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Abstract—In this paper, we address several problems that arise
in the context of rotating directional sensors. Rotating directional
sensors (RDS) have a “directional” coverage region that “rotates”
at a certain speed. For RDS with fixed given locations, we address
three problems with the objective to minimize different functions
of the dark time (i.e., uncovered time) of the given points in the
area. In addition, we also consider the problem of placement and
orientation of the minimum number of given RDS, so as to reduce
the dark time of all given points to zero. Finally, we address the
barrier coverage problems wherein we wish to place and/or orient
the RDS to ensure “detection” of maximum number of intruders
who are attempting to cross the monitored area. We prove the
addressed problems to be NP-hard; some of the them are showed
to be even NP-hard to approximate. We provide approximation
algorithms which are easy to decentralize.

I. Introduction

A directional sensor is a sensor with “directional” coverage
(e.g., a radar or a camera) which can sense only in the direction
of its orientation. A rotating directional sensor can change
the orientation of its sensor at a certain rotational speed. The
rotational speed of the orientation is given, but the initial
orientation can be set arbitrarily. Recently, there has been
a lot of interest [1], [2], [3], [4] in coverage problems for
directional sensors with fixed (but choosable) orientation, but
coverage problems for rotating directional sensors have not
been addressed yet. However, the choice of initial orientation
in RDS gives rise to many interesting problems, addressed in
our article.

In the first set of problems addressed (Section III), we are
given a set of points and a set of RDS with fixed locations in a
2D region, and the problems are to choose an initial orientation
for each RDS so as to optimize some function of the “dark”
time of the given points. A point is considered to be in dark
at a given time if it is not covered by any sensor at that time.
We consider three problems corresponding to three different
objective functions, viz., minimize the average of the dark
times, minimize the maximum of the dark times, and minimize
the maximum of the “contiguous” dark times. We show that
all these problems are NP-hard, while the latter two problems
are even NP-hard to approximate. We design a constant-factor
approximation algorithm for the first problem, and “double-
approximation” algorithms for the other problems. Then, in
the next Section IV, we consider the problem of placement
(locations) and initial-orientation of a minimum number of

RDS, such that the dark time of all the given points is zero.
We design two different approximation algorithms for this
problem; one of our approximation algorithms is based on the
recent work by Agarwal et al. [2] on a related problem. Finally,
in Section V, we consider the barrier coverage problems
wherein the objective is to ensure detection of all (or as
many as possible) intruders trying to cross the monitored area.
In this context, we consider both the problems, viz., (i) of
determining the initial-orientation of already placed RDS, and
(ii) of determining the placement and initial-orientation of a
minimum number of RDS. We show these problems to be NP-
hard, and we provide constant-factor approximation algorithms
for them. For the special case of intruders moving at infinite
speed, we give a polynomial-time algorithm.

We start with a discussion of related works in the next
section.

II. Related Work
To the best of our knowledge, ours is the first work on

placement and/or orientation of rotating directional sensors.
Below, we discuss works on related problems.

Works on coverage using cameras or static directional
sensors are the most closely related to our paper. In our
previous work [1], we addressed the problem of selection
and orientation of static directional sensors. In this article,
we extend some of the techniques from [1]. For cameras
which have static directional-cones as sensing regions, Ai
and Abouzeid [3] proposed a greedy heuristic (without any
performance guarantee) to orient the given cameras to max-
imize coverage. Hörster and Lienhart [4] addressed a num-
ber of camera-coverage problems and designed heuristics or
exponential-time algorithms for them. The main focus of the
above works is to orient already placed sensors. In a recent
paper [2], Agarwal et al. gave an approximation algorithm to
the problem of placing a minimum number of sensors; their
work can be applied to static directional sensors. In particular,
we adapt their technique to our problem of placement and
orientation of RDS.

Coverage problems with static omni-directional sensors
have been extensively studied [5], [6], [7], [8], [9], [10].
However, their results do not extend directly to the RDS
coverage problems. The well-known Art Gallery problem is
also related to the sensor coverage problem. The Art Gallery
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Fig. 1. Examples of rotating directional sensors with (a) cone-shaped sensing
regions, and (b) more general sensing regions. The initial orientation (time
slot 1) is towards right. The RDS rotate anti-clockwise.

problem [11], [12], [13], [14] is to place a minimum number
of guards in a polygon so that each point in the polygon is
visible from at least one of the guards. Guards can be looked
upon as sensors with infinite range. Results for the Art Gallery
do not extend directly to our problem of placing and orienting
RDS, since the coverage region of an RDS changes over time.

