lote that instead of the above

N2 bundles of sizd - | each, whereVy, is the number of allocation algorlthms from [29] within a hexagon, we coulq
b : i h Nir d a sinale bundle of . also use the optimal dynamic programming approach which
ase stations in hexagai, and a single bundle of remaining, ¢ i, O(m*Ny) time. Since the size of the input is

channels. Using dynamic programming, we optimallyallo- O(lo . . . . .

. . o . g m), this optimal dynamic programming algorithm has a
cate these bundl_es to tlj‘% bidders n polynom.|al time. This pseudo-polynomial time complexity. However, in our simula
yields an allocation with 1/2-approximate social-welf§2e] tions, we observe that this pseudo-polynomial algorithrasdo

within a hexagon. ; :
not perform any better than our polynomial algorithms.
k-minded Bidding FunctionFor k-minded bidding func- = © y poly g

tions, a restricted form of allocation known as theound )

allocation is used. For a giver(wheret is a PTAS parameter), B- Extensions

a t-round allocation allocates (! < m) channels to a subset Our technique can be easily generalized to more involved
T of the bidders wheréT'| < t; this part of the allocation pairwise interference models and non-orthogonal chanpasls

is done optimally by exhaustive search for edctand 7. shown in [30]. In this subsection, we present the genetaiza
Also, for eachl and T, the remaining(m — [) channels are of our technique to the physical interference model.

divided into equi-sized bundles and distributed optimadlyhe . o

remaining bi(?ders using dynamic programming. Finaﬂ;/, thFe>hySIICal Interfer_encfe Model. In the p‘h.ysmal mterffelrence
best allocation among theV}, £ such allocations is picked asque » & receptlon_ rom a base stations successful at a
the optimalt-round allocation. The above allocation algorithn?omtp if-and only if,

Fig. 1. Hexagons uniformly-colored using 7 colors.

runs in polynomial time for a fixed, and yields a(l — u%) P/6¢ > 3 1)
approximate allocation [29] within a hexagon. N+ e P/OF —
Proof of Truthfulness and Approximation. where P is the uniform transmission poweR’ is the set of

Theorem 1:For the TSA-MSW problem under the pair-other base stations operating on the same channildsis
wise interference with unit-disk model, the above describ¢he distance of the point from a base statiom, N is the
auction mechanism is truthful and returns a valid spectruambient noise, and is the path loss exponent.
allocation whose social-welfare is 14-approximate for t
general-minded bidding model and 741 + €)-approximate
for the k-minded bidding model for a givea > 0. Also,
the mechanism’s running time is polynomial inandlog m,
where n is the number of nodes ane is the number of
channels.

Proof: Truthfulness.Our allocation algorithm picks a-

héommunication Radius (). The communication radius [11]

r of a base station is the maximum distance fromwithin
which wewantthe SINR from: to be at least as large @5
Essentially, the above is based on the stipulation thatehet
base statiorni is a disk of radius. In our context, the value of

r can be arbitrarily large (but finite), since the approxirati
ratio and time complexity of our designed algorithms are

round allocation with the highest social-welfare, for aegiv  jndependent of-. Thus, the concept of communication radius
(for the case of general-bidding functios;an be considered myst not be looked upon as an assumption.

to be zero). Thus, our allocation algorithm is maximal in its ) _ )

range, where the range of allocations/outcomes is restrict Valid Spectrum Allocation.  In the physical interference
t-round allocations. Thus, our auction mechanism is truthf0del, @ spectrum allocation vectar, .. ., z,) is considered
since MIR allocations with VCG payments are truthful [13].valid if there is an assignment function : V' — P(C)

Approximate Social-Welfare. First, note that by such that ()]a(i)] > ; for all 4, and (i) for anyi andc

.. .2 such thate € a(i), the SINR of channet at any pointp
Property 1andProperty 2 of the hexagonal dlV'S'On’l;liDthin a distance ofr from i should be greater thaf, i.e.,

D e o ne e o LI/ 3, P157) > ) el s te st of base
b bp g Stationsj such thatc € a(j) andd, is the distance of from

bidding model; the proof fork-minded bidding model is
similar. Consider a particular colar, and for the set of all p-

hexagons colored;, let A. be the allocation constructedHexagonal Division and Coloring.Here, we need to do the

by our algorithm and®. be the allocation with optimal hexagonal division and coloring in a way so as to satisfy
social-welfare. We show that the social-welfare 4df. is the following two propertiesProperty 3: No two base
within a factor of 2 of that ofD... Note that, for any particular stations in a hexagon can be allocated the same channel,
hexagon cell, our algorithm constructs an allocation whos@d (ii) Property 4: If one node from each hexagon of



the same color is concurrently active on the same chanrtel[31]. Now, using the value af; from Equation 4, the SINR
then transmission from these nodes is successful withiin that pointp due to the transmission at base statide at least:

communication radius. @
N P a2 (JaBVT-6)(yB+1)r
Plane Division and Coloringdt is easy to see from the SINR = 6P Ve > p
Equation 1 that dividing the network region into hexagons of
side-length ) ) L
o 1r The following two lemmas are derived from [25, 32].
r=g (2) Lemma 2:In a hexagonal division with side-lengit and

