
Slotted Scheduled Tag Access in Multi-Reader RFID Systems∗

Zongheng Zhou
Ask.com

Email: zongheng@gmail.com

Himanshu Gupta, Samir R. Das
Dept. of Computer Science, Stony Brook University, NY

Email: {hgupta,samir}@cs.sunysb.edu

Xianjin Zhu
Microsoft Corp.

Email: xianjin@gmail.com

Abstract—Radio frequency identification (RFID) is a tech-
nology where a reader device can “sense” the presence of a
close-by object by reading atag device attached to the object.
To improve coverage, multiple RFID readers can be deployed
in the given region. In this paper, we consider the problem
of slotted scheduled access of RFID tags in a multiple reader
environment. In particular, we develop centralized algorithms
in a slotted time model to read all the tags using near-optimal
number of time slots. We consider two scenarios – one wherein
the tag distribution in the physical space is unknown, and the
other where tag distribution is known or can be estimated
a priori. For each of these scenarios, we consider two cases
depending on whether a single channel or multiple channels are
available. All the above version of the problem are NP-hard.We
design approximation algorithmswith logarithmic bounds for the
single channel and heuristic algorithms for the multiple channel
cases. Through extensive simulations, we show that for the single
channel case, our heuristics perform close to the approximation
algorithms. In general, our simulations show that our algorithms
significantly outperform Colorwave, an existing algorithm for
similar problems.

I. Introduction

RFID is an identification system that consists of readers and
tags [1]. A tag has an ID (a bit string) stored in its memory.
The reader is able to read the IDs of the tags in the vicinity by
running a simple link-layer protocol over the wireless channel.
In a typical RFID application, tags are attached to objects of
interest, and the reader detects presence of an object by using
an available mapping of IDs to objects. RFID tags can be
activeor passivedepending on whether they are powered by
battery. We focus on passive tags in this work. Passive tags are
prevalent in supply chain management as they do not need a
battery to operate. This makes their lifetime unlimited andcost
negligible (only few US cents per tag). The power needed for
passive tags to transmit their IDs to the reader is “supplied”
by the reader itself.

An important performance metric of RFID systems isread
throughput (number of tags read per time slot). High read
throughput is critical when tags are exposed to readers only
briefly. This happens when tags are mobile, as is often the
case in supply chain management or manufacturing environ-
ments. So far, the research community has addressed the
read throughput problem for a single reader only. However,
large-scale RFID deployments in future will hardly involve
a single reader. This is because each RFID reader has a
limited interrogationregion within which it can communicate
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with a tag. The interrogation region of a reader depends on
many factors including antenna, presence of obstacles, tag
characteristics, etc. It is not uncommon that a single reader
is unable to cover the entire region of interest. This motivates
the use of multiple RFID readers – geographically dispersed
and networked in some fashion (in an ad hoc network, e.g.) –
performing tag reading concurrently. Use of multiple readers
not only improves coverage, but also improves read throughput
by virtue of concurrent operation.

However, several collision problems might occur when
multiple readers are used within close vicinity. This makes
deployment of multiple readers a very different problem than
a traditional sensor cover problem [9]. The collisions are not
easy to handle either. Unlike traditional wireless networking,
in RFID we deal with two different entities – readers and
tags. The collision can happen in either of these two entities
giving rise to newer issues. Collisions at tags are particularly
problematic as tags have almost zero computing power. This
makes carrier sense-based collision resolution either hard or
overly conservative [15]. In this paper, we take a very different
approach. We use a notion of slotted time and scheduled read
operations similar to STDMA (Spatial Time Division Multiple
Access) protocols [23] for collision resolution. However,due
to the different nature of collisions, the traditional STDMA
protocols are insufficient in our context.

To determine reading schedules, we take advantage of the
fact that in multi-reader deployments, RFID readers arestatic
and often carefully deployed in a planned fashion. They also
typically have a wired backhaul which can be used for time
synchronization. Planned deployment makes it possible to
perform RF site surveys to measure the readers’ locations and
their interference patterns that are inputs to the scheduling
algorithms developed here. The algorithms are centralizedand
offline, and need to run only once after the survey. Thus, their
run-time is not a critical factor so long as they are reasonable.
Like many STDMA scheduling problems in wireless networks,
we will show that the scheduling in the RFID context is also
NP-hard; thus, approximation algorithms are desired.

In this paper,we consider two cases viz., when the tag dis-
tribution is not known and when the tag distribution is known.
For each case, we will address both single channel and multi-
channel scheduling algorithms for multiple RFID readers. For
single channel cases, we are able to develop approximation
algorithmswith logarithmic approximation factors, while for
multiple channel cases, we develop only heuristics.Our ap-
proximation proofs are based on the assumption that the size



of the “time slot” chosen is large enough to allow each active
reader to “read” a tag (see Section IV).We evaluate all
solutions via extensive simulations. A key advantage of our
approach is that the scheduling works as an overlay on the
link-layer. Existing link-layers used in single reader context
can still be used with our algorithms.

Paper Organization. The rest of the paper is organized
as follows. In Section II, we provide some background on
RFID systems, describe our problem, and in Section III, we
discuss related work. In the following two sections, we develop
algorithms for the appropriately defined Minimum Covering
Schedule and Minimum Reading Schedule problems. We
present our simulation results in Section VII, and concluding
remarks in Section VIII.

II. Background on RFID Systems

Interrogation and Interference Regions.Each RFID reader
is associated with a three-dimensioninterrogation regionand
a three-dimensionalinterference region. The interrogation
region is the region around a reader where a tag can be
successfully read in the absence of any collisions. Thein-
terference regionis the region around a reader where the
signal from the reader reaches with sufficient intensity so as to
interfere with a tag response.No relationship between these
regions is assumed. We also do not make any assumptions
about the shapes of these regions.However, these regions
must be known. This can be done by a RF site survey using
a localization device and radio signal strength measurement
device. We assume that the RFID reader deployment is planned
so that such surveys are practical.

Given a set of readers, we use the termregion monitoredby
the readers to mean the union of the interrogation regions of
the readers. We also assume that depending on the application
and environment, there may be multiple orthogonal channels
available to a reader for communication.

Collisions in Multi-Reader Systems.Simultaneous transmis-
sions in RFID systems lead to collisions. In particular, there
are three types of collisions.

1) Tag-tag collision:This occurs when multiple tags are
present in the interrogation region of a reader and
transmit IDs at the same time. See Figure 1(a). To
schedule the tag responses in a collision-free manner, we
need an appropriate link-layer protocol such as framed
Aloha [21] or tree-splitting [14], [17]. We describe these
protocols in Section III.

2) Reader-tag collision:This happens when a reader is in
the interference region of another reader. In Figure 1(b),
interference fromA can “drown” the signal from tagx
targeted forB. Reader-tag collision can be avoided by
assigning different channels to near-by readers [7], or by
scheduling the near-by readers to be active at different
times.

3) Reader-reader collision:This happens when two readers
with overlapping interrogation regions are active at the

same time. In such a case, the tags in the overlapped
region can not differentiate between the two signals
from the two readers. See Figure 1(c). Interestingly, this
collision cannot be avoided by operating the readers in
different channels. The only way to avoid this collision
is to not activate the interfering readers at the same time.

In this paper, we focus on alleviating reader-tag and reader-
reader collision problems in a multiple-reader environment
by using an STDMA style single-channel or multi-channel
scheduling. The basic idea is to use synchronized slots on
the readers and activate appropriate readers in appropriate
channels in appropriate time slots. The tag-tag collisionsare
resolved using an independent link layer protocol (such as
framed-Aloha based [21] or a tree-splitting protocol [17]).
Thus, no fundamental change in the link layer is needed.