Barrier coverage problems were first intruded in the field
of robotics [15]. Since then, a lot of work [16], [17], [18],
[19], [20], [21], [22] has been done. The recent work [23]
is the only study we are aware of on barrier coverage with
directional sensors. All of these works assume static coverage
regions, and thus do not extend directly to our setting.

III. Orientation of Placed Sensors
In this section, we consider the problem of determining the

initial orientation of already placed RDS in order to minimize
some function of the dark time of the given points. We start
by defining our model of rotational directional sensors.

A. Rotating Directional Sensors
In this subsection, we give a formal definition of rotating

directional sensors (RDS) and dark time. Informally, an RDS
senses a phenomena only in a certain direction, and this
direction changes over time. Typical examples of RDS are
radars or rotating cameras.

Definition 1. (Directional sensor.) A directional sensor is a
sensing device with multiple 2D sensing regions associated
with it, with only one of them active at a time. The active
sensing region is determined by the chosen “orientation” of
the directional sensor.

For most of our results, we do not make any assumption on
the shape of RDS sensing regions, except that each sensing
region is closed, connected, and without holes. See Figure 1
for examples of sensing regions.

In this article, we assume the time to be divided in time
slots.

Definition 2. (Rotating directional sensors (RDS)) A rotating
directional sensor is a directional sensor whose orientations
are ordered in sequence. Starting from a chosen initial-
orientation in the first time slot, the RDS iterates through its
orientations over time (time slots). See Figure 1.

Fig. 2. Example of the Orient Placed RDS problem. Figure (a) shows the 3
RDS at s1, s2, and s3 and 5 points. Figure (b) shows coverage of the points
at each time slot corresponding to the initial-orientations shown/chosen in the
first time slot. Here, each RDS has four different orientations and associated
sensing regions.

For simplicity, we assume that each RDS has the same
number of orientations. Thus, the state of the system repeats
after every P time slots, where P is the total number of
orientations of each RDS.

Definition 3. (Dark time) A given point is considered dark
in a given time slot if it is not covered by any active sensing
region of an RDS in that time slot. The dark time of a point
is the total number of time slots (among the period of P time
slots) the point is dark. The longest dark time is defined as the
longest contiguous number of time slots that a point is dark.

B. Problem Definition and Summary of Results

We now formally define three problems related to minimiza-
tion of dark time, when the given RDS are already placed.
Then, we will illustrate the problems using an example, and
give a brief summary of results.

Problem 1. (Orient Placed RDS) Given a set of RDS with
their locations and a set of target points, determine the initial-
orientation of each RDS so as to:

• min-avg dark: minimize the average (or the sum) of the
dark time of all the given points;

• min-max dark: minimize the maximum of the dark time
of all points;

• min-longest dark: minimize the longest dark time of all
points.

For simplicity, in the above problems, we have assumed a
finite number of given points. However, our techniques easily
generalize to minimizing the dark time of a given area as
observed in Subsection III-E. We assume that each RDS has
only a finite number of orientations.

Example 1. Consider 3 RDS and 5 points as shown in
Figure 2(a). Let each sensing region be as in Figure 1(b), and
each RDS have 4 different orientations. If we set the initial-
orientations of each RDS as in Figure 2(b)’s time slot 1, then
all points have a dark time equal to 1 (because they are not
covered only in time slot 4). These initial orientations actually
give an optimal solution to each of the three problems: min-
avg dark, min-max dark, and min-longest dark.
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Summary of results:
• min-avg dark, min-max dark and min-longest dark prob-

lems are NP-hard (see Theorem 1);
• min-max dark and min-longest dark problems are NP-

hard to approximate (see Theorem 2);
• We give a greedy algorithm (GA) for these problems (see

Algorithm 1);
• GA delivers a constant-factor approximation for the min-

avg dark problem (see Theorem 3);
• GA gives a “double-approximation” for min-max dark

and min-longest dark problems (see Theorems 4 and 5);
• We provide a decentralized version of GA (see Subsec-

tion III-E).

C. NP-Hardness Results

We start by defining a decision problem called 0-dark and
prove it to be NP-complete. The NP-hardness of our problems
follows from the NP-completeness of 0-dark decision problem.

0-dark: Given a set of RDS with fixed locations and a set of
points, is it possible to set the sensors’ initial-orientation such
that each point has zero dark time?

Lemma 1 (NP-hardness of 0-dark). The 0-dark problem is
NP-complete.