) uniformly-colored with 2 colors, the distance between the
would ensureProperty 3. Here (and in Lemma 1 below), canters of co-colored hexagons is at lea@tr. .

for simplicity, we ha_tve assumgd the ambient. noise 10 | emma 3:A hexagonal division can be uniformly colored
be zero; nonzero noise can be incorporated using techmquggngc colors if and only ifc is of the formi® + ;2 + i for
similar to [31]. Now, to determine appropriate coloring deeé ¢qme positive integersand .

. . | |
to satisfyProperty 4, we state the following three lemmas. The pelow theorem follows from the above three lemmas.

Lemma 1:Given a division of the region into hexagons Thegrem 2:Given a division of the region into hexagons

distance between co-colored hexagons is at le#8t]r’, Property 4 is giverd by:

whereg] is
@ = min{z | z > max(7,q}), and z =i> + 52 +ij (4)
where i,7 € ZT}. W

) 4T 68 \*
0 = o : 3)
BVT-6)(vB+1)) \(a—2) _ . _
Overall Allocation Algorithm. As discussed above, dividing

Proof: Consider a base statiarin a hexagoril of colorc.  the région into hexagons of side-lengti{Equation 2) and col-
Partition allc-colored hexagons surroundidg into hierarchi- ©fing them uniformly using;, (Equation 4) colors, allows us
cal levels. In a uniform-coloring, the first level will coitas 10 SatisfyProperty 3 andProperty 4. Property 3
hexagons of color and each such hexagdf is at distanceé ©€nsures that allocation in each hexagon can be treated as a
of at least(y/3g; — 2)r from H (from Lemma 2). Similarly, multi-unit auction, whilePr operty 4 allows us to re-use
the second level contair hexagons at a distance of at leastnannels across hexagons of the same color. Now, using the
(3,/@1 — 2)r’ from H. In general, the/™" level contains6/ Same allocation algorithm as before, we have the following.
hexagons at a distance of at leadt /gil — 2)R from H. Theorem 3:For the TSA-MSW problem under the physical
Now consider a poinp within the communication radius interference model, the above described mechanism isfuituth
from the base station Then, the total signal received at thé"d returns a valid spectrum allocation whose social-welfa
pointp due to all other base stations (at most onegpeolored 'S 2¢1-approximate for the general-minded bidding model and

hexagon) active on the same channef és at most: is q_l(l + e)-approximatg for théc_-minc_jed biddi_ng model for
a givene > 0, whereq; is as defined in Equation 4. n
= P
Zﬁl' ((%\/q—llfz)( VB+1) 1)a7a IV. Revenue Maximization under the Bayesian Setting
1=1 e '

- 2 We now design a truthful spectrum auction mechanism
< @Z l with near-optimal revenue. In an auction setting, wherein
o (z\/qﬁ(3ﬁ—4)( YB+1) 1)0‘ the bidder’'s valuation is private, it is impossible to desig

h 4T truthful auctions with any guarantee on revenue [21,33]. To

6P — l circumvent this, researchers have considered the Bayesian
§_Z o tti herei h bidder’ luation is d f
re (l\/qﬁ(3\ﬁ—6)( %‘/E+1)) setting wherein each bidder's valuation is drawn from a
- a7 known probability distribution [28]. In a seminal work [23]

< AT )‘“ Myerson presents a truthful optimal mechanism for a single-

= : . item auction under the Bayesian setting. In this section, we

—92 _ o f

“ \/q_1(3\/7 6) (VB +1)r essentially extend this classical result to spectrum ansti
Above, the second equation follows from the following

two facts: (i) %\/q_ll > 3y/7/2 (sinceq; > 7), and (ii) for A. Truthful Auction Mechanisms under the Bayesian Set-

r > 3/7/2, we have(r — 2) > 577G v—n And, the third ting _ | _ |

equation follows from the following facts: (ip\/q—l(g\/? — In this subsection, we briefly present the key points [28]

4)($/B+1)/4V7 > (3V/7T—4)/2, sinceq; > 7 and ¢/ > 1, of Myerson’s mechanism applied to the more general single-

and (i) forz > (3v7 —4)/2, (x — 1) > m, parameter auctions. We start with basic definitions.

