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Abstract—In cellular networks, a recent trend is to make based on their valuations. The auctioneer assigns chatmels
spectrum access dynamic in the spatial and temporal dimensins, pase stations within the “wireless interference consttaind
for the sake of efficient utilization of spectrum. In such a determines payments from bidders. In the above context, we

model, the spectrum is divided into channels and periodic&y . . L . . .
allocated to competing base stations using an auction-base wish to design a polynomial-time auction mechanism that (i)

market mechanism. An “efficient” auction mechanism is esseiml ~ €ncourages buyers to be truthful (i.e., ensures that therbuy

to the success of such a dynamic spectrum access model. Twdbenefit” the most when their bid is equal to their actual
of the key objectives in designing an auction mechanism are valuation), and (i) maximizes the generated revenue (stim o
“truthfulness” and revenue maximization. In this article, we the payments by the bidders).

design a polynomial-time spectrum auction mechanism thatsi | diti | . . he bidd luati
truthful and yields an allocation with O(1)-approximate expected n traditional auction settings, the bidder valuations are

revenue, in the Bayesian setting. Our mechanism generalige completely private. However, when the valuations are peiva
to general interference models. To the best of our knowledge no truthful auction mechanism can give any performance
ours is the first work to design a polynomial-time truthful guarantee on the revenue (see Section II-A). Thus, we censid

Spectrum auction mechanism with a performance guarantee on e re|axedBayesiarsetting wherein the bidder valuations are
the expected revenue. We demonstrate the performance of our drawn from publicly-known probability distributions

designed mechanism through simulations.
) Our Contribution. For the Bayesian setting, we design a
I Introduction polynomial-time spectrum auction mechanism that is tuithf

Usage of wireless spectrum has long been governed &yd yieldsO(1)-approximate expected revenue. Our mecha-
governmental regulatory authorities (e.g., FCC in USA diism extends to general interference models and other gen-
Ofcom in UK) who divide the spectrum into fixed size chunksralizations. To the best of our knowledge, ours is the first
to be used strictly for specific purposes, such as broadcastrk to design a polynomial-time truthful spectrum auction
radio/TV, cellular/PCS services, wireless LAN, etc. Thiwa that offers a performance guarantee on the expected revenue
cation is very long-term and space-time invariant, and isrof
based on peak usage. Such long-term allocation of spectrum Il. Background and Related Works
introduces significant inefficiencies in utilization [1]hiis, a
new policy trend [2] is to make spectrum access dynamic.
case of cellular networks, centralized architectures{5]3or
dynamic spectrum access have gained a lot of interest. Im s

models, a spectrum broker periodically allocates spectru

to competing base stations using an auction-based maddtfoduced thecoordinated dynamic spectrum accgEDSA)
mechanism. Success of such a model depends on the deg@ﬁiel .for ceIIu_Iar networks. In the CDSA model, there is a
of scalable and efficient spectrum market mechanisms. FlawEntralized entity known as thepectrum brokewho owns
market designs for a precious commodity like spectrum c4nPart of the spectrum called theoordinated access band
lead to significant market inefficiencies and adverse ecomonyAB). The spectrum broker divides the CAB into channels
impacts. This happened in the restructured electricityketar (CONtiguous or non-contiguous blocks of frequency). Theeba

in CA in 2000 which made international headlines, leading {§ations bid for these available channels by specifying a
many studies [6-10]. bidding price. Periodically, the spectrum broker allocatiee

A natural objective of an auction-based mechanism ghannels to the base stations under the “wireless intertere
to maximize the generaterbvenue(total payments by the constraint” such that the total revenue (sum of payments by

buyers) [4,5,11,12]. However, such an objective alone cihe base stations) is maximized. The above auction-based

encourage the spectrum buyers to lie about their real viahmt aPProach allows the base stations to bid according to the
(i.e., an “untruthful” auction), instill fear of market mamula- spectrum demands, and the spectrum broker to maximize the

tion, and indirectly possibly lowered revenue. Moreovarai '€Venue. However, to eliminate the fear of market manipuat
competitive environment, buyers may spend a lot of timefeff @nd allow the bidders to have simple bidding strategies,
in predicting the behavior of other buyers and planning asfai truthful auction mechanisms are desired.

them. In this article, our focus is on designing a spectrum_ Truthful Auction Mechanisms

auction mechanism that not only encourages truthful bemavi

but also provides some form of guarantee on the revenue. 5\,ction Mechanism. In an auction [13], a set of rational

Model and Contribution. In a spectrum auction, the itemsbidders compete over one or more items through a bidding
being sold are various channels corresponding to cert&¥stem. An auction is described by the following:
blocks of frequency. The base stations bid for these channel « A finite setO of allowed outcomes

fynamic Spectrum Access.In the dynamic spectrum ac-
cess architectures, the spectrum is allocated dynamiaally
§patial and temporal domains, to be more responsive to user
mands, and thus, improving utilization. Buddhikot e{H],



o Each bidderi has a privately-known real functiom; : to deal with an astronomical bidder even in the simplest case
O — R called itsvaluation function which quantifies of a single-item auction. Thus, we consider a relaxed sgttin
the bidder’s benefit from each outcome. known as theBayesiansetting, wherein the valuations are