III. Related Work

Recently, several approaches have appeared in literature to
avoid collisions in RFID systems. Below, we classify them into
two groups depending on the type of collisions they address.

Avoiding Tag-Tag Collisions. Recently, several papers [5],
[14], [17], [21] have designed link layer protocols to avoidtag-
tag collisions. In particular, [14], [17] propose atree-splitting
protocol, where the reader organizes the entire ID space of
tags into a binarytag treewith each tag ID mapped to a leaf.
The reader then traverses the tree in a depth-first order. At
each tree node, it broadcasts a query message with the bit
string corresponding to the tag tree node. A tag, on receiving
a query message, responds iff the bit string in the message is
the prefix of its own ID. If multiple tags respond, the response
messages collide and the reader continues with the depth-first
traversal of the tree. No collisions at an interior nodeu means
that there are no more tags remaining in the subtree rooted at
u, and thus, the subtree is not traversed further. In a recent
work, [18] proposes optimizations to tree traversal.

In Framed Aloha [21] (based on slotted Aloha protocol [3]),
a query frame is chosen with a sufficiently large number of
subframes1 and each tag chooses a random subframe to send
a response. The reader sends confirmation when it hears a
tag response correctly. If collision happens, the colliding tags
must choose another random subframe to send a response. The
reader adjusts the frame size (number of subframes) according
to the number of collisions detected in the previous frame.

Avoiding Reader-Reader or Reader-Tag Collisions.Color-
wave [22] is the one of the first works to address reader-
reader collisions. It only considers a single available channel.
In particular, it tries to randomly color the readers such that
each pair of interfering readers have different colors. If each
color represents a time slot, then the above coloring should
eliminate reader-reader collisions. If conflicts arise (i.e., two
interfering readers pick the same color), only one of them
sticks to the chosen color and the other picks another color.

1We use the term subframe instead of the original term time-slot to avoid
confusion with our own concept of time slots.
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Fig. 1. Collisions in RFID systems. (a) Tag-Tag collision - Tagsx, y, and z respond to readerA simultaneously, causing
collision at A. (b) Reader-Tag collision – Response from tagx to readerB is “drowned” by the signal from readerA. (c)
Reader-Reader collision: Signal/queries from readerA andB collide at tagx.

In [7], the authors suggest coloring of the interference graph
(as defined in Definition 6) usingc colors, wherec is the num-
ber of available channels. If the graph is notc-colorable using
their suggested heuristic, then the authors suggest removal of
certain edges and nodes from the interference graph. This
work aims at avoiding the reader-tag collisions exclusively.

In the recent EPCGlobal Gen 2 standard [2], a dense reading
mode has been proposed, where the tag responses happen in
different channels than the readers. If the number of channels
are sufficient, this technique eliminates reader-tag collisions,
but requires a relatively sophisticated tag technology.

For a given network of readers and communication pat-
tern, [11] proposes a Q-learning process that yields an op-
timized resource (channel and time slot) allocation scheme
after a training period. The training process determines the
channel and time slot to allocate to a reader, when a new
read request comes in. The above work considers both reader-
reader and reader-tag collisions, but assumes that readersin-
volved in a reader-reader or reader-tag collisions can somehow
communicate with each other. Moreover, they assume a fixed
number of time slots, and aim at maximizing the frequency and
time utilization ratio rather than the more practically important
metric of total reading time. Finally, the above work does not
provide any performance guarantee.

IV. Problem Formulation

We develop algorithms for two key scenarios – when the
spatial distribution of tags is unknown, and when it is known.
The spatial distribution of tags plays a critical role in the
algorithm because of our reliance on common link layer
protocols, wherein time required to read tags is proportional
to the number of tags to be read [17], [21].Thus, without
the knowledge of tag distribution, the relative importanceof
the various “subregions” cannot be estimated, i.e., how long
should each subregion be covered/read by a reader. The above
is true even if the total number of tags can be estimated [16].
Thus, in the context of unknown distributions, we consider
the “minimum covering schedule” problem of computing the
smallest slotted-schedule of readers such that the computed
schedule “covers” the entire given region. To read all the
given tags in the region, such a designed schedule is repeated
iteratively until all tags are read. If tag distributions vary

widely, then the above strategy (of iterating over a covering
schedule) may be inefficient, since in the later iterations some
of the readers may not have any tags to read. However,
when tag distribution is unknown, any scheduling algorithm
will suffer from the same issue. On the other hand, with
the knowledge of tag distribution, such inefficiencies can be
alleviated.

In this section, we formally define the minimum covering
schedule (MCS) problem for the “unknown tag distribution”
scenario. The corresponding problem in the “known tag
distribution” scenario will be formulated and addressed in
Section VI.Before we formally define the MCS problem, we
discuss the concept of time slots and give a few definitions.

Time Slots.As noted before we are using a slotted time model.
In each time slot, each reader is eitheractive or inactive. In
addition, in a time slot, each active reader operates on an
appropriately chosen channel, and tries (not necessarily with
success) to read the tags in its interrogation region. The size
of the time slot is chosen to be sufficiently large so that each
active readerA is able to read at least one tag within the time
slot, as long as there are some tags that can possibly be read
(i.e., well-covered tags, as defined below) by the readerA. In
other words, the time slot is chosen large enough to be able
to mitigate tag-tag collissions to the extent that one tag can
be read by each reader.

In the context of the tree-splitting algorithm [17], the time
slot size can correspond to the time required to traverse a
certain number of tree edges such that one tag is read. In the
case of Aloha protocol, the time slot size corresponds to the
size of the query frame that will allow at least one subframe to
be free of tag-tag collissions. Thus, in the case of underlying
link-layer protocol being tree-splitting algorithm, the time slot
size depends only on the number and distribution of tag IDs
around the readers, while in the case of Aloha protocol the
time slot size depends on the number of tags around the
readers. We note that if we chose a very small time slot then
in the worst case our solutions may result in no tags ever been
read; thus, we chose a larger than sufficient time slot, to be
safer. In Section VII, we conduct a small empirical study to
determine the “optimal” size of a time slot, and the discuss
the associated trade-off.



Definitions. We now give two definitions that will aid in
formally defining the MCS problem. First, we define when
a tag is considered “readable” by a reader. Then, we define
the concept of a covering schedule of readers. Informally, our
MCS problem is to determine the shortest covering schedule
of readers for a given set of reader locations and channels, in
a centralizedand offlinemanner.

Definition 1: (Well-Covered Tag/Location.) A tag G or its
location is said to bewell-coveredby a readerA in a time slot,
whereinR is the set of active readers, if the below conditions
hold.

• The readerA is inR, and the tagG is in the interrogation
region ofA.

• The readerA is not in the interference region of any
other readerA′ ∈ R such thatA′ is operating on the
same channel asA in the given time slot. This condition
ensures that there are no reader-tag collisions.

• There is no other readerA′ in R such that the tagG
is in the interrogation region ofA′; the readerA′ may
be operating on any channel. This condition ensures that
there are no reader-reader collisions.

Due to the first and the last condition, a tag can be well-
covered by at most one reader in any time slot.

Definition 2: (Covering Schedule of Readers.) Consider
a set of readersR and a set of available channelsF . Let
M be the region monitored byR (i.e., the union of their
interrogation regions), andτ (number of time slots) be some
positive integer. Acovering schedule of readersfor R is an
assignmentΨ : (R × {1, 2, . . . , τ}) → (F ∪ {Inactive}) of
readers to channels (or being inactive) in each time slot, such
that each location inM is well-covered by some reader in
one of the time slots. Here,τ is called thesizeof the covering
schedule of readers.