For simplicity, we assume ambient noise to be zero; noBingle-parameter Auctions.In a single-parameterauction,
zero noise can be incorporated using techniques similsdch bidder has a publicly-known set of outcomés c O

4By distance between two hexagons we mean that the distarioedie 5Note that in our context we should use at least 7 colors, jeetive of
any point in H’ andany point in H. the values ofx and .



known as itavinning alternativesnd a privatezaluation-value virtual surplus, and uses payments based on conditionf(ii) o
v; (a single value)such thatv(o) = v; for everyo € O; Theorem 4. By the virtue of the above two theorems, such a
andv(o) = 0 for everyo ¢ O;. Bidders declare (perhaps,mechanism will be truthful and optimal, if (and only if) the
untruthfully) their valuation-value as theid w;. ¢:(w;)'s are monotonically nondecreasingqin [28].

(Valid) Allocation Vector. In a single-parameter auction, an Myerson’s technique can be easily extended to more general
outcome can be represented byadincation vectorof n binary single-parameter auctions [34—-36]. Some other works have
variablesz = (z1,...,z,), wherez; is 1 if the bidderi wins also extended Myerson’s technique to simple multi-paramet
and zero otherwise. However, not all 0-1 vectors of length Settings [37-39].

may correspond to an outcome of the mechanism. The 0-1

vectors that correspond {0 an outcome are referred i@ bd;_ B. Truthful Spectrum Auction with Approximate Expected
allocation vectorsFor instance, in a single-item auction W'thRevenue

4 bidders, wherein the item is given to one of the 4 bidders,

(0,0,0,1) is a valid allocation vector while (0,1,1,0) istreo ~ We consider the same model as before, except for the
valid allocation vector. bidding function described below.

Myerson’s Optimal Mechanism. Given, for each bidder, Bidding Function Each base station (bidderhas a publicly-
the winning alternatives);, declared valuation-value (bid)Known demandfor d; number of channels. Any outcome
w;, and the distributionF; of the private valuation-value;, Wheréini gets at least; channels is avinning alternative
the mechanism finds an allocation vector and payments sieh?: Each bidder: also declares its valuation-value (bid)
that truthfulness is maintained and the expected revenue/Qs the winning alternatives, which may be different thas it
optimal where the expectation is taken over the randomnd¥iate valuation-value);. Note that the outcomes wherein
in bidders’ valuations [28]. Myerson’s mechanism is baséd9ets 1ess thaml; channels are valued at zero by Here,

on the following characterization of truthful mechanisros f W€ consider théayesian settingwherein the valuation-value
single-parameter auctions. v; is drawn randomly from a publicly-known probability

Theorem 4 ([28, Theorem 13.6]Consider a  single- distriputiQnFi. Thg above bigding m_odel is _much sim_pler than
parameter auction, wherein the losers pay nothing (i.&1€ bidding functions considered in previous section, esinc
z; = 0 implies p; = 0). Under the Bayesian setting, aMye_rson’s tech_nlque is limited to the simple smgle-para_me
mechanism is truthful if and only if, for any biddérnd any Se€tting. In Section IV-C, we generalize our technique toaer
fixed choice of bids by the other bidders: more general bidding functions.

(i) x; is monotonic nondecreasing in;, and TSA-MER (Truthful Spectrum Auctions with Maximum
(ii) the paymentp; for any winning bidderi is set to the Expected Revenue) ProblemGiven an interference graph,
critical value ¢;, which is the minimum value needs the number of available channels, and the bid-demand pair
to bid in order to win. Note that, in genera}, depends of each base station along with the distribution from which
upon the bids of the other bidders. m the valuation was drawn, thESA-MER problenis to design
Given the above theorem, to specify a truthful mechanism@, truthful auction mechanism that returns a valid spectrum
we need to only specify a winner determination functioallocation with maximum expected revenue.
that satisfies the first condition of the theorem; the paysent The TSA-MER problem can be shown to be NP-hard, by a
can be derived from the second condition. In [23], Myersamrduction from the maximum independent set problem, since
specifies the winner-determination function based ontalt maximizing expected revenue is equivalent to maximizing
bids,” and shows that it leads to optimal expected reverfueyirtual surplus (sum of virtual-bids).

the payments are determined as described above. Recent Work on TSA-MERIn a recent work, Jia et al. [18]
Virtual Bids and SurplusMyerson’s mechanism [28] starts byextended Myerson’s mechanism for the TSA-MER probfem.
replacing each bidv; with a virtual-bid ¢,(w;) as follows.  However, since maximization of virtual surplus is NP-hard
1— Fy(w;) due to the interference constraint, Myerson’s techniqulg on
e (5) yields an exponential-time mechanism. Thus, [18] designed
fi(wi) a Greedy-heuristic mechanism for the TSA-MER problem,
where fi(z) = %Fi(x) is the probability density function. which considers nodes in decreasing order of virtual-bid
For a given outcome = (z1,s,...,%,), the virtual per channel (i.e.¢;(w;)/d;) and allocates channels to them
surplusis defined as the sum of winning virtual-bids, i.e.if the interference constraint is not violated. To check the
> wigi(w;). The following theorem is key to the design ofinterference constraint efficiently, we need to maintaie th
an optimal truthful mechanism. channels-to-bidders assignment function. Finally, thenpents
Theorem 5 ([28, Theorem 13.10]fhe expected revenueby the winners are determined as suggested in Theorem 4. The
of any truthful mechanism under the Bayesian setting is lequ#0ve mechanism is truthful, but the revenue yielded can be
to its expected virtual surplus. Here, the expectationsaen arbitrarily bad. (see Figure 2).
over the distributions of the valuations.