« Bidders are asked to declare their valuation functions; ldtawn independently from publicly-known distributionsnU
w; denote thedeclared valuation functioof the: bidder. der such a setting, it is possible to design truthful mectrasi
The bidders may lie about their valuation functions; thusith maximumexpectedrevenue for simple bidders [16], as
w; may not be equal te;. described below. In this paper, we essentially extend this

o An auction mechanisnchooses an outcome based on classical result to spectrum auctions.
some criteria over the declared valuation functions. ] ) . )

« In addition to choosing an outcome, the auction mech&: Bayesian Setting and Myerson's Optimal Mechanism
nism also charges each biddea paymenp,. In this subsection, we describe the classical Myerson's opt

« Utility u; of a bidderi is the difference between its truemal mechanism for single-parameter auctions in the Bagesia
valuation of the chosen outcomeand its paymenp;, setting. We start with basic definitions.

i.e., u; = v;(0) — p;. Each bidder’s goal is to maximize _. . . .
its utility Single-parameter Auctions.In a single-parameterauction,
o . . each bidder has a publicly-known set of outcomés C O
OE;ET:'SS;(;;’ZUSCE?gnM;uccr;%r::srR'r? ;_jgosemtehceh:r?itsr?wf iSkrzllown as itsvinning alternativesnd a privateraluation-value
pair of functions(x. ») such that: ) v; such thaw(o) = v; for everyo € O; andv(o) = 0 for every
P ’ (x,p) o ) ) o € O;. Bidders declare (perhaps, untruthfully) their valuation
o The winner determination fl_mc_tlom accepts as mpgt @ yalue as theibid w;.
vectorw = (w1, ...,w,) of bidding (declared valuation)

functions and returns an outptw) € O (Valid) Allocation Vector. In a single-parameter auction, an

. The payment functiom(w) = (pi(w) pa(W)) re- outcome can be represented byadlncation vectorof n binary
turns a real vector quantifying the payment charged B{Afiaplese = (w1,...,z,), whereu; is 1 if the bidderi wins
g and zero otherwise. However, not all 0-1 vectors of length

the mechanism to each of the bidders. dt ‘ f th hani The 0-1
Definition 2: (Revenug The revenue of an auction mech-may correspond 7o an oufcome of The mechanism. 'he B-

. . vectors that correspond to an outcome are referred tahd
anism(x, p) is the sum of the paymenis , p;(w) charged to . : . : : . .
: : i allocation vectorsFor instance, in a single-item auction with
the bidders for a given declared valuation veator

4 bidders, wherein the item is given to one of the 4 bidders,
Truthful Auction Mechanisms. In a selfish environment, (0,0,0,1) is a valid allocation vector while (0,1,1,0) istr
bidders may not declare their valuation functions trutlyful valid allocation vector.

if it were to their advantage (result in increase of theitity. . . . : . .
Such a behavior may severely damage the resulting welf gyesian Setting.In a traditional auction setting, the bid-

and force each bidder to have complex bidding strategit gr's valgation Is privately—known information which make
jgmpossmle fortruthful auctions to make any guarantees on

based on its belief/lknowledge about the strategies of ot d 14.15] To ci hi I

bidders. A truthful mechanism enforces bidders to beha £ egenera_totla rzverr:;e[ N ] o_cwcr:va_entt 'i’ lrat'add C

truthfully by offering them incentives in the form of redute ave considere _t ayesian settingvherein cach bidders
E?&Jatlon-valuevi is drawn from a known probability distri-

payments. These incentives are based on the presumption
each bidder’s objective is to maximize its utility. ution F; [17].

Definition 3: (Truthful Auction Mechanisms.)Given the Myerson’s Optimal Mechanism. In a seminal work [16],
valuation functions, in a truthful auction mechanism, eaQ{Ayerson presents a truthful 0ptima| mechanism for a Sing|e-
bidder's utility is maximized when it truthfully declaressi jtem auction under the Bayesian setting. Here, we briefly

valuation functionv;. present the key points [17] of Myerson’s mechanism applied
More formaIIy, let the true valuation functions of the bidsle to the more genera| Sing|e_parameter auctions.

bev = (vi,...,v,). Consider two declared valuation function Given, for each bidder, the winning alternativesD;,

vectors, viz., (W = (W1,...,W;—1,V;,Wiy1,...,W,), and  declared valuation-value (bid);, and the distributio; of the

(i) W' = (Wi, .. W1, W, Wity ..., W,,) (Wherew; # Vv;).  private valuation-value;, the mechanism finds an allocation

A mechanism(x, p) is consideredtruthful if v;(X(W)) — vector and payments such that truthfulness is maintained an

pi(W) > v, (X(W)) — p;(w') for all v, i, andw;. O the expected revenue is optimal where the expectation &ntak

Truthfulness and Revenue Maximizationn an untruthful over the randomness in bidders’ valuations [17]. Myerson’s
auction, bidders may bid much lower (than their actual valimechanism is based on the following characterization of
ations) which may indirectly lead to lowered revenue. Thuguthful mechanisms for single-parameter auctions.

unless truthfulness is enforced, maximizing revenue may no Theorem 1 ([17, Theorem 13.6]Consider a  single-
be effective. On the other hand, if truthfulness is enforcedarameter auction, wherein the losers pay nothing (i.e.,
then it is not possible [14,15] to give any guarantees an = 0 implies p; = 0). Under the Bayesian setting, a
the generated revenue relative to the optimal revenue, faechanism is truthful if and only if, for any biddérand any
mechanisms with private valuations. Basically, there isvay fixed choice of bids by the other bidders:




