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ABSTRACT
In this paper, we address the problem of preserving gener-
ated data in a sensor network in case of node failures. We
focus on the type of node failures that have explicit spa-
tial shapes such as circles or rectangles (e.g., modeling a
bomb attack or a river overflow). We consider two differ-
ent schemes for introducing redundancy in the network, by
simply replicating data or by using erasure codes, with the
objective to minimize the communication cost incurred to
build such data redundancy. We prove that the problem
is NP-hard using either replication or coding. We design
O(α)-approximation centralized and distributed algorithms
for the two redundancy schemes, where α is the “fatness” of
the potential node failure events. Using erasure codes, data
distribution can be handled in an efficient distributed man-
ner. Simulation results show that by exploiting the spatial
properties of the node failure patterns, one can substantially
reduce the communication cost compared to the resilient
data storage schemes in the prior literature.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault Tolerance; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms
Algorithms, Reliability, Theory

Keywords
Data replication, Fault tolerance, Coding, Sensor Networks

1. INTRODUCTION
In this paper, we address the problem of data preserva-

tion in a sensor network after node failures. We focus on
smart dust type networks [10] where the network consists
of a large number of cheap, unreliable nodes. This design
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philosophy contrasts with the traditional ‘centralized’ sens-
ing mechanism in which a small number of powerful sensing
stations were used (e.g., the weather stations). Here we use
the sheer number of sensors for both wide area coverage and
high resolution data collection. Having a large number of
nodes also increases the system redundancy and robustness
to failures. Since nodes are cheap and unreliable, they are
likely to fail for many reasons. Nevertheless the prepared
redundant nodes in the proximity can take over both the
sensing tasks and the data of the failed nodes.

Sensor nodes may fail to operate for many reasons. They
may suddenly stop functioning for no reason. They may be
destroyed by animals, humans, or natural disasters (earth-
quake, fire, river overflow, etc). They may be destroyed by
adversarial attacks (a bomb explosion for example). The
nodes may also be temporarily disabled by jamming, traffic
congestion, or energy depletion. In case of such unfortunate
events when a sensor does not respond, we can invoke the
replacement sensors to take over the sensing tasks. However
the data stored on the nodes that have been destroyed is
lost unless we design data storage schemes resilient to node
failures, which is the topic of this paper.

We focus on node failures with some spatial patterns,
which are arguably the most common type. There is of-
ten strong spatial correlation among the failed nodes. The
events that destroy one node may very likely influence a
nearby node and destroy it as well. We model such spatial
failure patterns by some explicit geometric shapes, where all
the nodes contained in the shape fail at the same time. The
location and orientation of the shape could be variable or
known depending on the scenarios. An example could be a
bomb attack with a circular shape and variable location or
the break of a dam flooding nodes within a region with fixed
location and orientation.

We assume that a certain number of nodes, called the data
nodes, generate data of interest, while the other network
nodes called the storage nodes are used for extra storage and
relay for communication. To preserve data generated in the
network, we necessarily need to introduce sufficient redun-
dancy by storing the data at some other nodes. The nodes
also have severe communication, computation and memory
limitations. Thus, our algorithms will find redundant nodes
to hold data from each data node, while incurring as little
communication as possible.

Contributions. We address the problem of introducing
sufficient data redundancy in a network with minimal com-
munication cost, such that entire network data can be re-



trieved after node failures. We use two schemes to introduce
data redundancy in the network.

• Replication: The data from a data node is copied into
one or multiple storage nodes in the network. The re-
trieval algorithm is simply pulling the data out of storage
nodes that contain a copy.

• Erasure codes: An erasure code of multiple data items
would be computed and stored in the storage node. For
example, each codeword may be linear combination (with
random coefficients) of the original data items [7]. The
retrieval process consists pulling relevant data from the
network so as to solve a system of linear equations to
decode the data.

Each method has its own advantages and disadvantages.
Generally speaking, data replication allows for straight-forward
data recovery from a surviving node holding the data. Us-
ing erasure codes, we can potentially use the limited storage
nodes in a more efficient and effective manner, since a stor-
age node can possibly hold information helpful for multiple
data nodes. The downside is that data recovery requires the
decoding cost of solving a linear system of equations.

Using any of the two approaches, our objective is to mini-
mize the communication cost incurred in introducing redun-
dancy. We prove that such an optimization problem is NP-
hard using either of the two approaches. Thus, we design
O(α)-approximation centralized and distributed algorithms,
where α is the ‘fatness’ of the given potential spatial node
failures. To the best of our knowledge, ours is the first work
that addresses the data preservation problem in the context
of spatial failures, while minimizing the communication cost
incurred in introducing the needed data redundancy.

Paper Organization. The rest of the paper is organized
as follows. In Section 2, we present our network model and
notations. In Section 3, we discuss the problem with repli-
cation as the choice method of generating redundancy. In
Section 4, we discuss the problem using erasure codes. We
present our simulation results in Section 6, and discuss re-
lated works in Section 5. We defer two tedious proofs to the
two subsequent sections.

2. NETWORK MODEL AND NOTATIONS
In this section, we present our model of the network and

failures, and introduce basic notations.

Network Model. In our sensor network model, each node
is aware of its own and neighbors’ location. A node is either a
data node or a storage node, but never both. Each data node
generates data of interest, and the storage nodes are used
by the data nodes for storage of replicated data. For clarity
of presentation, we assume that each data node generates
exactly one unit of data, and a storage node can be used to
store only one unit of data.1

Communication Model. We assume a quasi-UDG [12] model
of parameters r and βr, where r is called the transmission
radius and β ≥ 1 is called the quasi-disk constant. In such a
model, two nodes at a Euclidean distance of δ can directly
communicate with each other if δ ≤ r, may or may not be
able to communicate if r < δ ≤ βr, and can not communi-
cate if βr < δ.