Proof: We reduce 3SAT to the 0-dark problem with
each RDS having only two orientations. Given an instance
of planar-3SAT:

• Create a point for each clause. We refer to these as clause-
points.

• Create one RDS for each variable. Each RDS has two
sensing-regions (and orientations). The first sensing re-
gion covers all the clause-points wherein the variable
appears as a positive literal, while the second sensing-
region covers all the clause-points where the variable
appears as a negated literal.

• Create an additional RDS, C1 with two orientations. The
first sensing-region of C1 covers all the clause-points,
while the second sensing-region of does not cover any
point.

It is easy to see that the above is a correct reduction of the
3SAT problem to the 0-dark problem.

Note that the above reduction creates arbitrary complex
sensing regions. However, with some effort, we can reduce
planar 3SAT to the 0-dark problem, wherein the sensing
regions are only cone-shaped. Since the 0-dark problem is
a common sub-problem of our three problems, the following
theorem follows.

Theorem 1 (NP-hardness). The min-avg dark, min-max dark,
and min-longest dark problems are NP-hard.

We now prove that both min-max dark and min-longest dark
problems are NP-hard to approximate.

Algorithm 1: Greedy Algorithm (GA)

while there are points with dark time > 0 and1
there are sensors not yet oriented

Select a sensor (that has not been selected yet) and an2
initial orientation that reduces the total dark time of all
points the most;

Theorem 2 (NP-hardness of approximation). The min-max
dark and min-longest dark problems are NP-hard to approxi-
mate.

Proof: An approximation algorithm for the min-max dark
(or the min-longest dark) problem can be easily used to solve
the 0-dark instance constructed in Lemma 1, since in that
instance each clause-point can only have a dark time of 0
or 1.

D. Greedy Approximation Algorithm

We now present the Greedy Algorithm which yields an “ap-
proximate” solution for each of the three addressed problems.

Greedy Algorithm (GA) The Greedy Algorithm (GA) works
in iterations. In each iteration, it considers all the RDS for
which the initial-orientation has not been determined yet.
For each of these RDS, GA considers all possible initial-
orientations, and picks the (RDS, initial orientation) pair that
reduces the total dark time of all points by the maximum
amount. The algorithm terminates when the initial-orientation
of all the RDS has been determined, or the total dark time of
all the points is zero. See Algorithm 1.

Example 2. Consider the instance described in Example 1
and the corresponding Figure 2(a). We are given 5 points, and
3 RDS, s1, s2, and s3, each having 4 orientations. Before
GA starts, no RDS has been selected/oriented, and all points
have a dark time of 4. In the first iteration of GA, any choice
of (initial-orientation, RDS) pair will reduce the dark time of
all points by 1 each. Let s1 be picked with its shown initial-
orientation in time slot 1. Now, each point has a total dark
time of 3. In the next iteration, s3 is selected with the initial
orientation set upwards. Finally, s2 is selected and its initial-
orientation is set downwards. The above gives a GA solution
as shown in Figure 2(b).

Performance Guarantee. We now analyze the performance
of the GA algorithm, starting with its approximation factor
for the min-avg dark problem. In particular, we analyze GA
in terms of the total “coverage-time” of all points, which is
the sum of the number of time slots each point is covered by
an RDS’s active region.

Theorem 3 (Performance of GA for min-avg dark). GA runs
in O(nt2 log nt) time, where n is the number of RDS and t is
the total number of given points. Moreover, GA solution has a
total coverage-time of at least 43% of the optimal coverage-
time possible.
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Fig. 3. An example of an optimal distribution of the coverage benefit, where
P is the period and d is the min-max dark time. The coverage benefit of the
optimal is at least n(P − d). Note that dark and covered areas are drawn in
a compact way, but they are not necessarily in this way.

We omit the proof of the above theorem, since it is very
similar to the proof of Theorem 2 of [1]. Below, we analyze
the performance of GA for the remaining two problems.
Since these problems have been shown to be NP-hard to
approximate, we resolve to a “double-approximation” factor.

Theorem 4 (Performance of GA for min-max dark). Let d be
the minimum max dark-time. GA yields a solution such that at
least αn points have a dark time of at most kd each, where n
is the number of points, α = (1+(k−0.43)d−0.57P )/(kd+
1), and P is the total number of orientations (length of the
period).

Proof: For this problem, coverage is the dual of dark time.
In particular

min-max dark = P −max-min coverage.