(i) x; is monotone nondecreasing iy, and item (a direct consequence of the spatial reuse of spectrum
(i) the paymentp, for any winning bidderi is set to the channels) and wireless interference constraints. Moredive
critical value t;, which is the minimum valueé needs corresponding optimization problem of maximizing expecte
to bid in order to win. Note that, in general, depends revenue in the context of spectrum auctions is NP-hard (see
upon the bids of the other bidders. g Section Ill). Below, we start with discussing recent works o
Given the above theorem, to specify a truthful mechanisrfuthful spectrum auctions.
we need to only specify a winner determination functiomruthful Spectrum AuctionsTo the best of our knowledge,
that satisfies the first condition of the theorem; the paysienihere has been only three works till date, viz., [24,26, 27],
can be derived from the second condition. In [16], Myersahat have designed truthful mechanisms for spectrum auctio
specifies the winner-determination function based onteit \We have already discussed [24] in the previous paragraph; we
bids,” and shows that it leads to optimal expected reverfue discuss the other two works below.
the payments are determined as described above. The truthful mechanism designed by Zhou et al. [26]
Virtual Bids and Surplusviyerson’s mechanism [17] starts bydoes not attempt to maximize the revenue or social-welfare.
replacing each bidv; with a virtual-bid ¢;(w;) as follows. ~ Moreover, their approach is limited to only simple pairwise
terference model. As observed in [14, 26], it is rather gin&i

¢i(w;) = w; — il(wa, (1) forward to design a truthful auction mechanism without any

fiwi) regard for revenue or social-welfare. However, the authors

where f;(z) = %Fi(x) is the probability density function. in [26] do show through simulations that their mechanism
For a given outcome» = (w1,s2,...,T,), the virtual returns better revenue and social-welfare compared to plgim

surplusis defined as the sum of winning virtual-bids, i.e.fruthful mechanism. Recently, this work has been extended t
>, xi¢i(w;). The following theorem is key to the design ofconsider double auctions [28].
an optimal truthful mechanism. In another work, Wu et al. [27] design a spectrum auction
Theorem 2 ([17, Theorem 13.10]fhe expected revenuemechanism based on the truthful VCG mechanism [13]. They
of any truthful mechanism under the Bayesian setting is lequacus on modifying the VCG payment function to eliminate
to its expected virtual surplus. Here, the expectationsaken colluding attacks by losing bidders and to improve the total
over the distributions of the valuations. m revenue. However, their altered payment scheme destreys th
Myerson’s Mechanism, and its Extensiondyerson’s mech- truthfulness property of the VCG scheme. In addition, their
anism essentially determines an outcome that maximizes fREChanism requires solving an integer linear programming
virtual surplus, and uses payments based on condition f(ii) Q\P-hard) problem, which makes their approach impractical
Theorem 1. By the virtue of the above two theorems, suchf@ large networks. Note that in practice, cellular netweork
mechanism will be truthful and optimal, if (and only if) theMay have thousands of base stations [29]. Finally, theyrassu
¢i(w;)'s are monotonically nondecreasing in [17]. either a single-channel system or that each bidder is istiede
Myerson’s technique can be easily extended to more gendfaPnly one channel in a multi-channel system.
single-parameter auctions [18—-20]. Some other works ha@ther Works. Recently there have been lots of works on
also extended Myerson’s technique to simple multi-parametlynamic spectrum allocation [4,5,11,12,30] using either
settings [21-23]. auction-based or pricing-based mechanisms, but all ofethes
works have ignored the truthfulness property.

Applying Myerson’s Mechanism To Spectrum Auctions.
In a recent work, Jia et al. [24] present a simple extension |||. Truthful Spectrum Auction with Approximate
of Myerson’s mechanism for spectrum auctions. However, the Expected Revenue

extension results in an exponential-time mechanism, sinee

corresponding virtual-surplus maximizing problem is N&<h . . ! . .
- . . : signing truthful spectrum auctions with approximate expdc
Realizing the seriousness of this shortcoming, [24] prissan . e ,
S ) revenue. Throughout the article, we use the terms “bidded’ a
polynomial-time mechanism based on the greedy mechani Mce station” interchanaeabl
of [25]. However, the expected revenue delivered by such a 9 Y-

mechanism can be arbitrarily bad, as shown in Section Ill. Spectrum Auction Model. Our model of a cellular network
Our Work. In this article, we present a polynomial-time truth£onsists of a set of geographically distributed base statio
ful spectrum auction mechanism whose expected revenueSRectrum is divided intaorthogonal channels of the same
within a constant factor of the optimal expected revenua. OfyPe, and thespectrum auctioninvolves each base station
mechanism is based on the above described Myerson’s tebi§lding for a certain number of channels. Each base station
nique, and involves computing an allocation with approxena(bidder) i has a publicly-knowrdemandfor d; number of

In this section, we define and address the problem of de-

virtual surplus in polynomial-time. channels. The demant] determines the winning alternatives
for i to be the outcomes whereingets at leastl; channels.
C. Related Work Each bidderi declares its valuation-value (bid); for the