1If not, we can make appropriate number of copies of each
node, and then, apply our presented techniques.
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Figure 1: (a) Two given failure-shapes. (b) and (c):

Network-failure due to each of the given failure-shapes;

hollow nodes are the nodes destroyed.

In this article, we develop data replication schemes in uni-
formly random sensor networks. Our results in this article
hold for any communication cost models that satisfy the
following property in uniformly random networks: (i) The
expected communication cost of sending a data packet be-
tween two nodes is O(δ/r), where δ is the Euclidean distance
between them, and r is the transmission radius; (ii) The ex-
pected communication cost of multicasting a data packet in
a region X from a node inside X is O(NX ) where NX is the
total number of nodes in X. The above two properties cer-
tainly hold for dense networks; we conjecture (and plan to
prove in our future work) that they hold in general in uni-
formly random networks, due to the unlikelihood of large
“holes” in a random network.

Failure-Shapes; Network-Failures. We define failure-shape as
a closed 2D geometric shape, with an undetermined location
and orientation. A network-failure is modeled as a failure-
shape with determined location and orientation – which re-
sults in the failure of all nodes in the covered region. See Fig-
ure 1. We assume only one network-failure occurs at a time;
however, our techniques for the second problem do gener-
alize to multiple network-failures as discussed in Section 4.
Below, we also define fatness of a given set of failure-shapes.

Notations. Throughout the article, we use the following
notations.

• We use D and S to denote the set of data and storage
nodes in the network, r to denote the uniform transmis-
sion radius, and β for the quasi-disk constant.

• We use C(a,B) to denote the cost of multicasting a unit
of data from the source a to a set B of destination nodes.

• We use R̂ to denote the radius of the smallest circle that
can contain all the given failure-shapes, and R̃ to denote
the radius of the largest circle that can be contained in
all the given failure-shapes.

Definition 1. (Fatness) For a given set of failure-shapes

F , we define the fatness α of F as the ratio R̂/R̃, where R̂

and R̃ are as defined above.

Definition 2. (Regular Random Networks.) Reg-
ular random networks refers to connected sensor networks
wherein the set of data nodes and storage nodes with trans-
mission radius r have been independently and uniformly dis-
tributed in a square region of size q × q, for some q, and

the set of given failure-shapes is such that R̂ < q/2. We
assume unit node density (i.e., the total number of nodes to
be q2); this is without loss of generality since the transmis-
sion radius is arbitrary. Also, unless mentioned otherwise,



we assume the number of data nodes to be less than storage
nodes.

3. MCDR PROBLEM
In this section, we consider the scheme of simply repli-

cating data to available storage nodes, to allow recovery
from network-failures. In this context, we formally define
an appropriately formulated optimization problem, viz., the
MCDR problem, and present an approximation algorithm
for it. We start with a definition.

Definition 3. (Storing Set.) For a given data node d,
a set S(d) of storage nodes is considered a storing set if
no network-failure (based on the given failure-shapes) can
destroy the set of nodes {d} ∪ S(d).

A set of disjoint storing sets, one for each data node, can
be used for data replication and failure recovery as follows.
Each data node can replicate its data to each of the storage
nodes in its storing set. By the above definition, such a
replication strategy will ensure that no network-failure can
destroy all the copies of a data item, and thus, all data items
can always be successfully recovered in case of a network-
failure. Note that we require the storing sets to be disjoint,
since each storage node can only store one unit of data.

Minimum Cost Data Replication (MCDR). Given a
network and a set of failure-shapes,2 the MCDR problem is
to find a set of disjoint storing sets, one for each data node,
such that the sum of communication costs from a data node
to its storing sets is minimized. Formally, for each d ∈ D,
we find a storing set S(d) ⊆ S such that solution’s cost∑
d∈D

C(d, S(d)) is minimum.

Theorem 1. The MCDR problem is NP-hard to approx-
imate within any finite approximation-ratio.

Proof: We first show that our MCDR problem is NP-hard
by reducing the well-known 3D-matching (3DM) problem,
which is known to be NP-complete [8], to the MCDR-decision
problem. The MCDR-decision problem is to check if there
is a set of disjoint storing sets (irrespective of the cost), one
for each of the data nodes. We start with defining the 3DM
problem.

3D-matching. Given three disjoint (unordered) sets X, Y ,
and Z where |X| = |Y | = |Z|, and a relation T ⊆ X×Y ×Z,
is there a subrelation M ⊆ T of size |X| (called a maximal
3D-matching) such that for all pairs of elements (xi, yi, zi)
and (xj , yj , zj) in M we have xi �= xj , yi �= yj , and zi �= zj .
Note that M must contain an element (xi, yi, zi) for each
element xi ∈ X.

Now, consider an instance (i.e., the sets X, Y , Z, and the
relation T ) of the 3DM problem. Let T ′ = (X×Y ×Z)−T .
Below, we construct an instance of MCDR-decision problem
from this 3DM instance.

Constructing an MDNR Instance. Consider a network con-
sisting of data nodes X and storage nodes (Y ∪ Z). Note
that for any arbitrary set of nodes F , a failure-shape can be

2Our designed algorithms only depend on R̂ of the given set

of failure-shapes; the R̃ of the set of failure-shapes is used
only to prove the performance guarantees.

constructed such that it only3 covers F . Thus, below we give
sets of nodes that can be destroyed by a network-failure, and
the corresponding failure-shapes can be easily constructed.
In particular, we create two types of network-failures:

• For each data node x ∈ X, we add two network-failures
that contains the set of nodes (x ∪ Y ) and (x ∪ Z) re-
spectively.