Use of Covering Schedule of Readers to Read Tags.As men-
tioned before, the time slot size is chosen such that each active
readerA is able to read at least one tag within the time slot, if
there is at least one tag well-covered byA. Thus, if we iterate
over a covering schedule of readers, then we are guaranteed
to read any distribution of tags in the region monitored by
the given readers. This is easily achieved by rendering a tag
passive (using a lower layer protocol) when it is read; thus,
an already read tag does not participate in later iterations. The
number of iterations required to read all the tags is equal to
the maximum number of tags well-covered by a reader in any
time slot of the given covering schedule. We now formally
define the MCS problem for the case of unknown distribution
of tags.

Minimum Covering Schedule (MCS) Problem.Given a set
of readersR (with locations and associated regions) and a
set of channelsF , the Minimum Covering Schedule (MCS)
Problem is to find the minimum-size covering schedule of
readers forR.

The above defined MCS problem is NP-hard, since it
reduces to set-cover for the special case of single channel and

very large interference regions. We note that most geometric
versions of set-cover remain NP-hard [4], [12].

V. Minimum Covering Schedule (MCS) Problem

In this section, we develop algorithms for solving the
Minimum Covering Schedule (MCS) problem for both single
and multiple channel settings, when the spatial distribution
of tags is not known a priori. Before developing the for-
malisms, we first informally describe our approach for the
single channel; generalization to multiple channels is relatively
straightforward.

Basic Idea of the Greedy Approach.The basic idea is to use
a greedy algorithm to activate a set of non-interfering readers
in each time slot such that a maximum possible amount of
“new” area is covered in each slot. The new area means the
area not covered in a prior slot. The area here is measured in
terms of the number of atomic subregions (called subelements)
formed by the intersection of interrogation regions of the
readers. Thus, for each time slot, the problem boils down to
choosing an independent set in the “interference graph” of
readers that covers the maximum number of new subelements.
This “weighted” independent set problem being NP-hard, we
develop an approximation algorithm. In essence, our overall
greedy algorithm for MCS uses this approximation algorithm
as a subroutine.

The greedy algorithm for the single channel case is called
GA-1. The weighted independent set problem is called DWIS
(dynamic weighted independent set). The word “dynamic” is
added to signify that the weights for readers are not constant;
the weights change from slot to slot as more and more
subelements are covered. Finally, the approximation algorithm
for DWIS is called DWIS-PTAS as it uses a polynomial-time
approximation scheme (PTAS).

Definitions. Now, we define the concepts of subelement, cov-
erage, and interference graph for more formal treatment of the
above described greedy algorithm. Informally, a subelement
is an atomic subregion in the intersection of interrogation
regions; a subelement is defined to be unread in a time slot if
it hasn’t been covered before; weight of a set of readersA is
the number of unread subelements well-covered byA. Finally,
independent set of readers is defined as a set of readers that
do not interfere with each other.

Definition 3: (Subelement; Well-Covered Subelement.) A
subelementis a geographic region. Two points belong to same
subelement if and only if they belong to the interrogation
regions of the same set of readers. See Figure 2, where
there are 13 subelements corresponding to 4 readers and their
interrogation regionsR1 to R4.

A subelements is said to bewell-coveredby a set of readers
A in presenceof a set of active readersA1 (⊇ A) if some2

location in s is well-covered by some reader inA (based on
Definition 1) when the set of active readers isA1. Note that

2Note that if some point ins is well-covered by a readerB, then all the
points ins are well-covered byB.
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Fig. 2. Illustrating the concept of subelements.

whether a subelement is well-covered byA or not depends on
the given setA1 of active readers.

Definition 4: (Unread Subelement.) A subelements is con-
sideredunreadat a given time slot if some location ins has
not been well-covered by any reader in any of theprevious
time slots.

Note that the MCS problem is essentially to “read/cover”
all the subelements using a minimum-size schedule of readers.

Definition 5: (Weight of Readers.) Theweight of a set of
readersA in the given time slot is denoted byw(A), and is
defined as the number of unread subelements in the given time
slot that are well-covered byA in presence ofA. Above, each
reader inA is associated with a channel (which will be either
stated or evident from the context).

For clarity, we usew(A) for w({A}) whereA is a reader.
Note thatw(A1 ∪A2) may be less thanw(A1)+w(A2) (due
to the collisions).

Definition 6: (Interference Graph; Independent Set of
Readers.) Theinterference graphis an undirected3 graph over
the set of readers in the system such that an edge(A, A′) exists
in the interference graph ifA lies in the interference region
of A′ or vice versa. An edge(A, A′) in the interference graph
signifies thatA andA′ will incur a reader-tag collision if they
are active on the same channel in the same time slot.

A set of readers is calledindependentif it forms an
independent set of vertices in the interference graph.

Remark on Interference Graph.Note that the above interfer-
ence graph is defined based on only the interference regions.
Essentially, our strategy is tocompletelyavoid reader-tag
collisions by picking an independent set (as defined above)
of readers in each time slot. This makes sense since reader-
tag collisions between two readers renders at least one of
the readers completely useless (incapable of reading any tags
based on Definition 1). On the other hand, reader-reader col-
lisions between two readers only disallow certain tags (in the

3Even though the interference between two readers may be directed (due
to different interference ranges), it is sufficient to consider an undirected
graph for the purposes of computing an independent set sincepresence of an
edge(A, A′) (whether directed or undirected) must only serve the purpose
of preventingA andA′ to be in an independent set together.

intersection of the interrogation regions) to be well-covered by
any reader. Thus, weminimize(rather than eliminate) reader-
reader collisions by picking an independent set of reader of
near-maximum weight to activate in each time slot.

A. Single Channel Setting

We now formally address the MCS problem for the single
channel, and present a greedy algorithm (GA-1). Recall that
GA-1 uses (as a subroutine) the DWIS-PTAS algorithm for an
appropriately defined DWIS problem. We start by describing
the greedy algorithm. Then, we define the DWIS problem, de-
scribe the DWIS-PTAS algorithm (an approximation algorithm
for the DWIS problem), and prove the approximation bound
of the DWIS-PTAS algorithm using a few lemmas. Finally, we
prove the approximation bound of GA-1, the greedy algorithm
for the MCS problem.

Greedy Algorithm (GA-1). The Greedy Algorithm (GA-1)
algorithm for the single channel MCS problem works in steps.

• In the qth step, the DWIS-PTAS algorithm (described
below) is used to select an independent set of readers
with near-maximum weight.

• The selected set of readers are to be activated in theqth

time slot with the same available channel.
• GA-1 terminates when there are no more unread subele-

ments.

Note that the algorithm is run statically (for a given set of
static reader) to determine the schedule. This needs to be done
only once. For actual reading of tags, the readers are simply
activated according to the computed schedule. We will now
show that the above GA-1 algorithm delivers a near-optimal
schedule of readers. We first formally state the DWIS problem
of selecting an independent set of readers with maximum
weight, and then, present the DWIS-PTAS algorithm.

Dynamic-Weighted Independent Set (DWIS) Problem.Let
G be the interference graph of the given set of readers.
Let each reader/vertexA in G be associated withw(A),
the weight ofA in the given time slot. TheDWIS problem
is to select a maximum weighted independent set in the
interference graph. The DWIS problem is NP-hard since its
special case corresponding to null interrogation regions and
uniform weights is equivalent to the NP-hard problem of
unweighted independent set in unit-disk graphs [13].

Below, we present DWIS-PTAS, a polynomial-time ap-
proximation scheme (PTAS) for the DWIS problem in two
dimensions, and then, generalize it to three dimensions. The
below DWIS-PTAS is a generalization of the PTAS for the
unweighted independent set problem in unit-disk graphs pre-
sented in [13] (which in turn uses the “shifting strategy”
introduced by [12]). The main difficulty in generalizing the
result of [13] arises due to the fact that in our context
w(A1 ∪A2) may belessthanw(A1)+w(A2) for two sets of
readersA1 andA2. Note that we do not make the unit-disk
assumption; however, the time-complexity of our algorithms
depends onT , S (as defined below), and the lower bound on



the area of the interrogation region (see Equation 1 and the
following discussion).