éf)z(wz) = w; —

M 's Mechani dits E iong , h 6We note that [18] actually considers a more general modersimdid-
yerson'’s Mechanism, and its Extensiomdyerson’s mech- gemand pairs are associated with a service provider whiolrale multiple

anism essentially determines an outcome that maximizes Haee stations. We consider such a generalization in SestiQ?®.




(1\"1’ (}.'” Determining Payments. The payments are determined ac-
( )

(1,1) cording to Theorem 4 as follows. For each winnerwe

N (m’(ilm)/ use a binary search to find its critical value(for the given
— " m)_/.“'l) fixed bids of _other bidders) such thawms_ if w; > t; and
- | loses otherwise. Note that such a valijeis guaranteed to

o oA, exist, since our allocation algorithm results in monotaitic

. nondecreasing:;'s. Then, for each such winning bidder, we
e N set its paymenp; ast;. Losing bidders pay zero.

[ \ The critical values for bidders who win in the post-
Fig. 2. Counter example for the Greedy mechanism. The figuosvs the prqc_essmg_ step can be_determmed using 'O_"?as based on the
interference graph over given base stations. The (demadylphir for the “Critical neighbor” technique of [18]. The critical valueoif
“Lnnfgia?i?]iﬂzs(gfucrﬁ;h;g!e ;C;]fethb%:lgfef"cgiggg:t iilr{dle)ﬂmhi?u;?;bi% a bidder: who wins in the first step (involving coloring of
f)feeach bidder is equal to its' bid. Since all the bidde’rs haeesame rank hexagon ceII_s) Ca_n be_computed using at MaStumax runs
(= virtual-bid/demand), the Greedy mechanism may pickrelauter bidders Of the allocation within its hexagon céliollowed by the above
and yield a total revenue of./2, while the optimal revenue is2 /4. “critical neighbor” technique; herev,,,,, is the maximum
Outline of the Truthful Mechanism with Approximate Ex-  valuation-value of any bidder. The latter part may be needed
pected RevenueBased on Theorems 4 and 5 of Section IV-Ato determine the critical value forfs win due to the post-
our method for designing a truthful spectrum auction mecprocessing step; note that even if lowering the bid afakes
anism with approximate expected revenue is outlined in tlite hexagon color a loser in the first step, biddean still win
following two steps: due to the post-processing step.

1) Determine a valid spectrum allocation with approximat[g L
: g o . roof of Truthfulness and Approximation.
virtual surplus, satisfying condition (i) of Theorem 4, Theorem 6:For the TSA-MER problem under the Bayesian
2) Determine payments using condition (ii) of Theorem 4. ' P y

We di he ab in the followi h setting and the pairwise interference with unit-disk model
e discuss the above steps In the following paragraphs. o ap6ve described mechanism is truthful and returns d vali

Valid Allocation with Approximate Virtual Surplus. Given spectrum allocation whose expected revenue is at

a network with base stations, the unit-disk interferen@phbr of the optimal expected revenue, for a giver 0. Also, the
the demand-bid pairs, and the probability distributions ahechanism runs in time polynomial itye, n, andlogm.

the bidder valuations, we determine a valid allocation witRroof: The approximation proofs follow from the same ar-
approximate virtual surplus using a technique similar te trguments as in the proof of Theorem 1. TruthfulneBy.