Traditional auction mechanism are not directly applicable winning alternatives, which may be different than its ptéva
spectrum auctions due to the “multi-winner” property of lracvaluation-valuey;. We consider the Bayesian setting, wherein



the valuation-valuey; is drawn randomly from a publicly- an L

known probability distributionF;. (1,1)
p y \ (m, m) (m, m) /

Interference Graph. Each base station is associated with a (m, m) -
region around it called itxoverage-cejl each base station M (m,m)
serves its clients in its coverage-cell. To communicate, th i
base station and the client must operate “interference-fsa —
a channel. In cellular networks, wireless interferenceliemt .
may arise due to multiple near-by base stations operating on 7 \
the same channel. In a simple modelpafirwise interference / \
pairs of base stations with intersecting coverage-celissaid Fig. 1. Counter example for the Greedy mechanism. The fighosvs the
to interferewith each other if operating on the same channelterference graph over given base stations. The (demadji pair for the
d th b . d h S ‘\inner” bidders is(m, m), while for the “outer” bidders i1, 1); herem is
an _t us'_mUSt not be _assngne a Co_mmon channel. SUCHleAotal number of channels. The bids are constant, andehesirtual-bid
relationship between pairs of base stations can be refgsgbernf each bidder is equal to its bid. Since all the bidders h&reesame rank
by edges in an interference graph, as defined below. (= virtual-bid/demand), the Greedy mechanism may picktadl duter bidders
Definition 4: (Interference GraphG;.) The interference and yield a total revenue ofi/2, while the optimal revenue g2 /4.
graphG, = (N, E;) is an undirected graph where each verteRecent Work on TSA-MERln_ a recent work, Jia et al. [24]
represents a base station and there is an ddgd < E; extended Myerson’s mechanism for the TSA-MER problem.

betweeni and j if the coverage-cells of the correspondingiowever, since maximization of virtual surplus is NP-hard,
base stations intersect. 0 due to the interference constraint, Myerson’s techniqulg on
If the coverage-cells of the base stations are unit-radiyf#¢lds an exponential-time mechanism. Thus, [24] designed
disks, then the interference graph isuait-disk graph For @ Greedy-heuristic mechanism for the TSA-MER problem
clarity of presentation, we assume unit-disk interference grapi@s follows. First, the Greedy algorithm sorts the bidders

below.L ater, we extend our techniques to pseudo-disk graphs in decreasing order of their virtual-bid per channel (i.e.,
and physical interference model. ¢i(w;)/d;). Then, the algorithm considers each bidder in
the sorted order, and adds it to the allocation vector if the

Valid Spectrum Allocation. Given an interference graph andinterference constraint is not violated. Note that to check

the demands;;, thg spgctrum -allocat|on mu_st be done in Sufﬁe violation of interference constraint efficiently, weedeto
a way that no pair of"mterferlng base statllqns. are allocate aintain the channels-to-bidders assignment functiamallyj,
common channell..Thmterferer.lce constrains mco_rporated the payments by the winners are determined as suggested in
in the below definition of a valid spectrum allocation. Theorem 1. By Theorem 1, it is easy to show that such a

Definition 5: (Valid Sp_ectrum AIIoca_t|on.) Let” and ¢ mechanism is truthful. However, the revenue yielded by such
be the set of base stations and available channels, andal%reed mechanism can be arbitrarily bad. (see Figure 1)
P(C) denote the power set a@f. A binary allocation vector y y i 9 )

. . L . . Below, we design a polynomial-time mechanism that is
(z1,...,2)v)) is consideredvalid if there is an assignment, . ..o 1" 204 vields a valid spectrum allocation wigpprox-
a:V — P(C) such that (i)|a(i)|] > d; for all i where y P P

2 = 1, and (i) a(i) N a(j) = 0 if (i, ) is in E,. o [mateexpected revenue.

It can be shown it is NP-complete to test whether a given abutline of the Truthful Mechanism with Approximate
location vector is valid, through a reduction from the perhl Expected RevenueBased on Theorems 1 and 2 of Subsec-
of partitioning a graph into minimum number of independenion 11-B, our method for designing a truthful spectrum aot
sets. Thus, it is desirable for the auction mechanism toututpmechanism with approximate expected revenue is outlined in
the assignment functiom in additionto the allocation vector, the following two steps:

as is done by the mechanisms designed in this article. 1) Determine a valid spectrum allocation with approximate

TSA-MER (Truthful Spectrum Auctions with Maximum virtual surplus, satisfying condition (i) of Theorem 1.

Expected Revenue) ProblemGiven an interference graph, 2) Determine payments using condition (ii) of Theorem 1.

the number of available channels, and the bid-demand pgje discuss the above steps in the following paragraphs.

of each base station along with the distribution from which ) . ) ] i

the valuation was drawn, tHESA-MER problenis to design Valid Allocation with Approximate Virtual Surplus. Given

a truthful auction mechanism that returns a valid spectrufan€Work with base stations, the unit-disk interferencpby

allocation with maximum expected revenue. the demand-bid pairs, and the probability distributions of
Thus, the TSA-MER problem involves determining (i) 4he bidder valuations, we determine a valid allocation with

valid spectrum allocation, and (ii) payments by each bidd(_gpproximate vir_tual surplus as follows. B_asically, we d'tvthe

so that the overall mechanism is truthful and the expect&ftire network into small hexagonal regions, solve the &mp

revenue is optimal. The TSA-MER problem can be shown fPtimization problem in each hexagon independently, and

be NP-hard, by a reduction from the maximum independen
y P the note that [24] actually considers a more general modelkitedid-

set pro_blgrr_\, S'n_ce maximizing eXpeCteq reveque 1S eqmval%emand pairs are associated with a service provider whidltrals multiple
to maximizing virtual surplus (sum of virtual-bids). base stations. We consider such a generalization in Selfién

’
;
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then, “combine” the solutions. At a high-level, our algbrit
consists of the follows steps.