The idea is to think in terms of coverage benefit. Since any
optimal algorithm gives min-max dark = d, then max-min
coverage = P − d, and hence the benefit of the optimal is
at least n(P −d). See Figure 3. Now, if a point has more dark
time than kd, its dark time is at least kd + 1. Or, in other
words, it is covered for at most P − kd− 1 time slots. In an
extreme situation, the most unbalanced case is when αn points
are covered for all t slots, and all other points are covered for
P − kd − 1 slots (any other configuration would give more
“good” points). This gives the smallest number points with at
least P−kd coverage (i.e. at most kd dark time). See Figure 4.
Carrying on the computation we get that

αnP + (1− α)n(P − kd− 1) = 0.43n(P − d).

Finally, solving for α, we have

α =
1 + (k − 0.43)d− 0.57P

kd+ 1
.

We left α and k as parameters, so we can have several
different trade-offs. For example, if k = 2, and P = 8, α =
(1.57d−3.56)/(2d+1), or if k = 1 and P = 4, α = (0.57d−
0.28)/(d+ 1).

This idea can also be used for the min-longest dark time.

Theorem 5 (Performance guarantee for min-longest dank).
Let d be the minimum longest dark-time. GA yields a solution
such that at least βn points have a dark-time of at most kd
each, where n is the number of points, β = (kd + 0.57 +
0.43P/d− P )/(kd+ 1), and P is the length of a period.

P

P – kd – 1

Fig. 4. The extreme case of the coverage benefit distribution.

Proof: The proof is similar to the one for the previous
theorem. However, in this case, we only know that d is the
longest dark interval, but there might be many other dark
intervals of length d − 1. Then, the coverage benefit for the
point with the longest dark interval is at least (P−d)/d (in the
really unlucky case of dark intervals of length d−1 alternated
with 1 time slot of coverage). So we can only claim that the
optimal has a coverage benefit of at least n(P−d)/d. Carrying
on the computation, we obtain the value of β.

E. Extensions

Minimizing Total Dark Time of an Area. GA can also be
used (with the same performance guarantees) to minimize the
dark time over a given area, rather than a given set of points.
Essentially, coverage of an area requires dividing the given
area into “subregions” as in our previous work [9]; a subregion
is defined as a set of points in the plane that are covered by the
same set of sensing regions. The number of such subregions
can be shown to be polynomial in the total number of cone-
shape sensing regions in the system.

Distributed GA. In a distributed environment, conceptually,
each yet-uncovered point reduces its dark time by selecting
and fixing the initial orientation of a sensor that covers it
and has the highest benefit at that stage. The above process
continues until all points have the minimum dark time. To
facilitate the above, a point (or a subregion) is “owned” by
the highest-ID sensor that can cover it using one of its sensing
regions. Thus, each RDS reduces the dark time of the points it
owns, through selection and orientation of its near-by sensors.

IV. Placement and Orientation of Sensors
We now address the problem of placing (in a given polygon)

and orienting the minimum number of RDS so as to reduce
the dark time each point to 0. In this section, we define the
problem in terms of coverage of a polygon rather than a set
of points.

Problem 2. (Place and orient RDS) Place the minimum
number of RDS in a polygon, possibly with holes, and specify
their initial-orientation, so to reduce the dark time of all
polygon’s points to zero.

Summary of results:
• Problem 2 is NP-hard (see Theorem 6);
• We develop two different approximation algorithms (see

Theorems 7 and 8).
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Theorem 6. Problem 2 is NP-hard.

Proof: Note that Problem 2 is a more general problem
that the well-known NP-hard Art Gallery Problem [11]. In
fact, if sensing-regions are disks of infinite radii, then an RDS
is equivalent to a guard of the Art Gallery Problem.

Adapting Technique of [2]. We will now show how to adapt
the recent method of [2] by Agarwal et al. to Problem 2. The
problem considered in [2] is to place minimum number of
omni-directional sensors to cover at least (1−ε) fraction of the
given polygon’s area. Their method works for sensing regions
such as cones, disk, etc. Below, we give a brief description of
their technique.
Description of [2]’s technique. The method in [2] works in
two stages. In the first stage, a set of landmark points is
obtained. These points have the property that if all of them
are covered by a set of placed sensors, then (1 − ε) of the
polygon’s area is covered by this set of sensors. The second
stage consists of actually placing a number of sensors to cover
the polygon. This second stage is done by a simple greedy
approach or a more efficient Monte Carlo algorithm.