one used in Section III-A except for the following changesrheorem 4, we need to only show that our allocation algorithm
First, we have a pre-processing step in which we replace eagly|ts in monotonically nondecreasings. First, note that the
bid w; with a virtual-bid ¢;(w;) as defined by Equation 5. ppTAS algorithm used in each hexagon is monotonic since the
Second, the problem of optimally allocating channels tebagpTas algorithm is an optimal algorithm over “scaled-down”
stations within each hexagon is treated as a Knapsack pnobiga|yes and the optimal algorithm is trivially monotonic.uo
(rather than a MUA) where the virtual-bids are the “valuesy show the monotonicity of our overall mechanism, we need
of items to be placed in the knapsack and the demangdsconsider two cases: (i) when a biddeis selected as a
are their “weights.” The well-known fully polynomial-time yinner in the first step, and (i) when a biddeis selected
approximation scheme (FPTAS) [40] can be used 10 getad a winner in the post-processing step. In the first case, if
(1 + ¢)-approximate virtual surplus of each hexagon for anpe pids of all other bidders remain fixed, then an increase
e > 0. Third, we pick the color that has the highest total virtugh, the pid of; would not change (a) the presenceidh the
surplus (rather than social-welfare). And finally, we pemia Ep7as knapsack-solution (due to its monotonicity), and (b)
post-processing step to greedily satisfy the demands 0B m@fe winning of the color of’s hexagon. In the second case,
base stations and charge the winners payments computer Ugigreasing the bid of will maintain its inclusion in the greedy
condition (ii) of Theorem 4, as described below. post-processing step until the color & hexagon becomes
Post-Processing StefWe will show in Theorem 6 that the a winning color. However, when the color 6% hexagon
above allocation algorithm satisfies the monotonicityxps becomes a winning color (due to the increasgésdibid), s must
(i.e., the first condition of Theorem 4). Incidentally, wencastill remain a winner in its hexagon (otherwise its hexagon’
further improve the above allocation algorithwithout violat- color would not have become a winning color).

ing the monotonicity of;'s (as will be shown in Theorem 6), \j,jig Spectrum AllocationBy virtue of Property 2 and

by allocating more bidders in a greedy manner. In particulgs 5t that the allocation within each hexagon is a Knapsac
we sort theemainingbidders by their virtual-bids per demands, sion, the allocation constructed before the post-gseing
(i-e.,¢i(w;)/d;), and consider them for allocation in that ordege, is valid. Since the post-processing step does nottgiola

without violating the interference constraint. To effidign o nterference constraints, the spectrum allocationrmed
implement the above, we would need to maintain the chann  the designed mechanism is valid .

to-bidders assignment function. We note that the above pos
processing however does not Improve the apprOXImatIODrfaCt "Note that the allocation within other hexagon cells doesamainge with
of our algorithm. the variation ini’s bid.




C. More General Bidding Functions Theorem 8:Under the Bayesian setting with fractional de-

The above mechanism can be extended to more involV&@nds, t_he expected revenue of any truthful mechanism is
pairwise interference and physical interference modeisgus €dual to its expected virtual surplus, where the virtuapkis
techniques similar to [30] and Section I11-B. Here, we dissu IS as defined above. n
generalization to more general bidding functions. Overall MechanismOn the basis of the above two theorems,

1) Beyond Single-Minded Bidding: We now extend our our mechanism from the previous subsection can be extended
techniqgue beyond single-minded bidding by handlingc- to the case of fractional demands, by solving the apprapriat
tional demands More formally, a biddei’s declared demand- allocation problem within each hexagon. In fact the resglti
bid is of the form(d;, d;, w; ), signifying that the bidder would allocation problem within each hexagon can now be sobed
accept any number of channels betwegrand d; at a price timally in polynomial-time using a greedy approach, yielding
of at mostw; per channel. For simplicity, we first assume thaa truthful auction mechanism with a 7-approximate expected
d; = 0 for every bidderi; we relax this assumption later.  revenue.

For the above setting, the mechanism’s output is an allgon-zero Minimum DemandsVe handle non-zero minimum
cation vector(zy, ..., z,) whereinz; € [0,1] represents the demandgd;} by defining a new allocation vectéy: , .. ., y, )
fraction of demand satisfied, i.e., for a given the number of \yhereiny, is equal tox; if z; > d;/d; and zero otherwise.

channels allocated is;d;. Also, for a given allocation vector, The arguments of this subsection straightforwardly apply t

of fractional demands, Theorems 4 and 5 can be generalized) service-Provider Based Bidding: Till now, we have

(based on [28]) as follows. Below, we use the notatiofiw:) jmplicitly assumed the base stations (i.e., their demands)

to denotez; for a givenw; and fixed bids of other bidders. 5 independent. We now consider a more general model
Theorem 7:A mechanism (wherein losing bidders payonsidered in [18], wherein base stations belonging to the

zero, i.e.,x; = 0 implies p; = 0) is truthful iff for any bidder same service provider bid collectively. More formally, kac

i and any fixed choice of bids by other bidders, given base station belongs to a unique service provider,
» z;(w;) is monotonically nondecreasing in. and the demand of each service providelis given by
o The payment is set as follows (dir,dig, ..., dij,-..,dy, w;) where d;; is the number of
. w; channels required for th¢/" base station of thé!" service
pi(w;) = widir;(w;) — dizi(t)dt. (6) provider, [ is the total number of base stations for tkHé

0 service provider, and; is the bid (payment made) #ll the

Proof: For simplicity, we drop the subscript To show ahove demands are satisfied. For simplicity, we assume a unit
truthfulness, we only need to show that the utility of truthf gisk interference graph between the base stations. Now, to
bidding v is no smaller than bidding any other value l.e.,  extend our techniques for the above model, we need to assume

vdz(v) — p(v) > wdz(w) — plw) that the distance between base stations of a service provide
v o R w is bounded. In other words, all the base stations belonging t
/ dz(t)dt > wvdz(w) — wdz(w) +/ dx(t)dt. a particular service providércan be enclosed in aR-radius
0