1) Replace each bid; with avirtual-bid ¢;(w;) as defined
by Equation (1).

2) Divide the entire network region into small hexagons of
unit side-length.

3) Uniformly-color the hexagons with seven colors.

4) Allocate channels to base stations in each hexagon
independentlytreating it as a Knapsack problem where
the virtual-bids are the “values” of items to be placed ) ] ] )
in the knapsack and the demands are their “weighté!eeded’ the de.rlved aIquauon can be_easny converted into
The well-known fully polynomial-time approximation@ channels-to-bidders assignment function.
scheme (FPTAS) [31] can be used to getla+ ¢)- Post-Processing Stee will show in Theorem 3 that the
approximate virtual surplus of each hexagon for angbove allocation algorithm satisfies the monotonicityzgs
e > 0. Note that the interference subgraph in eacfi.e., the first condition of Theorem 1). Incidentally, wenca

Fig. 2. Hexagons uniformly-colored using 7 colors.

hexagon is actually a complete graph. further improve the above allocation algorithmithout violat-
5) For each color, combine the results from all hexagomsg the monotonicity of:;’s (as will be shown in Theorem 3),
of that color. by allocating more bidders in a greedy manner. In particular

6) Pick the color that has the highest total virtual surpluge sort theremainingbidders by their virtual-bids per demand
and allocate the channels to the winners accordingly.(i.e., ¢; (w;)/d;), and consider them for allocation in that order

7) Perform a post-processing step to greedily satisfy thgthout violating the interference constraint. To effidign
demands of more base stations. implement the above, we would need to maintain the channels-

The resulting allocation is guaranteed to have at leasti@Pidders assignment function. We note that the above- post
1/7(1 + ¢)-factor of the optimal virtual surplus for any> 0. Processing however does not improve the approximatioofact
Moreover, its running time is polynomial i/e and the size ©f our algorithm.

of the input, i.e., inn andlogm, wheren is the number of petermining Payments. The payments are determined ac-
base stations and: is the number of channels. cording to Theorem 1 as follows. For each winngrwe
Plane Division and ColoringA basic idea in our algorithm is use a binary search to find its critical valug(for the given
to divide the plane into hexagons of unit side-length (thufixed bids of other bidders) such thawins if w; > ¢; and
creating a hexagonal division of the plane), and proceed lses otherwise. Note that such a valyeis guaranteed to
“uniformly” coloring these hexagons using 7 colors. Seexist, since our allocation algorithm results in monotatiic
Figure 2. In such a coloring, the following two propertiescho nondecreasing:;’s. Then, for each such winning bidder, we
Property 1 Every pair of base stations in the samseet Its pay.menpi ast;. Losmg bidders pay £ET0.
h . , The critical values for bidders who win in the post-
exagon interfere with each other. : ) oo
. . . rocessing step can be determined using ideas based on the
Property 2 Base stations in different co-coloreq "~ : N . L
. . critical neighbor” technique of [24]. The critical valueoif
hexagons do not interfere with each other.” . _ Lo . . . .
a bidderi who wins in the first step (involving coloring of
Property 1 follows directly from the definition of unit- hexagon cells) can be computed using at Mestumax runs
disk interference, whilePr operty 2 follows from the fact of the allocation within its hexagon céliollowed by the above
that the distance between base stations in different car@dl “critical neighbor” technique; herev,,., is the maximum
hexagons will be at leagt,/3(7) —2) > 2 (from Lemma 2). valuation-value of any bidder. The latter part may be needed
Allocation in Each HexagoriThe above properties imply thatto determine the critical value for's win due to the post-
the channels cannot be re-used inside the same hexagon,ppacessing step; note that even if lowering the bid afakes
can be re-used across different hexagons of the same calisrhexagon color a loser in the first step, biddean still win
Thus, allocation in each hexagon can be treated as a Knaps@igk to the post-processing step.

problem where the virtual-bids are the “values” of items & bP,roof of Truthfulness and Approximation.

placed in the knapsack and the demands are their “weights Theorem 3:For the TSA-MER problem under the Bayesian
The FPTAS of [31] can thus be used to get(h+ e)- . : o . -
aporoximate virtual surplus of each hexadon for any 0 setting and the pairwise interference with unit-disk model
PP o P ) g ] ny. ' the above described mechanism is truthful and returns d vali
hexagons of same color do not interfere with each othgf the optimal expected revenue, for a giver 0. R
(Property 2), we can combine allocations of co-coloretproof: Truthfulness.By Theorem 1, we need to only show
hexagons to form one single allocation. Thus, we get seven
aIIoca}tlons, one for gach cplor. Amolng thesef seven allocsfi 2Note that the allocation within other hexagon cells doesamainge with
we pick the allocation with the highest virtual surplus. Ifhe variation ini's bid.