• For each tuple in T ′, we add a network-failure that con-
tains only the nodes in T ′.

Now, we show that the above instance of MCDR-decision
problem has a solution if and only if the 3DM instance has
a maximal matching. First, its easy to see that any maxi-
mal matching of the 3DM instance gives a solution to the
MCDR-decision problem. Below, we show that a solution to
the MCDR-decision problem gives a maximal matching to
the 3DM instance.

Note that the first type of network-failures dictate that
each storing set must contain a node from Y as well as Z.
Since |X| = |Y | = |Z| and an MCDR-decision solution must
contain |X| disjoint storing sets, each storing set in any
MCDR-decision solution must contain exactly two storage
nodes (one each from Y and Z). Further, for a data node
x ∈ X and its storing set (y, z), (x, y, z) /∈ T ′ and hence
(x, y, z) ∈ T . Thus, the set of storing sets yields a maximal
matching.

To prove that MCDR is NP-hard to approximate, note
that an approximate algorithm for MCDR can be also used
to solve the NP-complete MCDR-decision problem. Thus,
MCDR is NP-hard to approximate.

We now design an approximation algorithm for the MCDR
problem in regular random networks. The approximation
factor of our algorithm is in terms of the fatness of the
given failure-shapes, and hence, doesn’t contradict the above
non-approximability result which involves use of arbitrary
failure-shapes.

Survival Matching Algorithm (SMA). If we restrict the
size of each storing set to one, then the MCDR problem eas-
ily reduces to the minimum-cost perfect matching problem
in an appropriate bipartite graph (as shown below), and
can be solved optimally in polynomial time. For the gen-
eral MCDR problem, our approximation algorithm (called
SMA) essentially restricts the size of storing sets to one and
solves the restricted problem optimally. We will show that
SMA solution’s cost is within a constant-factor of that of the
optimal unrestricted solution, in regular random networks.

SMA Description. Given a network, SMA starts with con-
structing a bipartite graph Gr(D ∪ S,Er) between the data
and storage nodes, wherein there is an edge (d, s) iff {s} can
be a storing set for d, i.e., if no single network-failure can
destroy the set {d, s}. Thus, a matching of size |D| in Gr

would yield a set of disjoint storing sets of size one each, and
hence, a solution (not necessarily optimal) to the MCDR
problem. To incorporate communication costs, each edge
(d, s) in Gr is assigned a weight equal to C(d, {s}), and we
actually find a minimum-weighted matching of size |D|. The
above minimum-weighted matching problem can be solved
in O((|D|+ |S|)3) time [6]. Note that SMA may not always

3We also need to place the network nodes in such a way
that the constructed failure-shape doesn’t cover any other
non-singleton set of nodes. This can be easily done; we omit
the details.



return a solution, since there may not be a matching of size
|D| in Gr; however, as shown later, the probability of such
an event is infinitesimally small in regular random networks.

Approximation Ratio of SMA.We now show that in reg-
ular random networks, SMA delivers a solution whose cost is
within an α-factor of the optimal cost with high probability,
where α is the fatness of the given set of failure-shapes. We
compute the approximation-ratio of SMA by estimating (i)
a lower bound on the optimal cost, and (ii) the expected cost
of the SMA solution, in the below two lemmas respectively.

Lemma 1. The optimal cost of any MCDR solution is at

least |D|R̃/(2βr).

Proof: Consider a data node d and its storing set S(d).
In the set ({d} ∪ S(d)), let a and b be the nodes with
maximum Euclidean distance between them. Let δ(a, b) be
the Euclidean distance between the nodes a and b. Now,

δ(a, b) must be at least R̃, since otherwise all the nodes
in ({d} ∪ S(d)) could be contained in a circle of radius

R̃ and thus be destroyed by any network-failure (contra-
dicting the definition of a storing set). Furthermore, it is
easy to see that C(d, S(d)) ≥ δ(a, b)/(2βr). Thus, we have

C(d, S(d)) ≥ R̃/(2βr), and the total cost of any MCDR

solution is at least |D|R̃/(2βr).

The proof of the below lemma is rather tedious, and is
deferred to Section 7.

Lemma 2. In regular random networks, the SMA solu-

tion has an expected cost of O(|D|R̂/r).

The above two lemmas yield the following result.

Theorem 2. In regular random networks, the SMA so-
lution has an expected approximation-ratio of O(α), where
α is the fatness of the given set of failure-shapes.

In the above theorem, in computing the expectation, we
have ignored the problem instances wherein SMA fails to re-
turn a solution even though one exists. Note that since the
MCDR-decision problem is NP-complete (see Theorem 1),
there can be no polynomial-time algorithm that always re-
turns a solution if one exists, unless P=NP. However, it can
be shown (see Corollary 1 in Section 7) that in regular ran-
dom networks, SMA delivers a solution with a very high
probability.

Theorem 3. For regular random networks, SMA returns
a solution with a very high probability (converges to 1 with
increase in network size).

Distributed Algorithm. To the best of our knowledge,
there are no efficient distributed approximation algorithm
known even for the well-studied minimum-cost matching
problem, which is a special case of our MCDR problem.
However, in the next section, we present an efficient dis-
tributed algorithm for the redundancy scheme based on era-
sure codes.

4. MCDC PROBLEM
An alternate way to introduce data redundancy is to use

decentralized erasure codes as introduced in [7]. In this

scheme, each data node sends its data item to certain stor-
age nodes, and each storage node creates and stores a linear-
combination (with random coefficients) of all the data items
it receives. For recovery in case of a failure, we retrieve data
from a sufficient number of storage nodes and solve a sys-
tem of linear equations. The main advantage of the above
scheme is that it facilitates design of an efficient distributed
algorithm, while the main disadvantage is that the data re-
covery requires the decoding cost of solving a linear system
of equations.