0 disk centered at a point;, whereR is a given constant.
For w > v, the above is true sincéw — v)(dz(w)) > Our techniques generalize to the above model as follows.
s dz(t)dt follows from the monotonicity ofz, while for First, as before, we divide the region into hexagons of unit
w < v, the above is true since — w)(dz(w)) < fL: dz(t)dt side-length, but use, colors to uniformly color them where
also follows from the monot.onic.ity aof. g = min{z | = > max(7,4R?/3), and & = 2 + j2 + ij
Now to show the other direction, we take the truthfulness o "
constraints at, vdz(v) — p(v) > vdz(w) — p(w), and at where i,j € 27} (8)
w, wdz(v) — p(v) < wdr(w) — p(w). Rearranging these Using ¢, colors ensures that if a hexagon contains base
inequalities gives stations from different service providetsand j, then their
5 5 corresponding disk-centets and z; (as defined above) are in
vd(z(w) —2(v)) < p(w) = p(v) < wd(z(w) —2(v)). (7) hexaggns of ?jiﬁerent coltc?rs. The (allocation algorith)m kegor
From this, we ge{w — v)(z(w) — x(v)) > 0 which implies as follows.

the monotonicity ofz. For each hexagoh, we formulate and solve the following
We now derive Equation 6. Let = v +¢, then, by dividing multi-dimensional knapsack (MDKP) problem. Consider the
Equation 7 bye and taking the limit, we get set of hexagong (k) such thatf(h) contains a base station
cdzr _ dp - dr of a service providet whose disk-center; lies in h. The
vd oS S vd T MDKP problem has|f(h)| dimensions, and each dimension

) » has the size-constraint dff /7 where M is the total number
Now, sincep(w) = 0 for anyw smaller than the critical value, 5¢ ayailable channels. An item of the MDKP is Ah)-

we get w dimensional object corresponding to a demand-bid vectar of
w) = tda' (t)dt. service providei whose disk-centet; lies inh; here, demands
p
0 for base stations of belonging to the same hexagon have

Integrating the above equation by parts gives Equationg. been aggregated yieldingfdh)-dimensional object. Note that
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|f(h)| is bounded due to boundel. Solution to the above « Real Networks:We use locations of real cellular base
MDKP problem yields near-optimal allocation of channels to  stations available in FCC public GIS database [41] and

base stations iff (h) that belong to service provider with disk- choose the 843 base stations deployed in the state of
centers inh. Massachusetts. Here, we choose a realistic cell radius of
We solve the above MDKP problem for each hexagon 10 kilometers.

the network region. Then, from thg colors, we pick the color |n both networks, we set up an auction of up to 1000 orthogo-

¢ such that the combination of the MDKP-solutions of the nal Sing|e_type channels with the default being 500 channel
colored hexagons yields the most virtual surplus. Below, we

prove that the picked allocation is valid and hagga(1 +¢)- Bidding Functions. We generate general-minded bidding
approximate expected revenue. functions for each base statianas follows. First, for each

To show the validity of the returned allocation, we need to W€ Pick /i (the maximum number of channels bid by
prove that: (i) for each hexagon separately, the MDKP-gmiut Fandomly from the rangel, m], wherem is the total number
is valid, and (ii) the combination of the MDKP-solutions forof avallqble channels. Then, we randomly geneméﬁep@
each color is valid. To show part (i), we divide thé available for the first channel and “marginal” bids for each additional
channels into 7 groups and uniformly distribute them amoﬂé}“anne' till ;. Beyond!;, marginal bids for each additional
the hexagons off(h).2 Now, we have an MDKP problem € annel is assgqed_ zero (to satisfy the free-disposakptyp
where each dimension corresponds to a hexagof{/f with Each marginal bid is chosen from the rar{ge100].

the A//7 constraint corresponding to the number of channel§,ction Mechanisms Compared.We compare our auction
available in that hexagon. mechanism for the TSA-MSW problem with two auction

As for part (i), it follows from satisfying a modified mechanisms, viz., (i) Greedy, the best known (non-trujhful
version ofProperty 2 where base stations belonging to tW@ypproximation spectrum allocation algorithm for maximiz-
different service providers each falling in a different Bgan jng social-welfare and/or revenue, and (i) Naive, a sim-
with the same color do not interfere. This is satisfied if thgle truthful spectrum auction mechanism. In addition, we
distance between any two points in different hexagons of tago considertwo versions of our auction mechanisms: (i)
same color is greater thaxiz. By Lemma 2, this is guaranteedgyr s- pol y, based on the polynomial-time allocation algo-
if the number of colors is at leadt??/3. Then, by Lemma 3, ithm in each hexagon, and (idur s- pseudo- pol y, based

the minimum number of colors required would be given byn the pseudo-polynomial time algorithm (optimal withircka
g2 as defined in Equation 8. hexagon).