that our allocation algorithm results in monotonically ronfrom [32]. For the above pseudo-disk model, our technique
decreasingz;’s. First, note that the FPTAS algorithm usedvorks unchanged except that we ugdinstead of 7) colors

in each hexagon is monotonic since the FPTAS algorithta uniformly® color the hexagons, where

is an optimal algorithm over “scaled-down” values and the
optimal algorithm is trivially monotonic. Now, to show the? =

monotonicity of our overall mechanism, we need to consid§f can be shown [33] that such @coloring of hexagons
two cases: (i) when a biddéris selected as a winner in thegnsyrespr operty 2. Thus, the modified mechanism is

first step, and (ii) when a biddeiis selected as a winner in they,thful and yields ag(1 + ¢) approximate revenue.
post-processing step. In the first case, if the bids of aleoth

bidders remain fixed, then an increase in the bidwbuld not IV. Extensions

change _(a) the presence oin the FPTA_S k_napsack-solutmn In this section, we generalize our technique to physical
(due to its monotonicity), and (b) the winning of thglcolor Ofhterference model and the service-provider based bidding
i's hexagon. In the second case, increasing the bid il

NN oo , . model. We refer the reader to [33] for other generalization,
maintain its inclusion in the greedy post-processing stefil U i, " myltitype channels and fraction-minded bidding rebd
the color ofi's hexagon becomes a winning color. However,
when the color ofi's hexagon becomes a winning color (due\. The Physical Interference Model

to the increase in's bid),  must still remain a winner in its

min{z|z > 4r?/3 and & = i*+j%+ij where i, j € Z*}.

h herwise its h 's col dn't h b We now extend our techniques to the physical interference
exagon (otherwise its hexagon’s color wouldn't have ®0Mhodel. We start by introducing the physical interference

a winning color). model, and redefining the concept of valid spectrum allocati
Valid Spectrum AllocationBy virtue of Property 2 and in this context.

the fact that the allocation within each hexagon is a Kndpsac _ _

solution, the allocation constructed before the post-gssing Physical Interference Model. In the physical interference
step is valid. Since the post-processing step doesn't tgiolanodel, a reception at a certain distance from a base station

the interference constraints, the spectrum allocationrned 1S Successful, if the “signal to noise plus interferenceofat
by the designed mechanism is valid. (SINR) at the receiver is greater than a threshgldMore

formally, a reception from a base stations successful at a
point p if and only if,

Approximate Expected Revenugy Theorem 2, we only need

to show that the virtual surplus of the allocation delivelsd

the mechanism is within &1 +¢)-factor of the optimal virtual P/oy > 5 @)

surplus. Since the post-processing step only improvesotiaé t N+ ZJEB, P/6F — )

virtual surplus, we show below that the allocation before th ) ) o )

post-processing step hag @ +¢)-approximate virtual surplus, Where P is the uniform transmission poweh’ is the set of
Consider a particular color. For the set of alle-colored Other base stations operating on the same channgl&sis

hexagons, lef,. be the allocation constructed by our algorithni€ distance of the point from a base station:, ' is the
and O, be the allocation with the maximum virtual surplus@mbient noise, and: is the path loss exponent based on the

We show that the virtual surplus df. is within a factor of t€rrain propagation model.

(1+¢) of that of O... Note that for any particular hexagon cell.communication Radius ¢). The communication radius [11]
our algorithm constructs an allocation whose virtual susgs - of 3 base station is the maximum distance fromwithin
within a factor of(1+¢) of the optimal for that hexagon. Now, \yhich we wantthe SINR fromi to be at least as large @

by Property 2, the virtual surplus off. (O.) is equal to Egsentially, the above is based on the stipulation thatehet
the sum of the virtual surpluses of the constructed (opfimaiase station is a disk of radius-. In our context, the value of
allocations for the individuat-colored hexagons. Thus, the,. can pe arbitrarily large (but finite), since the approxiroati
virtual surplus of I is within (1 + ¢)-factor of that ofO.. ratio and time complexity of our designed algorithms are
Finally, the optimal virtual surplus of the full network ipper-  jndependent of. Thus, the concept of communication radius

the seven colors. Since the designed mechanism picks the

color with the highest virtual surplus, the virtual surplag Valid Spectrum Allocation. Let V,C, P(C) be the set of

the overall allocation of the designed mechanism is within dders, channels, and the power set of channels resplgctive
factor of 7(1 + ¢) of the optimal. g [nthe physical interference model, a spectrum allocatiecr v

. ) tor (x1,...,x,) is considered valid if there is an assignment
Pseudo-Disk Interference Graphs.We now consider the f,nctiona : V P(C) such that (i)|a(i)| > d; for all i

more generalpseudo-disk interference que/l/herein the wherez; = 1, and (ii) for anyi andc such that: € a(i), the
coverage cells of base stations may have irregular shages §i\R of channet: at any poinf within a distance of from i

are contained within a disk of radiug while containing a ghould be greater thaf, i.e., (P/6%) /(N +3 ., P/6%) > 3
disk of radiusre < ry. For clarity, we assume that andr, ! jeB 7o

are umform_for all bas_e stations, anglis u_mt; our teChn'_que_s SInformally, in a uniform coloring of hexagons, the distartoetween the
can be easily generalized to the non-uniform case usingidedosest” co-colored hexagons is uniform.