Let us represent the above scheme by a bipartite graph
between data nodes and storage nodes such that there is
an edge between a data node d and a storage node s if d
routes its data to s. It can be shown [7] that for successful
recovery from a failure, there must be a matching between
the set of destroyed data nodes and the set of surviving
storage nodes that covers all the destroyed data nodes [3,4].
We now formulate our MCDC problem based on the above
scheme as follows.

Minimum Cost Data Coding (MCDC). Given a net-
work and a set of failure-shapes, the MCDC problem is to
construct a bipartite graph Gc(D ∪ S,Ec) with minimum
sum of edge-weights where:

• The weight of an edge (d, s) in Ec is the communication
cost from d to s, and

• The set of edges Ec is such that for any failure, if F is
a set of nodes destroyed by a failure, then the induced
subgraph in Gc over (D ∩ F ) ∪ (S − F ) has a matching
of size |D ∩ F |.

The sum of the edge-weights of a solution Gc is referred
to as the cost of the solution. Note that above (D ∩ F ) is
the set of destroyed data nodes and (S−F ) is the set of sur-
viving storage nodes; thus, the above condition ensures that
there is a matching of size equal to the number of destroyed
data nodes between the set of destroyed data nodes and the
surviving storage nodes.

We omit the proof of the below theorem.

Theorem 4. The MCDC problem is NP-hard.

We now show that SMA of the previous section also yields
an approximate solution for the MCDC problem. Then,
we also design a distributed approximation algorithm, and
prove its performance guarantees.

Using SMA for the MCDC Problem. Note that the
output of SMA, viz., a set of disjoint storing sets, can be
used to construct a solution Gc for the MCDC problem by
connecting each data node to each storage node in its storing
set. Now, similar to the arguments in Lemma 1, we can
show that the optimal cost of of an MCDC problem is at

least |D|R̃/(2βr). Thus, by Lemma 2, we have the following
approximation result.

Theorem 5. In regular random networks, the MCDC so-
lution delivered by SMA (as described above) has an ex-
pected4 approximation-ratio of O(α), where α is the fatness
of the given failure-shapes.

4As in Theorem 2, in computing the expectation, we ignore
the instances wherein SMA fails to deliver a solution even
though one exists. However, by virtue of Theorem 3, the
probability of such an event is infinitesimally small.



Distributed Storage Algorithm (DSA). The main ad-
vantage of storing a linear-combination of data items (as
in the MCDC problem) over simple replication (as in the
MCDR problem) is that the data nodes don’t have to glob-
ally compete for exclusive use of storage nodes and thus,
the decisions of where to store the data can be made locally.
This advantage facilitates design of an efficient distributed
algorithm for the MCDC problem. Below, we present a dis-
tributed algorithm that guarantees recovery of data with
high probability in regular random networks.

DSA Description. Consider a regular random network. With-
out loss of generality, let us assume the density of nodes to
be one unit. For each data node, we define its storage re-
gion to be the rectangle of size 2× φ at a vertical distance

of 2R̂ below, as shown in Figure 2. Here, φ is a constant
(see Equation 1) which depends on |D|/|S| and the desired
probability of successful recovery. More formally, if (x, y)
are the coordinates of the data node, then its storage re-
gion is a rectangle with the left-most top coordinate equal

to (x− 1, y − 2R̂) and has a length of 2 and a height of φ.
The bipartite graph Gc(D ∪ S,Ec) returned by DSA con-

sists of edges that connect a data node to each storage node
in its storage region. The implementation of DSA entails
each data node broadcasting its data to all the storage nodes
in its storage region, and each storage node stores a linear-
combination (with random coefficients) of all the data items
received from various data nodes.

2 ̂R

d = (x, y)

2

φ

Figure 2: Storage region of a data node in DSA.

Theorem 6. Given a regular random network with an
arbitrary ratio of |D| and |S|, the solution returned by DSA
allows successful data recovery from a network-failure with
a probability of (1− ε) (for any 0 < ε < 1), if the value of φ
is chosen as:

φ = max((κ+ 1)c2 + (κ− 1)R̂, c2(1 + κ)), (1)

where κ = |D|/|S|, and c is the smallest real number such
that g(c), the Gaussian error function, is greater than (1−ε).
Note that for |D| < |S|, the above equation simplifies to
φ = c2(1 + κ).

The proof for the above theorem is quite involved and
hence, is deferred to Section 8. We now prove the approximation-
ratio of DSA.

Theorem 7. For regular random networks, DSA returns
a solution with an expected approximation-ratio of O(α).
Proof: Using arguments similar to Lemma 1, we can show

that the minimum cost of an MCDC solution is |D|R̃/(2βr).
Below, we show that the expected cost of DSA’s solution is

O(|D|R̂/r), proving the theorem.

In DSA, a data node multicasts its data item to a rect-
angular region of size 2φ located at a vertical distance of

2R̂. The communication cost incurred by each data node is

O(2R̂/r) to reach the storage region and O(φ) to broadcast
in the storage storage, based on the properties of our com-
munication cost model. Thus, the total expected cost of the

DSA solution is O((|D|R̂/r) + φ) which is O(|D|R̂/r) for a
given ε, since |D| < |S| for regular random networks.

Multiple Network-Failures. To handle k simultaneous
network-failures, we define k storage regions for each node
where the ith storage region is a rectangle of size 2× φ at a

vertical distance of 2R̂+(i−1)(2R̂+φ). The approximation
proofs of DSA can be easily generalized for the above (we
omit the details).