Landmark positions, in the first stage, are determined using
ε-nets [24]. Given a set of points and a collection of sets (of
points), an ε-net is a subset of the points such that every “large-
enough” set contains at least one of the points in the subset.
A standard way to obtain ε-nets is by random sampling [24],
but the random sampling approach is effective only when the
given sets have a constant “VC-dimension.” Intuitively, the
VC-dimension measures the regularity of the set system. The
formal definition is as follows.

Definition 4. (VC dimension) A set X is shattered by C if for
each Y ⊆ X , there exists a set S ∈ C such that X ∩ S = Y .
The VC dimension is the cardinality of the largest set that can
be shattered by C.

First Approximation Algorithm. In order to be able to
apply [2]’s method to Problem 2, we need to assume/show that
the sensing-regions of RDS have a constant VC dimension.
Now, it is known [25] that sets of simple polygons have a
VC-dimension of at most 23, while cone-shaped regions can
be shown to have a VC-dimension of at most 8. If an RDS
has P orientations, then the VC dimension is at most 23P (or
8P in the case of RDS with coverage regions with the shape
of cones).

Finally, [2]’s method is applied to static sensing-regions. To
apply their technique to Problem 2, we look at Problem 2 in
the 3D space as follows.

3D interpretation. The 2D region and the time dimension can
be visualized together as a 3D space. In this 3D space, each
initial-orientation of an RDS yields a 3D sensing-region, and
each point in the original 2D space becomes a vertical line.
Finally, the original input polygon becomes a 3D object whose
base is the given polygon. Now, the original Problem 2 of
placing and orienting RDS so as to reduce the dark time
of each point in the given polygon to zero, translates to the

problem of covering the entire 3D object (corresponding to
the polygon) using the 3D objects corresponding to the initial-
orientations of RDS, under the constraint that for each RDS,
only one 3D object can be used.

The method of [2] can now be applied directly to the above
3D problem, yielding a way to cover at least (1 − ε) of the
volume of the given space. Thus, at most ε of the volume
is left uncovered. Hence, the average dark time is εP . This
proves the following theorem.

Theorem 7. The method of [2] when applied to Problem 2
yields a solution that, for any parameter ε, guarantees an
average dark-time of εP where P is the length of the period,
using at most O(M logM) RDS, where M is the optimal
number of RDS required.

Second Approximation Algorithm. Another way of applying
the method of [2] is as follows. We start with first finding the
landmark points, such that covering them with RDS will cover
at least (1 − ε) of the area of the given polygon. Then, we
translate the problem to the 3D space as before. Now, in the 3D
view, each landmark point translates to a vertical line. Then,
we can find a placement of the 3D objects corresponding to
RDS so to cover all these landmarks. This guarantees that for
at least (1− ε) of the area of the polygon the dark time is 0.
This proves the following theorem.

Theorem 8. The method of [2] when applied to Problem 2,
as shown above, yields a solution that, for any parameter ε,
guarantees 0-dark time for at least (1− ε) of the area of the
given polygon using at most O(M logM) RDS, where M is
the optimal number of RDS required.

Running time. The running time of both the above methods
is related to the running time of the algorithm in [2]. Let v
be the number of vertices of the input polygon, and ς be the
number of holes in the input polygon. Let h be the optimum
number of RDS needed to reduce the dark-time to 0. Let us
define λ = (hP/ε)(1 + log(1 + ς)), where P is the length of
the period. Then the running time is O(vm2(1+ ς) log(mv)),
where m = O(λ log λ log(1/ε)).

V. Barrier Coverage

We now turn our attention to the problem of barrier cov-
erage. In some real applications, it might not be necessary to
cover all points, as long as the sensors are able to detect all
possible intruders that are trying to cross the monitored area.
We restrict our attention to intruders moving along rectilinear
parallel paths and, without loss of generality, we assume that
they move vertically upwards. Note that our notion of barrier
coverage corresponds to weak barrier coverage in the literature
(see for example [16]). We start by defining the problem and
then we will present our results.
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Fig. 5. An example of a polygon and 4 intruders crossing it. Intruder i2 can
be detected by the sensor s1, if its initial orientation is set properly.

A. Problem Definition and Summary of Results

In this subsection, we first give a formal definition of
intruders, then we define the barrier coverage problem, and
finally we show the outline the results in this section.

Definition 5. (Intruder) An intruder is a moving point that
we want to detect with the RDS. An intruder is detected by
a sensor if it is within one of its active sensing region in
any time instant. We assume that intruders move vertically,
upwards, and at given constant speed1.