Definition 7: (Interference Reach (T ); Interrogation Reach
(S).) Let T be such that interference region of each reader is
containedin a sphere or disk of radiusT . Similarly, let S be
such that the interrogation region of each reader is contained
in a sphere or disk of radiusS. We refer toT and S as
interferenceand interrogation reachrespectively.Note that
T and S values are bounded, due to the bounded reader’s
transmission power or tag’s limited power/circuitry.

DWIS-PTAS (in two-dimensions).Consider an interference
graphG with associated weights as defined above. The DWIS-
PTAS algorithm consists of the following steps. Letk be a
given positive integer (higherk entails higher time-complexity,
but better approximation ratio).

• Divide the whole rectangular region4 into horizontal strips
of width max(T, 2S). Note that if two readersA1 andA2

are at leastmax(T, 2S) distance away, then (i) they do
not interfere, and (ii)w({A1, A2}) = w(A1) + w(A2).

• For eachi, 0 ≤ i ≤ k, partition the graphG into l
disjoint subgraphsGi1, Gi2, . . . , Gil by removing nodes
in horizontal strips congruent toi mod (k + 1). See
Figure 3.

• Find a near-optimal independent set in each subgraph
Gip. Based on Lemma 2 (described later), we can actually
find an independent set of weight at leastkk+1 times the
optimal weight in polynomial time.

• For eachi, take the union of the independent sets ofGip

(1 ≤ p ≤ l). Since the width of the horizontal strip is at
leastmax(T, 2S), the union forms an independent set in

Gi =
⋃

1≤p≤l

Gip

and the weight of the independent set inGi is the sum
of the weights of the independent sets ofGip.

• Pick the best (maximum weighted) of the independent
sets ofGi’s as the independent set ofG.

Lemma 1 shows that an optimal independent set of one
of the subgraphsGi has a weight of at least k

k+1
times

the maximum weight of an independent set inG. Thus, by
Lemma 1 and 2, we have that the above described DWIS-
PTAS yields a( k

k+1)2-approximate independent set for any
given integerk. This constitutes Theorem 1. We now develop
these lemmas/theorems to prove the approximation ratio of
DWIS-PTAS.

Lemma 1: Let the maximum weight of an independent set
in Gi be Wi and inG be W . Then,

max
0≤i≤k

Wi ≥
k

k + 1
W.

PROOF. Let O be the optimal solution of DWIS problem,
i.e., the maximum-weight independent set inG. Let

Oi = O ∩ (G − Gi),

4This rectangular region, which includes the interrogationregions of all
the given readers, can be arbitrarily large since the time complexity of our
algorithm does not depend on the region’s size.
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Fig. 3. Division of graphG into subgraphsGip: First, the whole
region is divided into horizontal strips, which are numbered
iteratively from 0 to k as shown above. Then, for eachi
(0 ≤ i ≤ k), strips numberedi (shaded in the figure) are
removed to yield subgraphsGi1, Gi2, . . . , Gil for some finite
l. Similarly, eachGip is vertically partitioned intoGjr

ip (for
use in Lemma 2).

i.e., Oi is the set of nodes from the optimal solutionO in the
shaded horizontal strips of Figure 3. Thus,O =

⋃

0≤i≤k Oi.
For any U ⊆ O, let e(U) denote the number of unread

subelements that are well-covered byU in presence ofO. In
other words,e(U) is w(U) minus the number of subelements
that are contained in the region monitored byU as well as
O − U (and hence, not well-covered byU in presence ofO,
due to reader-reader collisions). Thus, we have

e(U) ≤ w(U).

Also, sinceO =
⋃

i(Oi), we havew(O) =
∑

0≤i≤k e(Oi).

Thus, there exists at, 1 ≤ t ≤ k, such thate(Ot) ≤
1

k+1w(O).
Now, sinceO = Ot ∪ (O ∩ Gt), we havew(O) = e(Ot) +
e(O ∩ Gt) and thus,

e(O ∩ Gt) ≥
k

k + 1
w(O) =

k

k + 1
W.

For the rest of the proof, note that

max
0≤i≤k

Wi ≥ Wt ≥ w(O ∩Gt) ≥ e(O ∩ Gt) ≥
k

k + 1
W.

For clarity of presentation, let us useβ to denote the upper
bound on the size of an independent set of readers in a square
of sizemax(T, 2S) × max(T, 2S). If θ is the minimum area
of an interference region, then

β = (max(T, 2S))2/θ. (1)

Note thatβ is bounded by a constant, since each reader must
have a non-empty interference region (and thus,θ is bounded



from below). We now show the approximation ratio of the
DWIS-PTAS algorithm.

Lemma 2: Consider a subgraphGip (as defined above)
where1 ≤ p ≤ l and 1 ≤ i ≤ k. In |Gip|

O(k2β) time, we
can construct an independent set inGip whose weight is at
least k

k+1
times the optimal.

PROOF. We construct subgraphsGjr
ip in Gip for 1 ≤ j ≤ k

and 1 ≤ r ≤ lp (for some lp) by vertical division ofGip,
just asG was divided horizontally into subgraphsGip. See
Figure 3. Using a simple packing argument, we can see that
the maximum size of an independent set inGjr

ip is at most
O(k2β). Thus, we can compute the maximum independent
set inGjr

ip by exhaustive search, and take a union over allr

to yield a maximum independent set inGj
ip =

⋃

r Gjr
ip . Then,

we pick the best independent set amongGj
ip over all j, which

gives a k
k+1 -approximate independent set forGip (based on

arguments similar to Lemma 1).

The proof of the below theorem follows from the above two
lemmas.

Theorem 1: The DWIS-PTAS algorithm runs in|R|O(k2β)

time and returns an independent set whose weight of at least
( k

k+1
)2 times the optimal.

PROOF. The proof follows from the above two lemmas, viz.,
Lemma 1 and 2, and the fact that the optimal independent
set for anyGi is the union of the optimal independent sets
for Gip (for all p). The above fact is true due to chosen
width (max(T, 2S)) of the horizontal strips and the fact that
w({A1, A2}) = w(A1) + w(A2) for two readersA1 andA2

that are at leastmax(T, 2S) distance away.

IDWIS-PTAS: Improved DWIS-PTAS.As suggested in [13],
we can improve the performance of DWIS-PTAS by comput-
ing the weighted independent set inGip optimally using a
dynamic programming approach. The improved DWIS-PTAS
(IDWIS-PTAS) runs in|R|O(kβ) time and delivers a solution
with an approximation ratio of(k/k + 1). We state the
below without proof, as it follows directly from a dynamic
programming technique similar to the one used in [13].

Theorem 2: The IDWIS-PTAS algorithm runs in|R|O(kβ)

time and returns an independent set whose weight is at least
k

k+1
times the optimal.

IDWIS-PTAS in 3D. The above described IDWIS-PTAS can
be easily generalized to three dimensions. Essentially, wefur-
ther divideGip vertically intoGjr

ip as shown in Figure 3. Then,
using dynamic programming, we can compute the optimal
independent set in the hyper-rectangleGjr

ip in |R|O(k2β) time.
Here,β is the bound on the maximum size of an independent
set in acubeof sizemax(T, 2S)×max(T, 2S)×max(T, 2S).
Using similar arguments as before, we get the following result.

Theorem 3: In three-dimensions, the IDWIS-PTAS algo-
rithm runs in |R|O(k2β) time and returns an independent set
whose weight of at least( k

k+1)2 times the optimal weight for
any positive integerk.