5. RELATED WORK
Increasing data persistence in the presence of node fail-

ure has been a subject of increasing research in recent years.
One popular approach to this problem is to use network cod-
ing. The usefulness of network coding for data storage was
investigated in [1] where the authors show that a simple dis-
tributed scheme using network coding can perform as well as
the scheme that uses complete coordination between nodes.

Dimakis et al. [7] and Lin et al. [14] used distributed ran-
dom linear codes for data storage in sensor networks, to
ensure data recovery upon arbitrary node failures. These
algorithm do not require any global knowledge besides the
number of nodes in the network. Lin et al. in [13] and Aly et
al. [2] used random walk to construct fountain codes for the
same purpose and do not even assume the knowledge of the
network size. With both spatial and temporal dimensions,
Kamra et al. [11] considered the growth codes, for which the
codewords change over time, for the data propagated in the
network. This is to ensure that the sink is able to retrieve
as much data as possible for sensors deployed an extremely
hostile environment.

All of the previous works on this topic use a probabilistic
node failure model without any spatial-pattern for node fail-
ures. Furthermore, none of the previous works have tried to
address the objective of minimizing communication cost in-
curred in introducing the required data redundancy. To the
best of our knowledge, ours is the first work that addresses
the problem of data preservation in case of spatial failures in
a sensor network, while minimizing the communication cost
in introducing data redundancy. Although any of previous
methods can be used to design a failure-tolerant network,
the presence of spatial patterns for node failures allows us
to design an efficient distributed scheme with significantly
less communication cost and required redundancy.

6. SIMULATIONS
In this section, we present our simulation results. We

compare our algorithms with the algorithm in [7], referred
to as DPR here, in terms of the total communication cost
under circular failure-shapes of varying radii. We observe
that (i) our algorithms incurs much less communication cost
than DPR [7], and (ii) for |D| < |S|, our algorithms perform
within a factor of the lower bound on optimal cost. We start
with a brief description of our implementation of DPR. In



DSA, we use Geocast [15] for multicasting in the storage
region.

DPR Algorithm [7]. In DPR, each data node sends its data

item to randomly chosen log |D| storage nodes. In our im-
plementation of DPR, we compute the communication cost
by computing the 2-approximation of minimum-size Steiner
tree connecting the data node and the randomly chosen stor-
age nodes in the network’s communication graph; the com-
munication cost incurred is the size of the computed tree.
Note that the communication cost incurred in our imple-
mentation of DPR is essentially a lower bound on the com-
munication cost of any DPR’s implementation; we chose the
above implementation to make our performance comparison
independent of the communication cost model.

Comparison of Communication Costs. We conduct
three sets of experiments to compare communication costs
of various algorithms: (i) Varying radius of the failure-shape,
(ii) Varying the network size, and (iii) Varying the ratio of
number of data nodes to storage nodes. In all the below ex-
periments, we use nodes with a uniform transmission radius
of 2.5 units (the minimum required to ensure connectivity).

Varying Failure-Shape Radius. For the first experiment (see
Figure 3(a), we use a relatively small network of size 10,000
nodes uniformly distributed in a region of size 100 × 100
units. We use 20% data nodes, and vary the radius of the
circular failure-shape from 5 to 15 units. We compare the
communication cost of four algorithms, viz., DPR, SMA,
and DSA for two values of dpsr (desired probability of suc-
cessful recovery) viz. 98.93% and 99.999998% (correspond-
ing to c = 3 and c = 6 respectively). We also plot the

lower bound |D|R̃/(2r) on the optimal cost. We observe
that the communication cost of SMA is very close to the
lower bound, and SMA and DSA both outperform DPR by
a large margin. Note that DPR does not adjust to the ra-
dius of failure-shape, and hence, its plot is a straight line.
For the above setting, all three algorithms have a theoreti-
cal dpsr more than 99.99%, however, in our experiments, all
algorithms were always able to successfully recover data.

Varying Network Size. In Figure 3(b), we vary the network
size from 10,000 to 1M nodes in a square region of propor-
tional size to maintain a constant density of 1 node per unit
area. As before, we use 20% data nodes. We vary the radius
of the failure-shape in proportion to the size of the region,
i.e., we use the radius of the failure-shape as l/10 where l
is the length of the square region. In this (and next) set of
experiments, we could not run SMA due to the large size
of networks; note that SMA’s time-complexity is cubic in
network size. We observe that our DSA again outperforms
DPR by an order of magnitude while closely following the
lower bound, which demonstrates the scalability of our dis-
tributed algorithm DSA.

Varying |D|/|S|. In Figure 3(c), we vary the ratio |D|/|S|.
Here, we use a network of 250, 000 nodes distributed uni-
formly and randomly in a region of size 500 × 500. We fix
the radius of the failure-shape to be 50. Note that both
SMA and DPR require the ratio |D|/|S| to be less than 0.5.
We do not plot SMA in Figure 3(c) due to the large size of
the network, but plot DPR for lower values of |D|/|S|. In
the graph, we observe that the communication cost of DSA
increases quadratically. This is expected, since the total cost
of DSA is proportional to |D|φ, and along the x-axis, D as

well as |D|/|S| (which causes a proportional increase in φ)
increase linearly.

Varying dpsr for DSA. In this last set of experiments, we
vary the value of dpsr, and observe its effect on the total com-
munication cost incurred in DSA. Note that for increasing
dpsr, the value of φ (and thus, the storage region’s area) in-
creases, which causes an increase in the communication cost.
Figure 3(d) shows how the communication cost increases
with increase in dpsr. We use a uniformly random network
of size 250,000 nodes in a region of 500 × 500, wherein 20%
nodes are data nodes, the radius of the failure-shape is 50.
From the graph, we observe that for values of dpsr up to
99.98%, the communication cost shows only a slow increase,
but increases drastically with further increase in dpsr value.