Note that intruders can start crossing the monitored area
in different positions or at different times. Our algorithms
allow intruders to start at any continuous location, but the
NP-harness proof considers a discrete number of intruders.

As we did for the problems in the previous sections, we con-
sider both the problem of orientation of already-placed sensors,
and the problem of sensor’s placement and orientation.

Problem 3. (Barrier coverage) We consider two variants:

• Orient Placed RDS: Given a simple polygon and the lo-
cations of a set of RDS, determine their initial orientation
so to detect the maximum quantity of intruders.

• Place and Orient RDS: Given a simple polygon, place
the minimum number of RDS and specify their initial
orientation, so to detect all intruders.

Example 3. Figure 5 shows an example of a polygon and 4
intruders that are crossing it. Intruder i2 can be detected by
the sensor s1, if its initial orientation is set properly.

Summary of results:

• The problem of orientation of placed RDS is NP-hard
(see Theorem 9);

• We provide a constant-factor approximation for the prob-
lem of orientation of placed RDS (see Theorem 10);

• We provide a constant-factor approximation for the prob-
lem of RDS placement and orientation (see Theorem 11);

• We provide a polynomial time algorithm for for the
problem of orientation of placed RDS for the special case
of intruders moving at infinite speed (see Theorem 12).

1The speed of the intruders is not necessarily related to the rotation speed
of the sensors.

B. NP-Hardness
We now prove that the problem of orientation of placed

RDS is NP-hard in its discrete version by reducing SAT to it.

Theorem 9. The problem of orientation of placed RDS is NP-
hard.

Proof: The proof consists of reducing SAT to the problem
of detecting all possible intruders. Two intruders are consid-
ered different, if they start at different positions or in different
time slots. The reduction is as follows:

• Let n be the number of variables, and m be the number
of clauses.

• Let the monitored area be a rectangle of width m units
and height n+1 units. Each intruder takes 1 time slot to
cross 1 unit of the height, and he needs n+ 1 time slots
to cross it completely. We can think as if the rectangle is
divided in bands and intruders take 1 time slot to cross
each band.

• Let the period be of 2n+ 2 time slots.
• Clauses are represented by intruders. For each clause i,

we create a set of intruders, starting at unit i of the basis
of the rectangle. Each of these sets is composed by n+1
intruders, which start one for each time slot for the first
n+ 1 time slots. During the remaining n+ 1 time slots,
there are no intruders.

• Variables are represented by RDS. Each sensor has 2n+2
sensing regions corresponding to 2n+2 orientations. RDS
have a sensing region, that we call “positive”, in one
time slot, and a sensing region, that we call “negative”,
n + 1 slots apart. In all other 2n time slots they do
not cover any significant part of the rectangle. Both
positive and negative sensing regions cover completely
the lowest band of the rectangle. In addition, they both
have some vertical strips that span the full height of the
rectangle. For the positive region these vertical trips are
located in correspondence of entrance points of intruders
corresponding to clauses in which the variable appears
positive. Similarly, for the negative region, the vertical
strips are in correspondence of intruders corresponding
to clauses in which it appears negated.

In order to detect the highest number of intruders, no two
RDS should overlap their base band. This means that we can
easily detect all intruders that start in n time slots. So the
only real difficulty is to cover the intruders that are starting
in the remaining time slot. Since all RDS span the height of
the rectangle for some entry points, potentially it is possible
to detect all intruders in the remaining time slot. However if
an algorithm finds a solution for that, it would also give a
solution for SAT.

C. Orientation of Placed Sensors
We now give a method for setting the RDS’s initial orien-

tations that guarantees to detect at least 43% of the intruders
that any optimal algorithm can detect. We start by describing
a geometrical interpretation for the set of possible intruders.
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Fig. 6. The intruders polygon below the input polygon. The lowest set of
points on the boundary of the input polygon are highlighted.

Intruders polygon. A “stream” of intruders can be modeled
as a polygon, which we call intruders polygon. The intruders
polygon, denoted with I, is constructed as follows and it is
placed immediately below the input polygon P . Consider the
“lowest” set of points on the boundary of P , i.e. those points
that do not have any other point of P below them (note that
these points are not always connected). These points constitute
the upper boundary of I (after connecting them if necessary).
Let h be the distance traveled by the intruders during a period.
The lower boundary of I is obtained by shifting down its upper
boundary by h. The region enclosed inside the upper boundary
and the lower boundary of I constitutes the intruders polygon.
See Figure 6 for an example. With this interpretation, a set of
intruders that start crossing P at different times is equivalent
to a set of intruders that start at the same time at different
vertical positions of the intruders polygon.