where B is the set of base stationssuch thatc € a(j) and "
d. is the distance of: from p. Overall Allocation Algorithm. As discussed above, dividing
Allocation Algorithm. The allocation algorithm for the phys-the region into hexagons of side-length (Equation (3))
ical interference model is similar to that for the pairwis@nd coloring them uniformly using; (Equation (5)) col-
interference model, except for the chosen side-length ef tars, allows us to satisfyPr operty 3 and Property 4.
hexagons and the number of colors used for uniform-coloriftj operty 3 ensures that allocation in each hexagon can be
of the hexagons. To ensure correctness of our approach in tteated as a Knapsack problem, wiieoper ty 4 allows us
context of physical interference, we need to do the hexagoit@ re-use channels across hexagons with the same color, Thus
division and coloring in such a way that the following twove can use the same allocation algorithm as in the previous
properties are satisfied. section for the pairwise unit-disk interference, with thmae
hexagonal division and coloring. Thus, we have the follayin
Property 3 Every pair of base stations in the same Theorem 5:For the TSA-MER problem under the Bayesian
hexagon cannot be concurrently active ofetting and the physical interference model, the above de-
the same channel. scribed mechanism is truthful and returns a valid spectrum
Property 4 If in each hexagon with the same colofllocation whose expected revenue is at lagst; (1+¢)) of
there is at most one active base statioe optimal expected revenue, for a given- 0. Here, g, is
then the transmission from each of thes#s defined in Equation (5). "
base stat_ion_s must pe successful within thedl' sepvice-Provider Based Bidding
communication radius.

Till now, we have implicity assumed the base stations
Plane Division and Coloringlt is not hard to see from the (i.e., their demands) are independent. We now consider a
SINR Equation (2) that dividing the network region intamore general model considered in [24], wherein base swtion

hexagons of side-length belonging to the same service provider bid collectively.ro
VB+1 formally, each given base station belongs a unique service
,_ (B+Dr 5 form ngs a unique
= B) 3) provider, and the demand of each service provider given

would ensure the satisfaction Bf operty 3. Here (and in BY (di1s diz; ..., dij, . "di?t’hwi) whered;; is the'?humbe.r of
Lemma 1 below), for simplicity, we have assumed the ambiepfannels required for thg'" base station of the serv;fcée
noise\ to be zero; nonzero noise can be incorporated usil%ov_'der’l is the total number of base stations for t

techniques similar to [32]. Now, to determine appropriae ¢ SETVice provider, and; is the bid (payment made) dll the
oring needed to satisfgr operty 4, we state the following above demands are satisfied. For simplicity, we assume a unit

three lemmas; we omit the proof of the first lemma, while th@iSk interference graph between the base stations. Now, to
latter two are derived from [29, 34]. extend our techniques for the above model, we need to assume

Lemma 1:Given a division of the region into hexagonéhat the distance between base stations of a service provide
of side-lengthr’, Property 4 is satisfied if the minimum is bounded. In other words, all the base stations belonging t

distance between co-colored hexagons is at |G\§(§FT’ a particular service providercan be enclosed in &-radius
whereg, is ! disk centered at a point;, whereR is a given constant.

) Our techniques generalize to the above model as follows.
;o 47 6/ 4 First, as before, we divide the region into hexagons of unit
T BVT- 6B D) @-2)) ° ) side-length, but use colors to uniformly color them where

2

. S B g = min{z|z > 4R?/3 and z = i*+j%+ij where i, j € ZT}.
Lemma 2:In a hexagonal division with side-lengiti and
uniformly-colored with = colors, the distance between thdJsing ¢z colors ensures that if a hexagon contains base
centers of a pair of co-colored hexagons is at leg@8t:r’. stations from different service provideisand j then their
corresponding disk-centers and z; (as defined above) are in
Lemma 3:A hexagonal division can be uniformly coloredhexagons of different colors. The allocation algorithm keor
using ¢ colors if and only ifc is of the formi2 + j2 445 for ~as follows.
some positive integersand j. = For each hexagon, we formulate and solve the following
The below theorem follows from the above three lemmagnulti-dimensional knapsack (MDKP) problem. Consider the
Theorem 4:Given a division of the region into hexagonsset of hexagong'(h) such thatf(h) contains a base station
of side-length’, the number of colorg; required to satisfy of a service providei whose disk-centet; lies in h. The
Property 4 is giverf by: MDKP problem hagf(h)| dimensions, and each dimension
has the size-constraint dff /7 where M is the total number
of available channels. An item of the MDKP is Ah)-
where i, j € Z"} () dimensional object corresponding to a demand-bid vectar of
“4Note that in our context we should use at least 7 colors, fjgetive of service providet whose disk-center, lies inh; here, demands
the values ofx and 5. for base stations of belonging to the same hexagon have

g =min{z | £ > ¢}, x> 7, and z = i* + j% +ij
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Fig. 3. Generated revenue (left-sigeaxis; black solid lines) and the spectrum utilization litigide y-axis; red dotted lines) on random (first row) and real
(second row) networks. The default number of channels i91B60r random networks, the default number of base stati®ri®00, while for real networks,
the default region is R2. The default uniform radius of theerage-cells is 50 units and 5 Km for random and real netwogkpectively.

been aggregated yieldingfd/)-dimensional object. Note that The default region is R2. For all regions, we choose a
|f(h)| is bounded due to bounde. Solution to the above realistic coverage-cell radius of 5 kms.
MDKP problem yields near-optimal allocation of channels to
base stations iff (k) that belong to service provider with disk-Channels, Demands, and BidsWe set up an auction of
centers inh. up to 1500 orthogonal single-type channels with the default