Finally, th_e 7.q2(1 +e) approxmate expected revenue fOI,g;reedy Auction Mechanism (from [11])Greedy is a non-
lows from similar arguments as in the proof of Theorem . : g .
. Truthful mechanism, whose winner determination function
except for the fact that we usg colors here (instead of 7)

and the extra 7 factor is due to th&/7 constraint on each aI.Ic;]cates. chqnnels it.eratively o the highest gvailapld bi
dimension of the MDKP problems. without _V|olat|ng the |_nterferenc_e constraint. This alition _

results in a 6-approximate social-welfare [11] for the wunit
disk model and non-complementary bidding functions, mgkin
V. Simulation Results it the best approximation algorithm known for maximizing

The main purpose of our simulations is to compare tl?é)gial—welfare. I we Charge each bidder a payment equal
performance of our mechanisms with other mechanismstfﬁ its bid (declared vaI7uat|0n) for _the aIIoca_tte_d number of
the literature under various settings and performanceimetrC annels, th‘?” Greedy's revenue I also W|th|n,a fac_tor of
Our simulations are split into two parts, one for the TSAC’ of the_ optimal revenue possibileThus, Greedy_s social-
MSW problem and one for the TSA-MER problem. It should’éfare is equal to its revenue. Note that Greedy is a pseudo-
be noted here that since no simple auction mechanisms gpéynomlal algorithm since its running time is polyn_om|al !
known for the physical interference model, we restrict odf” the n_umber of channels, while the other algorithms are
attention to the unit-disk pairwise interference model. polynomial inlog(m).

Naive Auction Mechanism (based on [L7¥)/fe now describe
) ) a simple auction mechanism (called Naive) that is truthful,
A. Comparing Mechanisms for the TSA-MSW Problem ;¢ has no performance guarantee on the social-welfare and
We start by describing our simulations set-up. revenue. Naive’s allocation algorithm divides the entigt-n
. work region into square grid of unit side-lendthuniformly
Network Topology and Model. We consider two types of ¢qors the resulting square cells using 4 colors, and assign
networks, as described below. each color(1/4)™" of the available channels. Now, for each
« Random NetworksWe randomly place 50 to 1000 (de-square cellH, Naive allocates all the channels usableHn
fault being 500) base stations within a fixed area @b the bidder with the maximum bid for that many channels,
1000x 1000 square units. The unit-disk interference graplnd charges it a payment equal to the second highest bid in
is based on 50-unit radius disks.

9For computing the optimal revenue, we assume that biddergsngnt in
8To help visualize this step, imagine that we apply a secoyerlaf an outcome must not be more than its declared valuation &éntlicome.
coloring on the hexagons of(h) using 7 colors (see Figure 1). Then, we To ensure validity of the resulting allocation, the squagiscare open
assign each color one of the 7 groupsidf/7 channels. from one side and closed from the other.
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Fig. 3. Performance comparison of various auction mechaifer the TSA-MSW problem. The first six plots (in the first twaws) are for random networks
with varying number of nodes (with 500 channels) and varymognber of channels (with 500 nodes). The last three plotfaréhe cellular network in
Massachusetts with 843 base stations and varying numbéraniels. Recall thabur s- pol y andQur s- pseudo- pol y refer to the polynomial-time and
the pseudo-polynomial time versions of our auction medranNote that the plots ofur s- pol y andQur s- pseudo- pol y overlap with each other due
to negligible performance differencélso, note that the Greedy algorithm runs in pseudo-polyabrgorithm.

H. This is a simple generalization of Vickrey’s auction [14]s due to the fact that in practicaur s- pol y performs much
in each square cell. better than its worst-case approximation ratio of 1/2 (imith

a hexagon) for random parameter values, especially when the
Simulation Results. In our simulation, we compare Greedynumber of base stations in the hexagon is small and/or the
Naive, and Our (based on hexagonal division and coloringd|uations of the bidders are “similar.”

rics: (i) social-welfare, (ii) revenue, and (iii) spectrurtiliza-  provably approximate social-welfare, our auction mecsani
tion. Spectrum utilizatiorj17], defined as the total number ofg|so delivers near-optimal revenue.

allocation pairs in the spectrum allocation, gives a measir
the spatial reuse of a spectrum allocation.