43%-approximation algorithm. With the geometrical inter-
pretation above, the problem of orientation of placed RDS be-
comes the problem of covering the largest area of the intruders
polygon. Depending on the location of an RDS, for each of its
starting orientation we can easily determine which intruders
it can detect, and hence which subregion of the intruders
polygon it can “cover”. So, the problem of orientation of
placed RDS is equivalent to coverage with directional sensors,
and it can be solved with a greedy algorithm similar to GA (see
Algorithm 1). At each iteration, this greedy algorithm selects
the (RDS, initial orientation) pair that “covers” the largest yet
uncovered region of the intruders polygon.

Theorem 10. The above described algorithm gives a 43%-
approximation to the problem of orientation of placed RDS
and it runs in polynomial time.

The proof is omitted, since it is very similar to the proof of
Theorem 2 of [1].

Distributed algorithm. The above algorithm can be dis-
tributed in a similar way as GA (see Subsection III-E). The
area of intruder polygon is partitioned, and each partition is
assigned to the highest-ID sensor close to it. Each RDS is
responsible to select and orient its near-by sensors to increase
the coverage of its owned sub-regions. This process continues
until the intruder polygon has been covered completely or until
there are no more sensors to select and orient.

Fig. 7. (a) A possible shape for a covering stripe, which is the subregion
that an RDS covers on the intruders polygon. The precise shape depends on
the size of the cone, the speed of rotation, and the speed of the intruders. The
picture drawn here spans the length of a period only, but in reality this figure
is infinitely repeated above and below.
(b) An example of covering stripe corresponding to particular RDS locations
and initial orientations.
(c) A solution constructed by replicating covering stripes at regular intervals.

D. Placement and Orientation of Sensors
The idea of looking at the intruders polygon can also be

used to construct a constant-factor approximation algorithm
for the problem of RDS placement and orientation2. For this
particular problem, our solution requires the assumption that
RDS sensing regions have the shape of a cone. We start by
giving a geometrical interpretation to the set of intruders that
an RDS can detect.

Covering stripe. Once we know the size of the cone, the speed
of rotation, and the speed of the intruders, we can efficiently
construct the shape of the subregion that an RDS covers on
the intruders polygon. We call this shape the covering stripe.
See Figure 7(a) for an example of a covering stripe. Different
starting orientations correspond to different vertical shifts of
a covering stripe. Covering stripes are infinitely repeated
vertically, but when they are placed over the intruders polygon,
they get restricted to the height of the intruders polygon. See
Figure 7(b) for an example of covering stripes corresponding
to particular RDS locations and initial orientations. The prob-
lem of RDS placement and orientation reduces to the problem
of placement of covering stripes so to cover completely the
intruders polygon.

O(1)-approximation algorithm. A solution can be con-
structed by replicating covering stripes at regular intervals,
so to cover completely the intruders polygon (see Figure 7(c)
for an example). Once a covering stripe is placed, it is easy
to reconstruct an RDS position and initial orientation that can
generate it3.

Theorem 11. The above described algorithm gives a O(1)-
approximation to the problem of RDS placement and orienta-
tion and it runs in polynomial time.

Proof: In the solution given by the algorithm above, each
point in the intruders polygon is covered by a constant number

2Note that we do not know whether this problem is NP-hard.
3Note that there can be multiple (RDS position, initial orientation) pairs

that can generate the same covering stripe, but we just need reconstruct one
of them.
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of covering stripes. This implies that this method is a constant-
factor approximation to the problem of RDS placement and
orientation.

E. Infinite-Speed Intruders

Even if in general the problem of orientation of already-
placed RDS is NP-hard, for the special case of intruders
traveling at infinite speed, it can be solved with a polynomial
time algorithm, if we assume that RDS sensing regions have
the shape of a cone. This might seem an abstract formulation,
but it could have applications in cases in which the speed of
the intruders is much higher than the RDS speed of rotation.

The idea behind the following algorithm is that, from the
point of view of an infinite-speed intruder, RDS are just 1D
segments, corresponding to the projection of an RDS sensing
region over a line perpendicular to the intruder’s trajectory.

We start by considering a very simple case and we will
extend it later. RDS are formed by 2 cones, each of which
is half disk. The axis of all RDS is vertical. This implies
that, when a sensing region is projected on the basis of the
rectangle, it covers a segment of length equal to its radius, and
it is either on right or on the left of its center. All RDS are
synchronized, but they can have different initial orientations.
Since RDS have only two discretized orientations, the period
is P = 2.