Performance of GA-1 for the MCS Problem. Recall that
in qth step of the GA-1 algorithm, we use the IDWIS-PTAS
to select a set of readers to activate in theqth time slot. For
a given ǫ > 0, if we choosek as the smallest integer that
satisfies

(

k + 1

k

)2

≤ (1 + ǫ), (2)

we have the following result.
Theorem 4: Given set of readersR in three-dimensions,

GA-1 returns a covering schedule of readersR of size at most
2(1+ǫ) ln |R| times the optimal size, for anyǫ > 0. Moreover,
GA-1 runs in|R|O(β/ǫ) time.

PROOF. Since GA-1 iterates until there are no unread
subelements, any location in the monitored region is indeed
well-covered by an active reader in one of the time slots of
the GA-1 solution. Thus, GA-1 returns a covering schedule of
readers. Time complexity of GA-1 follows from Theorem 3
and choice ofk. We now show the approximation result.

Let Aq andOq be the set of readers selected to be active in
the qth time slot by GA-1 and optimal algorithm respectively.
Let A = {A1,A2, . . . ,AQ} and O = {O1,O2, . . . ,OP}
represent the solution returned by GA-1 and optimal algorithm
respectively, whereQ andP are the number of time slots used
by GA-1 and optimal algorithm respectively. We will show that
Q ≤ 2(1 + ǫ)(ln |R|)P.

Let us consider theqth step of GA-1, wherein readers in
Aq are selected to be active in theqth time slot. At each
step, we distribute the cost of one (time slot) to all the unread
subelements that are well-covered byAq in presence ofAq

in the qth time slot. Letcs denote the cost distributed to the
subelements when its read. Ifs is unread atqth time slot
and is well-covered byAq (in presence ofAq), then cs =

1
Uq−Uq−1

, whereUq is the number of unread subelements at

the end of (after the)qth time slot of GA-1.
Let S be the set of all subelements, andE(Op) denote

the set of subelements inS that are well-covered by the set of
readersOp in presence ofOp. Now, since the optimal solution
has to read all subelements, we have

Q =
∑

s∈S

cs ≤
∑

Op∈O

∑

s∈E(Op)

cs. (3)

In the next paragraph, we will show that for anyOp ∈ O,
∑

s∈E(Op)

cs ≤ 2(1 + ǫ) ln |R|. (4)

Now, from Equation 3 and 4, we getQ ≤ 2(1 + ǫ)(ln |R|)P.

Proving Equation 4.Let uq denote the number of unread
subelements inE(Op) after theqth time slot of GA-1. Without
loss of generality, we can assume thatOp is an independent
set of readers (else, some readers inOp would be redundant,
as there is only a single channel available). Note thatu0 is the
total number of subelements inE(Op). Thus,

∑

s∈E(Op)

cs =

Q
∑

q=1

(uq−1 − uq) ·
1

Uq − Uq−1



By Theorem 3 and choice ofk, we know that the total weight
of Aq (= Uq − Uq−1) is at least( 1

1+ǫ )uq−1, sinceOp is also
an independent set of readers with weight at leastuq−1 in the
qth time slot. Thus, we have

∑

s∈E(Op)

cs ≤ (1 + ǫ)

Q
∑

q=1

(uq−1 − uq) ·
1

uq−1

Using some algebra ( [6], Chapter 35.3), we get
∑

s∈E(Op)

cs ≤ (1 + ǫ) lnu0.

Sinceu0 = |E(Op)| ≤ |R|2, we get
∑

s∈E(Op)

cs ≤ 2(1 + ǫ) ln |R|.

B. Multiple Channels Setting

In this subsection, we consider the MCS problem when
there are multiple available channels in the system. For ex-
ample, in the EPCGlobal Gen2 standard [2], there are about
50 available channels. However, unlike in previous cases,
algorithms developed here are heuristics without any perfor-
mance guarantees. We evaluate the empirical performance of
the developed heuristics in Section VII. Note that the MCS
problem for the case of multiple channels is a generalization
of the single channel case, and hence, is trivially NP-hard.

GA-M: Greedy Algorithm For Multiple Channels. For
the case of multiple available channels, we design a greedy
algorithm (GA-M) that works as follows. GA-M iterates
through time slots, and for each slot, it selects a set of active
readers with appropriately chosen associated channel for each
reader, such that the set of active readers operating on the
same channel form an independent set in the interference
graph. The readers with their associated channels are chosen
in a greedy manner for each time slot as follows. Consider
the qth time slot. We maintain a setRC of reader-channel
pairs, such that a pair(A, c) ∈ RC implies that the reader
r has been selected to be active with channelc in the qth

time slot. Initially, RC is empty. Then, we iteratively pick
the “best” reader-channel(A, c) pair to add toRC. The best
reader-channel pair for a givenRC is defined as a pair(A, c)
that maximizes the total number of unread subelements well-
covered by(RC ∪{(A, c)}) (in presence of(RC ∪{(A, c)}))
in the qth time slot. The above process in continued until no
more tags can be read in theqth time slot. At that point, GA-M
finalizesRC as the set of reader-channel pairs for theqth time
slot, and starts the above process again for the next time slot.
GA-M is formally presented below.

Algorithm 1: GA-M: Greedy Algo. for Multiple Channels.
Input: : A set of readersR andF , the set of available channels.
Output: : Solution to the MCS problem.
BEGIN

[1,10]        [3,6]     [4,8]

Fig. 4. A set of n readers with interrogation regions, where
the MCS problem requires at leastO(logn) time slots.

q= 1; /∗ Time slot number.∗/
while (there are unread subelements)
RC = φ; /∗ Set of active reader with channels inqth slot. ∗/

while (1)
Let N(RC) be the number of unread subelements
well-covered byRC in presence ofRC in the qth slot.
if (there is(A, c) s.t. N(RC ∪ {(A, c)} > N(RC)
then

Pick the reader-channel(A, c) pair that
maximizesN(RC ∪ {(A, c)}

RC = RC ∪ {(A, c)};
else

Pick RC for qthtime slot.
q++;
break;

end if;
end while;

end while;
END. ⋄

Unlimited Number of Channels. When there are unlimited
number of available channels, the MCS problem is similar
to the conflict-free coloring problem [10]. Given a set of
regions in a 2D plane, theconflict-free coloring problemis
to color the regions in a conflict-free manner using minimum
number of colors, where a coloring is said to beconflict-free
if for every point p there is a region containingp whose
color is unique among all the regions that containp. The
above problem is NP-hard even for unit disk regions [8].
However,n pseudo-disks (boundaries intersect at most twice)
can be conflict-free colored inO(n log n) time usingO(log n)
colors [10]. Also, there are instances ofn unit-disk regions
whose conflict-free coloring requires at leastO(logn) colors.
If each color is looked upon as a time slot, then the MCS
problem is almost equivalent to the conflict-free coloring of
readers, except that in the former each reader can be assigned
to multiple colors/slots. The above observation yields the
following theorem.

Theorem 5: Consider the MCS problem for a given set



of n readers with unlimited number of channels available.
Assume that the interrogation regions of the readers are two-
dimensional pseudo-disks, i.e., regions such that boundaries of
each pair of them intersect at most twice. Then, a solution of
the MCS problem can be constructed inO(n logn)-time using
O(logn) time slots. Also, there are instances ofn readers
wherein at leastO(log n) time slots are required.
PROOF. As mentioned above, the MCS problem reduces to the
problem of conflict-free coloring of the interrogation regions
of the readers, and hence, can be solved usingO(log n) time
slots inO(n log n) time [10].