We solve the above MDKP problem for each hexagon being 1000 channels; this is a reasonable range based on
in the network region. Then, from thg colors, we pick the the past FCC auctions [14,36]. The demantjsare each
color ¢ such that the combination of the MDKP-solutions o€hosen randomly from the intervl, m], wherem is the total
the c-colored hexagons yields the most virtual surplus. It camumber of available channels, and the valuationare chosen
be shown [33] that the picked allocation is valid (partlyedurandomly (and uniformly) from [@/;] so that the valuation per
to the choice of\//7 constraint on each dimension of MDKPchannel of each bidder is in the uniform range of [0,1]. For
problems) and has & (1+¢)-approximate expected revenuesimplicity, we have chosen the valuation-distributidfis to

be the uniform distributions.
V. Simulation Results
) ) ) ] Auction Mechanisms Compared.In our experiments, we

The main purpose of our simulations is to compare the Pelsmpare our auction mechanism with the Greedy mechanism
formanc_e of our designed auction mech_anlsm with the Greegy [24], the only mechanism in the literature for the TSA-
mechanism of [24] under various settings and performangg-p hroplem. The Greedy mechanism is truthful, but has no
metrics. We start by describing our simulations set-up. 4 arantees on the expected revenue. We note that computing
Network. We consider two types of networks: the optimal revenue was computationally infeasible even for

. small networks.
« Random NetworksWe randomly place base stations

within a fixed area ofl000 x 1000 square units. We sjmuylation Results.We compare our enhanced auction mech-
vary the network density by varying the number ofnism with the Greedy [24] mechanism, in terms of the
base stations from 100 to 1500 (default being 1000). Henerated revenue and spectrum utilization. Herespieetrum
generate the interference graph, we use coverage-cellg @fization is defined a$", d;x;, the total number of channels
uniform radius, which is varied from 20 to 100 (defaulgjiocated across all bidders; it is a measure of the spatial
being 50) units. reuse of the spectrum. We conduct experiments for varying:
« Real Networks:We use locations of real cellular bas%) number of base StationS, (") number of Channe|S, an)j ("
stations available in FCC public GIS database [35] anfle uniform radius of the coverage-cells. We plot our result
choose base stations deployed in 4 different regions if Figure 3. We observe that our mechanism significantly
increasing size and number of base stations. outperforms Greedy in terms of revenue as well as spectrum
— R1: 843 base stations in the state of MA. utilization by an average factor of about 50%, for all paréene
— R2: 2412 base stations in the New England area. values. Moreover, the performance gap generally increases
— R3: 4467 base stations in New England and NY. with the the increase in the number of channels/base station
— R4: 8618 base stations in North East USA. or with the decrease in coverage-cells’ radius.
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Fig. 4. Performance ratio for “lop-sided” demands. The dedsal; are
randomly chosen fronf[1,Zm] U [m — Zm, m]) whereZ € [0, 1]. We use
random networks of size 1500 base stations with a unifornusadf 50 for
the coverage-cells, distributed uniformly in a region16H0 x 1000. Number
of channels is 1000.

Experiments With “Lop-Sided” Demands. In the above
experiments with randomly generated demands and bids,
mechanism outperforms the Greedy mechanism by about
50-60%. However, in some cases (as shown in Figure 3
Greedy mechanism can perform arbitrarily bad compar
to our mechanism. We now try to generate quasi-random
instances, wherein the performance of our mechanism is mut#
better compared to the Greedy mechanism. In particular, W&
consider randomly generated networks as before, but assign
“lop-sided” demands and almost-equal bids to bidders HSI
follows. First, we randomly choose the demandis from
([1,Zm] U [m — Zm,m]), whereZ is some value between
1/m and 1. Then, we assign the low-demand biddefse., [17]
bidders withd; in [1,Zm]) a per-channel bid chosen randomlyf18
from [0.95,1]; the (high-demand) bidders get a per-channel
bid from [0.9,0.95]. The above assignment of bids is intehde
to give a slight advantage to the low-demand bidders, f
allocation by the Greedy mechanism. Note that, in practigee]
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random distribution. The above specialized setting magcéfi 2
a scenario where small start-up concerns compete with laqgg
service providers.

In Figure 4, we show the performance ratio of our mech?’!
anism to the Greedy mechanism, in networks of 1500 bage)
stations with coverage-cells of radius 50 units random di
tributed in an region 0f 000 x 1000 units. Number of available [25]
channels is 1000. We see that the performance ratio is as hjgd)
as 2.5, for low values df, and as expected, the ratio decreases
with increase inzZ . 2

VI. Conclusions 28]

The recent trend of dynamic spectrum access creates_a
setting for auctioning pieces of wireless spectrum to cainge [29]
base stations. To mitigate market manipulation, a truthf{go]
spectrum auction is highly desired, so that bidders canlgimp
bid their true valuations. In this article, we designed attful Eg%}
spectrum auction that delivers an allocation with neairoal
expected revenue, in the Bayesian setting. We have shoW##l
the superiority of our mechanism over the Greedy mechanism
(the only known mechanism in the literature for our probleny}4]
using both theoretical and empirical analysis. In futurekyo

. o [35]
we would consider more general bidding models.
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