The idea is to use dynamic programming, and determine the
RDS initial orientation from left to right, using the fact that
an RDS’s best orientation is influenced only by a polynomial
number of other sensor’s orientations before itself.

Algorithm for infinite-speed intruders. Sort the RDS by the
rightmost point they can cover. Consider one by one the RDS
from left to right. Build partial solutions by adding one RDS
at a time, and for each of its two starting orientations store the
best starting orientations for all the RDS on its left. Suppose
we already considered i − 1 RDS, and we are looking for
the best orientations to associate to the initial orientation of
RDS i. Let ci be the center of RDS i and r be its radius.
Look at the RDS whose rightmost point falls inside the interval
(ci − r, ci + r), and let j be the leftmost of them. Let cj be
its center. Consider all the RDS whose center is between cj
and ci. Among all the possible initial orientations of these
RDS, consider only the 9× 2 “significant”4 ones (as given by
the lemma below). These 9× 2 significant orientations can be
built by scanning from left to right the RDS between i and
j. Combine each of these with the 2 solutions of RDS j, and
the two orientations of RDS i. Store the 2 best combinations
for RDS i, and proceed to RDS i+ 1.

We are now going to prove that the above algorithm runs
in polynomial time. We start by defining the concept that a
segment is completely covered by a set of segments, and then
we will prove a lemma used in the main theorem.

4An orientation is significant if the projected 1D segment is not completely
covered by other projected 1D segments. Note that we should look at both
time slots, and this gives the factor of 2.

Definition 6. (Completely-cover) A set of segments S com-
pletely covers a segment t if there is no point of t that is not
covered by any of the segments in S.

Lemma 2. Consider a larger 1D segment L of size |L|, and a
set S of smaller 1D segments si, each of size |s| (i.e. |s| < |L|)
that are all completely contained in L. There can be at most
3d|L|/|s|e 1D segments of S, that are not completely covered
by any other segments of S.

Proof: Consider two segment si and sj that are at distance
less than |s| each other, with si on the left of sj . In between
si and sj there can be at most two other segments that are
not completely covered by any other segment. Namely, there
can be one segments slightly shifted to the right of si and
one slightly shifted to the left of sj . In L there can be at
most d|L|/|s|e segments that do not touch each other, and
in between each pair, there can be at most other 2, for the
argument above. So this gives a total of at most 3d|L|/|s|e.

Theorem 12. The algorithm above, solves the problem of
orientation of placed RDS for the special case of intruders
traveling at infinite speed.

Proof: The purpose of this proof is to show that the above
dynamic programming algorithm runs polynomial time and
uses polynomial space, so we will not go into the details of a
tight analysis.

The largest distance between cj and ci is 3r. According
to the above lemma there can be at most 3d3r/re = 9 1D
segments that are not completely covered by other segments.
Potentially, there can be n−2 other RDS between cj and ci, but
only 9 in each time slot are not completely covered by other
ones in the 1D projection. We need to consider all possible
ways of selecting 9× 2 RDS, for a total of

(
n−2
9×2

)
= O(n9×2)

possibilities. These O(n18) configurations can be enumerated
by sweeping from left to right. Since we need to do this for
every RDS, the total cost is O(n19).

Note that we only need quadratic storage, because for each
RDS, and each of its two orientations, we need to store the
best initial orientations of all the previous RDS.

Extension to RDS with more orientations. The algorithm and
its analysis extend easily to RDS with more discrete orien-
tations. The lemma still applies, but this time, we need to
use the smallest projection of an orientation. In general, the
number of significant orientations is cP , where c is a constant
that depends on the ratio between the smallest and the largest
projection. This gives a O(ncP+1) algorithm.

VI. Conclusions and Open Problems

We considered some new problems that arise from the use
of rotating directional sensors. In particular we studied the
problem of orientation of already-placed sensors to minimize
the dark time (i.e. uncovered time) of a given set of points.
We considered the problem of placement and orientation of the
minimum number of sensors in a polygon to reduce to 0 the
dark time of every point in the polygon. We also analyzed the
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problems of orientation of already-placed sensors and sensor’s
placement and orientation to guarantee a barrier coverage.

We suggest the following open problems:
• Provide a PTAS for the min-avg dark problem.
• Study the complexity of the problem of placement and

orientation of RDS for weak barrier.
• Extend the barrier coverage results to strong barrier

coverage (in which intruders can move along any type
of paths).
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