To show the lower bound [19], we use the same argument
as in [8] where each region is assigned exactly one color.
Consider the set of readers numbered 1 ton with unit-disk
interrogation regions (also numbered 1 ton) as shown in
Figure 4. Here, for each interval[i, j] where i ≤ j, there
is a unique subelements such that the set of interrogation
regions containings is exactly{i, i + 1, . . . , j}. Now, to read
the subelement[1, n], there must be one time slot (say,1st)
wherein only one reader (sayj) is active (irrespective of the
channel assigned). The above is needed to avoid reader-reader
collisions. Without loss of generality, letj > n/2. Now,
consider the subelement[1, n/2]. Using the same argument,
there must be a time slot other than the first (say,2nd) wherein
only one reader from{1, 2, . . . , n/2} is active. Note that the
above argument holds even if the readerj is allowed to be
chosen in multiple time slots. Continuing the above argument,
we can see that at least(logn) time slots are required to read
all the subelements in Figure 4.

Three-dimensional Regions.Very little is known about the
problem of conflict-free coloring of three-dimensional re-
gions [19], [20]. Note that with unlimited number of available
channels, the interference graph has no edges and hence, any
subset of readers forms an independent set. Thus,β (the bound
on the size of an independent set of readers in a bounded
cube) is no longer a constant. But, if we choose a smallk
and assume that the number of readers in any hyper-rectangle
of sizek max(T, 2S) × k max(T, 2S) × max(T, 2S) is small
(or a constant), then we can use exhaustive search to compute
the maximum-weighted set in such hyper-rectangles. We can
then apply the same arguments as in Section V-A to obtain a
2(1 + ǫ) ln |R|-approximate solution.

Theorem 6: For the case of unlimited number of channels
in three-dimensions, the modified GA-1 (as described above)
returns a2(1 + ǫ) ln |R|-approximate solution and runs in
time polynomial in |R| and 2N for any ǫ > 0. Here, N is
the maximum number of readers in any hypercube of size
k max(T, 2S) × k max(T, 2S) × max(T, 2S) and k is as in
Equation 2.

VI. Minimum Reading Schedule (MRS) Problem

So far, we considered the scenario where the spatial dis-
tribution of tags was unknown. Recall that in this case only
the Minimum Covering Schedule problem made sense. This is
because it was not possible to learn how much time to allow

for various subelements to be read, as time to read all tags
in a subelement is proportional to the number of tags in that
subelement. However, when the tag distribution is known, we
can model this time easily. Thus, we can consider a more
meaningful version of the problem, where we try to read all
tags as fast as possible for the given tag distribution. We call
this the Minimum Reading Schedule (MRS) problem.

Offline Algorithms. In our problem setting, we aregiven a
set of reader locations and spatial distribution of tags, and we
want to compute a “schedule of readers” to read the tags as
fast as possible. We focus on design of anoffline algorithm
because spatial distribution of unread tags is unavailable5 even
to an online algorithm. Moreover, incurring computation and
communication time after each time slot may defeat the whole
purpose of fast reading of tags.Thus, we do not consider online
algorithms. Also, since the readers are static, the readers’
schedule is computed only once.

Probabilistic Model for Reading a Tag/Subelement.In our
model, in a given time slot, each active reader reads arandom
well-covered unread6 tag from its interrogation region. The
size of the time slot is chosen to be large enough to allow
the above to happen. Due to this randomness in reading, we
need to first formulate the reading of a tag/subelement in a
probablistic way (as done below). Based on the probabilistic
reading of a tag, we will formulate and solve the MRS
problem.

Let R be the set of given readers, andM be region
monitored byR. For each subelementsj , we maintain two
values, viz.,

1) g(sj), the initial number of tagsin sj . The valueg(sj )
is available from the given distribution of tags, andit
remains constant across time slots.

2) p(sj), the probability that a tag withinsj has not been
read (based on a probablistic model described below) in
the previous time slots. The probabilityp(sj) is same
for all the tags in a subelement.

Initially (in the first time slot), the probabilityp(sj) is 1 for
each subelementsj . Now, consider theqth time slot, and let
p(sj) represent the probability of a tag insj not been read in
the previous(q − 1) time slots. LetA be an active reader in
the qth time slot, and lets1, s2, . . . , sl be the “not-fully-read”
subelemements (i.e., subelements with at least one unread tag)
well-covered byA (in presence of the set of readers active in
the givenqth time slot). The probability that a tag insj has
not been read afterq time slots is given by:

New p(sj) = max(0, p(sj)(1 − b)), (5)

where b = 1/(g(s1)p(s1) + g(s2)p(s2) . . . + g(sl)p(sl)) is
the probability of any particular tag (well-covered byA)
being read byA in the qth time slot. Note that the above

5Note that when a tag is successfully read by a readerA, the readerA
still does not know the location of the read tag.

6As before, a tag is turned “passive” when it is read. A passive(already
read) tag does not respond to any future queries by any reader.



p(sj) values are based solely on the spatial distribution of
readers and subelement, and initial distribution of tags; they
are independent of what actually happens within each time
slot. Based on the above model, we now define when a
subelement is considered fully-read.

Definition 8: (Fully-Read/Not-Fully-Read Subelement.) In
a given time slot, a subelementsj is consideredfully-read if
p(sj) is zero at the start of the given time slot; otherwise,sj

is considerednot-fully-read(i.e., if p(sj) > 0 at the start of
the given time slot).

Reading Schedule.Based on the above probabilistic notion
of reading a tag, we define a reading schedule of readers.

Definition 9: (Reading Schedule of Readers.) Consider a set
of readersR and a number of tags|G| distributed uniformly
in the region monitored by the readers. LetF be the set of
available channels. Areading schedule of readersto read all
the tags inG in τ time slots is an assignmentΨ : (R ×
{1, 2, . . . , τ}) → (F ∪{Inactive}) of readers to channels (or
being inactive) in each time slot, such that all subelements
have been fully-read by the end ofτ time slots. The number
of time slotsτ is referred to as the size of the reading schedule
of readers.

Even though our notion of a tag fully-read is probabilistic,
a reading schedule of readers is guaranteed to read all tags,
under the assumption that each active reader in each time slot
of the reading schedule reads at least one well-covered tag.
This is true due to the following:

• Initially, the quantity
∑

j g(sj )p(sj) is equal to the total
number of tags in the system.

• In each time slot, the decrease in the quantity
(
∑

j g(sj )p(sj)) is less than or equal to the number of
tags read in that time slot, since each active readers reads
at least one tag in each time slot.

• At the end of a reading schedule the quantity
(
∑

j g(sj )p(sj)) has decreased to zero.

Minimum Reading Schedule (MRS) Problem.Given a set of
RFID readersR, the number of tags|G|, and the distribution of
the tags in the region monitored byR, theMinimum Reading
Schedule Problemis to find a reading schedule of readers of
smallest size. MRS problem is easily NP-hard (reduces to set-
cover).

A. Single and Multiple Channels

In this subsection, we first extend the GA-1 algorithm of the
previous section (for the MCS problem) to the MRS problem
for the case of a single channel. The case of multiple channel
is discussed briefly at the end.

EGA-1: Extended GA-1 Algorithm. We use EGA-1 to refer
the extended GA-1 algorithm. As in the GA-1 algorithm,
the qth step of the EGA-1 algorithm constitutes of selecting
a independent set of readers with near-maximum weight to
activate in theqth time slot. EGA-1 terminates when all
subelements have been fully-read (i.e., the weight of each
reader has become zero).

Definition 10: (Weight of Readers (redefined).) Here, we
define theweightw(A) of a set of readersA as the reduction
in the sum of theg(sj)p(sj) of the not-fully-read subelements
sj well-covered byA in presence ofA.

Observation 1: In a given time slot, the weight of a set of
readersA is equal to the number of readers inA that well-
cover at least one non-fully-read subelement each when the
set of active readers isA in the given time slots.