7. PROOF OF LEMMA 2

Proof of Lemma 2. Recall that the MCDR problem is
to find disjoint storing sets of unrestricted size. In contrast,
SMA finds singleton storing sets (i.e., a matching of size
|D|) which it can compute optimally since min-cost match-
ing problem can be solved in polynomial time. Thus, in
order to bound the cost of the SMA solution, it is sufficient
to show that in uniformly random networks, there exists a

|D|-size matching of cost O(|D|R̂/r) with a high probability.
We show the existence of such a matching by introduc-

ing an algorithm (called CMA) that finds a matching of

expected cost O(|D|R̂/r) with a high probability for large
networks. Note that unlike SMA, CMA doesn’t always find
a matching when a matching exist. However, the number of
such instances converges to 0 with the in size of the network,
and the cost of matching in these instances is bounded by the
network size. Thus, the expected cost of SMA is bounded
by that of CMA.

Cell Matching Algorithm (CMA). CMA works by creating
a grid in the network with unit square cells. Then, at each
stage, if there exist an unmatched data node, CMA tries to
find a matching-node for it in the cell assigned to it. At each
stage, the size of the cells and the cost of matching increase,
but the number of nodes that needs to be matched decrease
with a faster rate – yielding the desired expected cost.

As mentioned above, CMA starts by dividing the network
region into cells of unit square size, and then repeats the fol-
lowing steps until all the data nodes have been paired/matched
with some storage node.

• If all the data nodes in a cell are already matched (in a
previous step), the cell is considered complete. Remain-
ing cells are considered incomplete in this stage. In the
initial stage, all cells are incomplete.

• For each incomplete cell, we assign the cell below at a

vertical distance of 2R̂ to be its storage cell.

• For each yet-unmatched data node in an incomplete cell
C, find an unmatched storage node in C’s storage cell.

• Merge pairs of all (complete as well as incomplete) horizontally-
adjoining cells to construct new cells of double the width
(but the height remains unit).

In the end, when each cell has become of full length of
the network, we match the remaining data nodes to the re-
maining unmatched (possibly, very far away) storage nodes
in the network.
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Figure 3: Total communication cost of applicable algorithms for increasing (a) failure-shape radius, (b)
network size, (c) |D|/|S|, and (d) dpsr (for DSA), values.

See Figure 4 for a brief illustration of CMA. In the first
step, cell 3 is the storage cell of cell 1. In the second step,
cells 1 and 2 are merged to form a cell (1,2). Similarly, cells
3 and 4 are merged to get a cell (3,4). In the next step, the
storage cell of (1, 2) is (3, 4).

1 2

43

2 ̂R

A

B

· · ·

Figure 4: Cell Matching Algorithm (CMA).

Estimating the Cost of CMA Matching. To estimate the cost
of the matching delivered by CMA, let us first compute an
upper bound on the cost of matching nodes in each cell at

each step. At the ith step (for the first step, we use i = 0),
we have the following.

• The expected number of nodes in each cell is 2i, since
the size of a cell is 2i × 1.

• The maximum communication cost5 between two nodes
that can be matched is

O

(
(1/r)

√
R̂

2
+ 22i

)
= O(2iR̂/r).

To bound the cost incurred in matching nodes in the ith

step, let us assume the worst case scenario that each node
in each incomplete cell actually gets matched. In such a case,

an incomplete cell incurs a maximum cost of O(22iR̂/r) in
the ith step.

In the very last stage (after each cell is a full row), all the
yet-unmatched nodes are matched wherever possible. But,

5Here, we have used the assumption from Section 2 that the
communication cost between two nodes is O(d/r), where d
is the Euclidean distance between them.



since at this stage, 2i is equal to length of the network, the

cost is still bounded by O(22iR̂/r).
Finally, from Lemma 3 (see below), we get that the ex-

pected number of incomplete cells in the ith step is ((Num-

ber of Cells) × O(e−2(i−1)

). Now, since the number of
non-empty cells (i.e., cells containing some data nodes) is
bounded by |D| at each step, we get the overall cost of CMA
solution as:∑

i

|D|O(e−2(i−1)

)O(22iR̂/r) = O(|D|R̂/r).

Lemma 3. In CMA (as described above), the probability
of any particular cell being incomplete in the ith step is

O(e−2(i−1)

).

Proof: For a cell to be incomplete in step i, it should con-
tain an unmatched data node. This means that the number
of data nodes in at least one of its two constructing cell at
step i − 1 should be more than the number of the storage
node in its storage area. For step i, let Ui be the difference
between number of data nodes of a cell and the number of
storage nodes in its storing cell. The probability of a cell
being incomplete at step i is at most twice the probability
of Ui−1 < 0. Below, we compute the probability distribution
function (pdf) of Ui and show that it decreases with a super-
exponential rate with increase in i. To be more precise, we

show that the probability of Ui < 0 is O(e−2i) which would
imply the probability of a cell being incomplete at step i to

be O(e−2(i−1)

).

Computing pdf of Ui. For a rectangle X in the network, let
DX and SX denote the number of data and storage nodes
respectively in X. In a regular random network, both DX

and SX are independent random variables. By computing
the pdf of DX and SX , we can compute the pdf of the num-
ber of data and storage nodes (denoted as Di and Si respec-
tively) in a cell at step i of CMA. We can compute the pdf
of Ui(= Si −Di).