In Figure 3, we plot results for the above three metric8: Comparing Mechanisms for the TSA-MER Problem

For the random network, we vary the number of base stations . .
(nodes) as well as the number of available channels, while {getwork Topqlogy and Model. As with th? previous subsec-
the fixed real network we only vary the number of availablgon’ we consider two types of networks:

channels. We observe that Greedy performs the best in alk Random NetworksWe randomly place 100 to 1500
three performance metrics, but is only within a factor of 2 to  (default being 1000) base stations within a fixed area of
3 of that of our auction mechanism. Note that both Greedy and 1000 x 1000 square units. We vary the uniform radius of
ours deliver an approximate social-welfare, and Greedy als  the disk from 20 to 100 (default being 50) units.
delivers an approximate revenue, but is untruthful. Selgond  Real Networks:We use locations of real cellular base
our auction mechanism outperforms the Naive mechanism stations available in FCC public GIS database [41], and
by an order of magnitude, in all three performance metrics. Choose base stations deployed in 4 different regions:
Finally, we note that the difference in performance of the — R1: 843 base stations in the state of MA.

our s- pol y andour s- pseudo- pol y is negligible. This — R2: 2412 base stations in the New England area.
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Fig. 4. Performance comparison of our mechanism with thee@renechanism for the TSA-MER problem. Generated reverafesjde y-axis; black solid
lines) and the spectrum utilization (right-sigeaxis; red dotted lines) on randortop three plotsand real bottom three plofsnetworks. The default number
of channels is 1000. For random networks, the default nurabbase stations is 1000, while for real networks, the défeagion is R2. The default uniform
radius of the coverage-cells is 50 units and 5 Km for randonh raal networks respectively.

— R3: 4467 base stations in New England and NY. does not change (a) the presencé of the FPTAS knapsack-
— R4: 8618 base stations in North East USA. solution, and (b) the winning status ¢§ hexagon.

The default region is R2. For all regions, we choose

a . .
realistic coverage-cell radius of 5 Kms. Simulation Results.We compare our enhanced auction mech-

anism with the Greedy [18] mechanism, in terms of the
Channels, Demands, and BidsWe set up an auction of generated revenue and spectrum utilization (total number o
up to 1500 orthogonal single-type channels with the defaaltiocated channels across all bidders). We conduct experi-
being 1000 channels; this is a reasonable range basednwents for varying: (i) number of base stations, (i) numbter o
the past FCC auctions [21,42]. The demantjsare each channels, and (iii) the uniform radius of the coveragescell
chosen randomly from the intervgl, m|, wherem is the total See Figure 4. We observe that our mechanism significantly
number of available channels, and the valuationsre chosen outperforms Greedy in terms of revenue as well as spectrum
randomly (and uniformly) from [@;] so that the valuation per utilization by an average factor of about 50%, for all partene
channel of each bidder is in the uniform range of [0,1]. Foralues. Moreover, the performance gap generally increases
simplicity, we have chosen the valuation-distributidis to  with the increase in the number of channels/base stations or
be the uniform distributions. with the decrease in coverage-cells’ radius.

Auction Mechanisms Compared.In our experiments, we Experiments With “Lop-Sided” Demands. In the above
compare the below-described enhanced version of our awctiperiments with randomly generated demands and bids, our
mechanism with the Greedy mechanism of [18], the onfjechanism outperforms the Greedy mechanism by about
mechanism in the literature for the TSA-MER problem. Thgg.09. However, in some cases (as shown in Figure 2),
Greedy mechanism is truthful, but has no guarantees on @%edy mechanism can perform arbitrarily bad compared
expected revenue. We note that computingghgmalrevenue o our mechanism. We now try to generate quasi-random
was computationally infeasible even for small networks.  instances, wherein the performance of our mechanism is much
Our Enhanced Mechanisrio further improve the empirical better compared to the Greedy mechanism. In particular, we
performance of our auction mechanism, we have modified thensider randomly generated networks as before, but assign
way we combine the independent solutions of the hexagons!lop-sided” demands and almost-equal bids to bidders as
particular, instead of picking all the hexagons with onel# t follows. First, we randomly choose the demands from
seven colors, we pick the set of hexagons in a greedy manfigs Zm|U[m —Zm,m]), whereZ is some value betweelym

as follows. Basically, we pick the hexagons in order of theand 1. Then, we assign the low-demand bidd€i%., bidders
virtual surplus, while ignoring hexagons that “conflict”’ttvi with d; in [1,Zm]) a per-channel bid chosen randomly from
an already picked hexagon; here, two hexagons are condidde95,1]; the (high-demand) bidders get a per-channelroichf
conflicting if they contain a pair of interfering (and wingin [0.9,0.95]. The above assignment of bids is intended to give
base stations. The above approach certainly yields a vadicslight advantage to the low-demand bidders. Note that, in
spectrum allocation. To see the monotonicity (and henee, thractice, there is no reason why the bids and demands should
truthfulness) of the above approach, note that increasieg have a random distribution. The above specialized settiag m
bid w; of a winning bidder: (for fixed bids of other bidders) reflect a scenario where small start-up concerns compete wit
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