The above observation follows from Equation 5. Based on
the above observation, we can show that the IDWIS-PTAS
algorithm remains a PTAS for the interference graph with the
above definition of weight of readers. Essentially, we need to
show that Lemma 1 holds for the above definition of weight
of readers.

Lemma 3: Using Definition 10 for weight for readers, let
the maximum weight of an independent set inGi be Wi and
in G be W . Then,

max
0≤i≤k

Wi ≥
k

k + 1
W.

PROOF. As in Lemma 1, letO be the optimal solution of
DWIS problem, i.e., the maximum-weight independent set in
G. Let

Oi = OPT ∩ (G − Gi),

i.e., Oi is the set of nodes from the optimal solutionO in the
shaded horizontal strips of Figure 3. Thus,O =

⋃

0≤i≤k Oi.
For anyU ⊆ O, let e(U) denote the number of readers in

U that well-cover at least one unread subelement when the
set of active readers isO in the given time slot. Thus, by
Observation 1, we have

e(U) ≤ w(U).

Rest of the proof is same as Lemma 1.

Theorem 7: For the Definition 10 of weight of readers, the
DWIS-PTAS algorithm runs in|R|O(k2β) time and returns an
independent set whose weight of at least( k

k+1 )2 times the
optimal.
PROOF. The proof follows from the previous Lemma 2
(which is independent of the weight definition) and the above
Lemma 3, and the fact that the optimal independent set for any
Gi is the union of the optimal independent sets forGip (for all
p). The above fact is true due to chosen width (max(T, 2S))
of the horizontal strips and the fact thatw({A1, A2}) =
w(A1) + w(A2) (for Definition 10) for two readersA1 and
A2 that are at leastmax(T, 2S) distance away.

As in Section V, the above theorem generalizes to IDWIS-
PTAS in three dimensions.

Theorem 8: For the Definition 10 of weight of readers,
in three-dimensions, the IDWIS-PTAS algorithm runs in
|R|O(k2β) time and returns an independent set whose weight
of at least( k

k+1
)2 times the optimal weight for any positive

integerk.
Thus, when we use IDWIS-PTAS inqth step of EGA-

1 to select a set of active readers in theqth time slot, the
approximation ratio of EGA-1 is preserved, as proved below.
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Fig. 5. Performance of the GA-1, GA-M, and Colorwave-like algorithms for the MCS problem. (a) Varying interference range
with single channel, (b) Varying interrogation range with single channel, and (c) Varying number of available channels.

Theorem 9: Given a set of readersR and a distribution of
|G| tags in the (three-dimensional) region monitored by the
readers, EGA-1 returns a reading schedule of readers of size
at most(1 + ǫ) ln |G| times the optimal size, for anyǫ > 0.
Moreover, EGA-1 runs inO(|G|)|R|O(β/ǫ) time.
PROOF. Since EGA-1 iterates until all subelements are fully-
read, EGA-1 indeed returns a reading schedule of readers. We
now show the approximation ratio of EGA-1.

Let Aq andOq be the set of readers selected to be active in
theqth time slot by EGA-1 and optimal algorithm respectively.
Let A = {A1,A2, . . . ,AQ} andO = {O1,O2, . . . ,OP} rep-
resent the solution returned by EGA-1 and optimal algorithm
respectively, whereQ and P are the number of time slots
used by EGA-1 and optimal algorithm respectively. We will
show thatQ ≤ (k+1

k )2(ln |G|)P . Then, we choosek as in
Equation 2, we get the theorem result.

By Observation 1, the weight of eachAq is |Aq|, and each
Op is |Op|. Also, note that

∑Q
q=1 Aq =

∑P
p=1 Op = |G|,

since the initial sum ofp(sj)g(sj ) over all subelementssj is
|G|. In the next paragraph, we will show that

w(Aq) ≥ (
k

k + 1
)2(|G| −

q−1
∑

i

w(Ai))/P, (6)

i.e., the weight ofAq is at least equal to1/P of the “remaining
weight” (“probabilistic” number of remaining tags) yet to be
“covered” by the EGA-1. Sincew(Aq) is at least 1 for all
q, the above equation givesQ ≤ (k+1

k )2 log(P/P−1) |G| ≤

(k+1
k )2(ln |G|)P , since(P/(P−1))P ≥ e. That last inequality

is true asf(P ) = (P/(P − 1))P is monotonically decreasing
for P > 1, andf(1) = ∞ and limP→∞f(P ) = e.

Proving Equation 6.In short, the Equation 6 is true due to
the greedy choice ofAq for each q. At the qth step of
EGA-1, the EGA-1 picks a set of readers whose weight is
at least( k

k+1 )2 times the maximum possible at that stage.
We show that the maximum possible weight atqth step of
EGA-1 is at leastc = (|G| −

∑q−1
i w(Ai))/P . To show

this, consider the valid schedule of readers represented by
{A1,A2, . . . ,Aq−1,O1,O2, . . . ,OP }. In the above schedule,
let the weight ofOp at (q−1+p)th slot bewqp for 1 ≤ p ≤ P .
Note that

∑

p wqp +
∑q−1

i=1 w(Ai) = |G|. Thus, there exists a

p such thatwqp ≥ (|G| −
∑q−1

i w(Ai))/P = c. For such a

p, the weightwqp of Op at the(q − 1 + p)th slot can be at
most the weight ofOp at theqth slot (since more subelements
are not-fully-read atqth slot than at(q − 1 + p)th slot). Thus,
such anOp must have a weight at leastc at theqth time slot.
Thus, the maximum possible weight atqthstep of EGA-1 is
at leastc.

MRS Problem in Multiple Channels. For the case of multiple
channels, we use the same heuristic as the one presented in
the previous section for the multiple channels, except thatwe
use the weight function as defined in Definition 10.

When there are unlimited number of channels, the conflict-
free coloring does not provide a solution for the Tags-Reading
problem. In two dimensions, one possible heuristic could be
to use a sequence of conflict-free colorings (where color
corresponds to a time slot) until all the subelements are
completely read. Such a strategy doesn’t have any performance
guarantee. However, the result of Theorem 6 does generalize
to EGA-1.

Theorem 10: For the case of unlimited number of channels
in three-dimensions, the modified (as in Section V-B) EGA-
1 returns a2(1 + ǫ) ln |G|-approximate solution and runs in
time polynomial in|R|, |G|, and2N for any ǫ > 0. Here,N
is the maximum number of readers in any hypercube of size
k max(T, 2S) × k max(T, 2S) × max(T, 2S), wherek is as
in Equation 2.

VII. Performance Evaluation

In this section, we evaluate the performance of our designed
algorithms using a custom simulator. For the MCS problem,
we compare the sizes of covering schedules computed by
various algorithms, and for the MRS problem, we simulate a
tree-splitting based link layer protocol and compare the sizes
of reading schedules computed by various algorithms for a
given random distribution of tags.

In the simulations, we uniformly and randomly distribute
50 readers in a rectangular region of size100 × 100 units.
For the MRS problem, we also distribute randomly 1200
tags in the region. For now, we consider interrogation and
interference regions to becircular disks, with thedefault
radius/range being 20 units and 50 units respectively. We will
consider irregular disks (as described later) for the last set of



experiments.For GA-1 and EGA-1 algorithms, we usek = 2
(i.e., ǫ = 1.25), since higher values ofk did not result in
noticeable improvement in performance but were much slower.
We compare our algorithms with the Colorwave algorithm [22]
for the MRS problem or a Colorwave-like algorithm for the
MCS problem. As discussed in Section III, other works on
avoiding collisions in RFID systems either consider only tag-
tag collisions [14], [17], [18], [21], or have very different
objective criteria [7], [11], or assume sophisticated tag tech-
nology [2].