Computing pdf of DX and SX . For a randomly selected rect-
angle X of size l× w, DX and SX are random variables with
a binomial distribution of number of experiments equal to
|D| and |S| respectively and a success probability of lw/(|D|+
|S|), since the total area of the unit-density network is (|D|+
|S|). Since both |D| and |S| are large numbers, we can use
the normal approximation [9] for the above binomial distri-
butions. Thus, using k = |D| and n = |S| for clarity, we get:

DX ∼ N

⎛⎜⎝ μ = klw
(n+k)

,

σ2 = klw
(n+k)

(
1− lw

(n+k)

)
⎞⎟⎠

SX ∼ N

⎛⎜⎝ μ = nlw
(n+k)

,

σ2 = nlw
(n+k)

(
1− lw

(n+k)

)
⎞⎟⎠

where μ is the mean and σ is the variance of the distribu-
tion.

Probability distribution of Ui. In step i of our algorithm,

each cell has a size of (l = 1, w = 2i). We have,

Di ∼ N

⎛⎜⎝ μ = k2i

(n+k)
,

σ2 = k2i

(n+k)

(
1− 2i

(n+k)

)
⎞⎟⎠

Si ∼ N

⎛⎜⎝ μ = n2i

(n+k)
,

σ2 = n2i

(n+k)

(
1− 2i

(n+k)

)
⎞⎟⎠

And the probability distribution of Ui = Si −Di is

Ui ∼ N

⎛⎜⎜⎝
μ = (n−k)2i

(n+k)
,

σ2 = 2i
(
1− 2i

(n+k)

)
⎞⎟⎟⎠

Computing Pr(Ui < 0). Since we want to compute an upper-
bound for the probability of Ui < 0 we can replace the vari-
ance with a higher value. This allow us to omit the term

1− 2i

(n+k)
. We get,

Ui ∼ N

⎛⎜⎝ μ = (n−k)2i

(n+k)
,

σ2 = 2i

⎞⎟⎠
Base on normal distribution properties [9] the probability

of Ui < 0 is O(1 − g(ci)) where g(x) is the Gaussian error
function and

ci =
μ

σ
=

n− k

n+ k
2i/2.

We have (1 − g(ci)) < e−c2i [9]. Thus, the Pr(Ui < 0) =

O(e−c2i ) = O(e−2i), for a fixed k/n.

Lemma 4. CMA (as described above) finds a matching
with a very high probability, which converges to 1 for large
networks.

Proof: For a network of size q × q, CMA performs log q
steps. By Lemma 3, the probability of a cell containing un-

matched data nodes at the end of the final step isO(e−2lgq ) =
O(e−q). Since the total number of cells at the final step is q,
the probability of existence of an incomplete cell at the end
of the final step is at most O(q.e−q) which converges to 0 as
q goes to infinity. Thus, the probability of CMA not finding
a matching converges to zero for large networks.

Corollary 1. For large regular random networks, the
MCDR problem has a solution (and hence, SMA delivers
one) with a very high probability (converges to 1 with in-
crease in network size).

8. PROOF OF THEOREM 6
Notations DX , SX , N(δ). We use DX and SX to denote the
set of data and storage nodes respectively in X, where X is
a subregion in the network or a set of nodes. For a set of



data nodes δ, we use N(δ) to denote the set of storage nodes
that lie in the storage region of some data node in δ.

Proof of Theorem 6. As discussed in Section 4, for suc-
cessful recovery of data when a network-failure F occurs,
the induced subgraph of Gc over (D ∩ F ) ∪ (S − F ) must
have a matching of size |D ∩ F |. Here, we are using F to
also denote the set of nodes destroyed by F . Thus, to prove
the theorem, we need to show that such a matching exists
with a probability of (1− ε).

Without loss of generality, let us assume the given network-

failure F to be a square region of size 2R̂×2R̂. We will prove
the theorem using the following sequence of claims.

• First, note that F does not destroy any node in N(DF ),
since the storage region of a data node is more than a
distance of 2R away. Thus, it suffices to show that with
a probability of (1− ε), there is a matching of size |DF |
in the induced subgraph in Gc over (DF ∪N(DF )); note
that DF = (D ∩ F ), and that only the nodes in N(DF )
are useful in finding a matching.

• By Hall’s Theorem [5], the above desired matching does
not exist iff there is δ ⊂ DF such that |δ| > |N(δ)|. We
show that the probability of this event is at most ε using
the following two steps.

• First, we show in Lemma 5 that if there exist a set δ ⊂
DF such that |δ| > |N(δ)| then there is rectangular
region L in the region F such that |DL| > |N(DL)|.

• Then, in Lemma 6, we show that the probability of
such a rectangle L existing is less than ε. Intuitively,
this is true due to size of L being much smaller in
comparison to the union of the storage regions of the
data nodes in L.

We now prove the two lemmas used above.

Lemma 5. If there exists a set δ ⊂ DF such that |δ| >
|N(δ)|, then there is a rectangular region L in the network-
failure region F such that |DL| > |N(DL)|.

Proof: Consider δ ⊂ DF such that |δ| > |N(δ)|. Let Bδ be
the smallest axis-aligned rectangle that contains δ. Without
loss of generality, let us assume that δ ⊂ DF is the set with
smallest Bδ that satisfies |δ| > |N(δ)|.

Since δ is contained in Bδ , we have |DBδ
| > |δ|. Since,

|δ| > |N(δ)|, we get |DBδ
| > |N(δ)|. Below, we show that

N(δ) = N(DBδ
), which will imply that |DBδ

| > |N(DBδ
)|

and thus, showing that Bδ is the desired rectangle L.

Showing N(δ) = N(DBδ
). Essentially, we wish to show that

expanding the set of data nodes from δ to DBδ
doesn’t

necessarily increase their total storage region.
Let us assume that there is a storage node z such that z

is in N(DBδ
) but not in N(δ); let z be the highest (with

largest y-coordinate) such storage node. As shown in Fig-
ure 5, consider the four rectangles Z1, Z2, Z3, and Z4. Here,
Z1 and Z2 partition the rectangle Bδ at a horizontal line at
a vertical distance of 2R+φ from z, and Z3 and Z4 partition
N(DBδ

) based on z.6 We claim the following.

6For simplicity, we have used N(DBδ
) to denote the rect-

angular region corresponding to the union of the storage
regions of nodes in DBδ

.

1. Since z is the highest storage node that is in N(DBδ
)

but not in N(δ), each storage node in Z3 is in N(δ).

2. Storage region of each data node in Z1 is contained in
Z3, since storage region of a data nodes is at a vertical

distance of 2R̂ + φ.

3. Number of data nodes in Z1 that are in δ must be
less than the number of storage node in Z3 that are in
N(δ), since otherwise δ wouldn’t be the data set with
smallest enclosing rectangle that satisfies |δ| > |N(δ)|.

The above three claims imply that if we omit the set of
data nodes in Z1 from δ, we get a set of data nodes δ′ with a
smaller enclosing rectangle (Z2) that satisfies |δ′| > |N(δ′)|.
This yields a contradiction to our original premise. Thus,
no such storage node z exists. Hence, N(DBδ

) ⊆ N(δ) and

N(DBδ
) = N(δ).

2 ̂R+ φ

Z1

Z2

Bδ

Z3

Z4

z

N(DBδ
)

Figure 5: Partitioning of rectangles Bδ and N(DBδ
)

based on z.

Lemma 6. For a given network-failure region F , the prob-
ability of existence of a rectangle L in F such that |DL| >
|N(DL)| is less than ε.

Proof: Consider a random rectangle X of size l × w, and
let Y be its storage region (i.e., union of the storage regions
of the data nodes in X). Note that Y is a rectangle of
size (l + 2) × (φ + w). Let U be the random variable U =
SY −DX . We will show that the probability of U < 0 is less
than ε, proving the lemma.

Now, given two independent random variables V1 and V2

with normal approximations V1 = N (μ1, σ1
2) and V2 =

N (μ2, σ2
2) respectively, the pdf of (V1 − V2) is given by

N (μ0 + μ1, σ1
2 + σ2

2). Since the random variables DX

and SY are independent, we get the below as the pdf for
U = SY − DX , using the pdf expressions for DX and SY

from Lemma 3. Recall the that Y is of size (l+2)× (φ+w).

U ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝

μ = n(l+2)(w+φ)
ws

− klw
(n+k)

,

σ2 = klw
(n+k)

(
1− lw

(n+k)

)
+

n(l+2)(w+φ)
(n+k)

(
1− (l+2)(w+φ)

(n+k)

)
⎞⎟⎟⎟⎟⎟⎟⎠

Simplifications. In order to estimate the probability of U <
0, the above pdf must be significantly simplified. We use the
following tactics to simplification.



• The mean of U is greater than zero and we want to com-
pute the upper-bound the probability of U < 0. Thus, we
can consider a higher value for σ and a lower value for μ.

Thus, we omit the terms (1− lw
(n+k)

) and (1− (l+2)(w+φ)
(n+k)

)

in σ2. We also can use (l+ 2) instead of l in both μ and
σ2.

• We can multiply both the mean and standard deviation
with a positive number without changing the probability.
So, we multiple both by (1/(l + 2)).

Applying the above simplifications, we get:

U ∼ N

⎛⎜⎝ μ = n(w+φ)
(n+k)

− kw
(n+k)

,

σ2 = n(w+φ)
(n+k)

+ kw
(n+k)

⎞⎟⎠
Bounding Pr(U < 0). Now we want to bound the probabil-
ity of U < 0 by ε, over all possible values of w, by choosing
an appropriate value for φ. Since U has a normal distribu-
tion, the probability of U < 0 is less than ε if μ > cσ where
c = g(1−ε) and g(x) is the Gaussian error function [9]. Since
both mean and standard deviation of U are positive num-
bers, we may rewrite the inequality as μ2 > (cσ)2. Thus,
the following equation ensures the desired upper bound on
Pr(U < 0)

(
n(w + φ)

(n+ k)
− kw

(n+ k)

)2

> c2.

(
n(w + φ) + kw

(n+k)

(n+ k)

)
For given values of n and k, we want to choose φ such

that the above equation holds for all values of 0 ≤ w ≤ R.
Solving the above (omitting details), we get

φ = (1/n) max
(
(n+ k)c2 + (k − n)R, c2(n+ k)

)
= max

(
(1 + κ)c2 + (κ− 1)R, c2(1 + κ)

)
where κ = |D|/|S| = k/n.

9. CONCLUSIONS
In this paper, we addressed the problem of introducing

data redundancy in sensor networks with minimum com-
munication cost so as to survive node failures. We pre-
sented centralized and distributed approximation algorithms
for two redundancy schemes, in uniformly random networks.
Our simulation results show that our schemes incur near-
optimal communication cost, and easily outperform the pre-
vious approach. To the best of our knowledge, ours is the
first work that addresses the data preservation problem in
the context of spatial failures, while minimizing the com-
munication cost incurred in introducing data redundancy.
It would be interesting to extend our approaches to exploit
spatial and temporal data correlations in conjunction with
an appropriate data expiry mechanism. We plan to address
this in our future work.
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