MCS Problem. First, we evaluate the performances of GA-1
and GA-M for the MCS problem. In this setting, we do not
take the tag distribution into consideration, and compare the
covering schedules of readers delivered by various algorithm.
For comparison, we use a random algorithm similar to the
Colorwave algorithm [22], wherein each reader picks a random
time slot, such that interfering readers have different time
slots and each subelement in the monitored region is well-
covered. In plots, we refer to this algorithm asColorwave-like.
Figure 5(a) shows the single channel performance with varying
interference ranges. As expected, all algorithms perform worse
(takes more time slots) with increasing interference range. The
GA-M heuristic performs close to the approximation algorithm
GA-1. The performance gap is bigger for larger interference
range, because for the given parameter values (region size of
100 × 100 and k = 2) GA-1 solution is actuallyoptimal for
interference range≥ 50. Figure 5b shows the single channel
performance with varying interrogation range. We observe that
the performance of each algorithm improves with increase in
interrogation range, because larger interrogation regionentails
a larger coverage area. For both the above experiments, GA-
1 and GA-M perform significantly better than Colorwave-
like algorithm for all range values. Since Colorwave-like
algorithm is an example of a random access scheme, the above
exemplifies the superiority of scheduled access schemes in
RFID systems.

Multiple Channels.Figure 5(c) shows multi-channel perfor-
mance of GA-M for varying number of channels and the
default range values.Note that GA-1 and Colorwave-like
algorithms work only for single channel; the plot shows their
single channel performances for comparison.We note that
GA-M’s performance indeed improves with more channels.
However, the improvement is not significant because of a
relatively small interference range. Use of multiple channels is
expected to make more significant impact when interference
range is relatively larger. To validate the last statement,we
ran a separate experiment with different parameter values:
200 readers, interrogation range = 8 units and interference
range = 60 units. See Figure 6. Note the almost proportionate
decline in number of slots with increasing number of channels
initially, and then, a saturation effect after about 4 channels.
The saturation effect is because at that point, the number
of active readers in a time slot is large enough that the
reader-reader collisions (which can’t be resolved using more
channels) become dominant.
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Fig. 6. Varying number of channels with larger interference
range for the MCS problem.

MRS Problem. In the second set of experiments, we evaluate
the performances of EGA-1 and EGA-M algorithms for the
MRS problem. Here, we use a random distribution of 1200
tags in the region as part of the input, and use Colorwave for
a baseline comparison. As mentioned before, a tree-splitting
based link layer protocol is used for our algorithms here. We
use the time slot size equivalent to make three edge traversals,
since it was found to be most efficient for the given parameters
(see below). For the single channel case (Figure 7(a)-(b)),
the relative performance of various algorithms is similar to
that observed in the MCS problem. We note that EGA-M
heuristic performs same as the EGA-1 for small values of
interference range, and performs close for larger values, for
the same reason as discussed in the MCS problem. However,
in Figure 7(b), we notice that the performance of Colorwave
actually worsens with increase in the interrogation range.This
implies that Colorwave algorithm is not effective in handling
the reader-reader collisions, and this ineffectiveness seems
to far outweigh the advantage of increase in coverage area.
Note that Colorwave is indeed incapable of handling reader-
reader collisions, since the tags do not participate in the
algorithm (collision detection). Similarly, EGA-M heuristic’s
performance also worsen with increase in interrogation range
for smaller values. In contrast, EGA-1’s performance always
improves with increase in interrogation range,which implies
that EGA-1 is most effective in handling the reader-reader
collisions.

Multiple Channels.In Figure 7(c), we observe that the increase
in number of channels has more significant impact (compared
to the MCS problem) on the performance of EGA-M.

Time Slot Size.We now present results of our simulations to
estimate the “perfect” time slot size. As mentioned before,if
tree-splitting protocol is used in each time slot, then the time
slot size is chosen as the number of edge traversals that will
result in at least one tag being read. Such a number depends
on the density of the tag IDs and distribution – higher density
would require a larger number of edge traversals – for a fixed
interrogation range. For our chosen parameters, viz., 16-bit tag
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Fig. 7. Performance of the EGA-1, EGA-M, and Colorwave algorithms for the MRS problem. (a) Varying interference range
with single channel, (b) Varying interrogation range with single channel, and (c) Varying number of available channels.

IDs, 100× 100 region size, 1200 tags, interrogation range of
20 units, we observed that choosing the time slot size of three
edge traversals was most efficient. See the below table.

TABLE I

FRACTION OF 1200 TAGS READ

Time Slot Size (l) EGA-1 EGA-M
2 0.695 0.720
3 0.976 0.986
4 0.999 0.999

We observe in the above Table 1 that increase in the time
slot size (l) improves the fraction of tags read. However,
this will also proportionately increases the total run time(=
number of slots in the reading schedule× l). Too small a
value for l makes the algorithms underestimate the number
of slots needed, leading to unread tags. Too large a value, on
the other hand, makes slots unnecessarily longer and degrade
performance (in terms of absolute time). Note that for later
iterations of the reading schedule, we can use smaller time
slot size due to reduction in number of unread tags.

Experiments with Regions as Irregular Disks.To illustrate
the efficacy of our techniques for general shapes of regions,
we conduct the above experiments with the interference and
interrogation regions as irregular disks. In particular, for each
readerI, we generate an irregular region of “range”r, by
randoming choosing six points at a distance of more than0.6r,
but less thanr. The chosen six points are then sorted around
the readerI, and connected to create a polygonal region.
Based on the above way of constructing irregular interrogation
and interference regions, we conduct the above experiments.
See Figure 8 and 9. In general, we observe similar pattern
of performance comparison as before (for regular regions in
Figure 5 and 7), except that here in some cases GA-M and
EGA-M marginally outperfom GA-1 and EGA-1 respectively.
We also note that Colorwave’s performance remains relatively
unchanged (compared to before); this is because increase in
interferencerange of irregular regions does not necessarily
result in proportional increase in intersection of the regions
due to possible “intertwining” of regions. Finally, note that
in Figure 8, the Colorwave Algorithm’s performance for

interrogation range of 10 is abruptly high, because of minimal
reader-reader collissions.

Summary. In summary, our simulation results show the
following. (i) For the case of one-channel, our heuristics
perform close to the approximation schemes and much better
than Colorwave [22]; for the MRS problem, EGA-1 is most
effective in handling reader-reader collisions. (ii) For the case
of multiple channels, our heuristics perform proportionalto
the number of channels available (upto the saturation point)
for reasonable choice of parameters.

VIII. Conclusions

In this paper, we addressed the problem of efficient reading
of RFID tags in a multi-reader system. Multiple readers
provide concurrency and also better coverage, but also bring
in additional collision problems. We have used a slotted time
model, and developed algorithms to compute a near-optimal
activation schedule for the readers. We have considered two
scenarios – one where the distribution of tags is unknown
and the other where it is known. We have considered suitable
models of the tag reading problem in these scenarios.

Our algorithms assume a planned deployment of readers
where a prior site survey is possible to determine interference
and interrogation regions of the readers. This is a departure
from more conventional adaptive approaches. However, our
approach is able to produce near-optimal schedule in the single
channel case. The schedule does not need to be computed
dynamically. It can be computed only once, and the readers
activated according to the computed schedule to read tags.

Computing a near-optimal schedule for the multiple chan-
nels case is still an open question. However, we have devel-
oped efficient heuristics. Empirical evaluations suggest that the
heuristics perform quite close to the approximation algorithms
for the single channel case. Evaluations also suggest that our
algorithms are far superior than Colorwave, a random access
based protocol targeted for similar multiple reader systems.
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