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Abstract—In cellular networks, a recent trend is to make
spectrum access dynamic in the spatial and temporal dimensions,
for the sake of efficient utilization of spectrum. In such a
model, the spectrum is divided into channels and periodically
allocated to competing base stations using an auction-based
market mechanism. An “efficient” auction mechanism is essential
to the success of such a dynamic spectrum access model. Two
of the key objectives in designing an auction mechanism are
“truthfulness” and revenue maximization. In this article, we
design a polynomial-time spectrum auction mechanism that is
truthful and yields an allocation withO(1)-approximate expected
revenue, in the Bayesian setting. Our mechanism generalizes
to general interference models. To the best of our knowledge,
ours is the first work to design a polynomial-time truthful
spectrum auction mechanism with a performance guarantee on
the expected revenue. We demonstrate the performance of our
designed mechanism through simulations.

I. Introduction

Usage of wireless spectrum has long been governed by
governmental regulatory authorities (e.g., FCC in USA or
Ofcom in UK) who divide the spectrum into fixed size chunks
to be used strictly for specific purposes, such as broadcast
radio/TV, cellular/PCS services, wireless LAN, etc. This allo-
cation is very long-term and space-time invariant, and is often
based on peak usage. Such long-term allocation of spectrum
introduces significant inefficiencies in utilization [1]. Thus, a
new policy trend [2] is to make spectrum access dynamic. In
case of cellular networks, centralized architectures [1, 3–5] for
dynamic spectrum access have gained a lot of interest. In such
models, a spectrum broker periodically allocates spectrum
to competing base stations using an auction-based market
mechanism. Success of such a model depends on the design
of scalable and efficient spectrum market mechanisms. Flawed
market designs for a precious commodity like spectrum can
lead to significant market inefficiencies and adverse economic
impacts. This happened in the restructured electricity market
in CA in 2000 which made international headlines, leading to
many studies [6–10].

A natural objective of an auction-based mechanism is
to maximize the generatedrevenue(total payments by the
buyers) [4, 5, 11, 12]. However, such an objective alone can
encourage the spectrum buyers to lie about their real valuations
(i.e., an “untruthful” auction), instill fear of market manipula-
tion, and indirectly possibly lowered revenue. Moreover, in a
competitive environment, buyers may spend a lot of time/effort
in predicting the behavior of other buyers and planning against
them. In this article, our focus is on designing a spectrum
auction mechanism that not only encourages truthful behavior
but also provides some form of guarantee on the revenue.

Model and Contribution. In a spectrum auction, the items
being sold are various channels corresponding to certain
blocks of frequency. The base stations bid for these channels,

based on their valuations. The auctioneer assigns channelsto
base stations within the “wireless interference constraint” and
determines payments from bidders. In the above context, we
wish to design a polynomial-time auction mechanism that (i)
encourages buyers to be truthful (i.e., ensures that the buyers
“benefit” the most when their bid is equal to their actual
valuation), and (ii) maximizes the generated revenue (sum of
the payments by the bidders).

In traditional auction settings, the bidder valuations are
completely private. However, when the valuations are private,
no truthful auction mechanism can give any performance
guarantee on the revenue (see Section II-A). Thus, we consider
the relaxedBayesiansetting wherein the bidder valuations are
drawn from publicly-known probability distributions.

Our Contribution. For the Bayesian setting, we design a
polynomial-time spectrum auction mechanism that is truthful
and yieldsO(1)-approximate expected revenue. Our mecha-
nism extends to general interference models and other gen-
eralizations. To the best of our knowledge, ours is the first
work to design a polynomial-time truthful spectrum auction
that offers a performance guarantee on the expected revenue.

II. Background and Related Works

Dynamic Spectrum Access.In the dynamic spectrum ac-
cess architectures, the spectrum is allocated dynamicallyin
spatial and temporal domains, to be more responsive to user
demands, and thus, improving utilization. Buddhikot et al.[1],
introduced thecoordinated dynamic spectrum access(CDSA)
model for cellular networks. In the CDSA model, there is a
centralized entity known as thespectrum brokerwho owns
a part of the spectrum called thecoordinated access band
(CAB). The spectrum broker divides the CAB into channels
(contiguous or non-contiguous blocks of frequency). The base
stations bid for these available channels by specifying a
bidding price. Periodically, the spectrum broker allocates the
channels to the base stations under the “wireless interference
constraint” such that the total revenue (sum of payments by
the base stations) is maximized. The above auction-based
approach allows the base stations to bid according to the
spectrum demands, and the spectrum broker to maximize the
revenue. However, to eliminate the fear of market manipulation
and allow the bidders to have simple bidding strategies,
truthful auction mechanisms are desired.

A. Truthful Auction Mechanisms

Auction Mechanism. In an auction [13], a set of rational
bidders compete over one or more items through a bidding
system. An auction is described by the following:

• A finite setO of allowed outcomes.
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• Each bidderi has a privately-known real functionvi :
O 7→ R called its valuation function, which quantifies
the bidder’s benefit from each outcome.

• Bidders are asked to declare their valuation functions; let
wi denote thedeclared valuation functionof the i bidder.
The bidders may lie about their valuation functions; thus
wi may not be equal tovi.

• An auction mechanismchooses an outcomeo based on
some criteria over the declared valuation functions.

• In addition to choosing an outcome, the auction mecha-
nism also charges each bidderi a paymentpi.

• Utility ui of a bidderi is the difference between its true
valuation of the chosen outcomeo and its paymentpi,
i.e., ui = vi(o) − pi. Each bidder’s goal is to maximize
its utility.

Definition 1: (Auction Mechanism.) LetO be the set of
possible outcomes of an auction. An auction mechanism is a
pair of functions(x, p) such that:

• The winner determination functionx accepts as input a
vectorw = (w1, . . . , wn) of bidding (declared valuation)
functions and returns an outputx(w) ∈ O.

• The payment functionp(w) = (p1(w), . . . , pn(w)) re-
turns a real vector quantifying the payment charged by
the mechanism to each of the bidders.

Definition 2: (Revenue) The revenue of an auction mech-
anism(x, p) is the sum of the payments

∑

i pi(w) charged to
the bidders for a given declared valuation vectorw.

Truthful Auction Mechanisms. In a selfish environment,
bidders may not declare their valuation functions truthfully,
if it were to their advantage (result in increase of their utility).
Such a behavior may severely damage the resulting welfare
and force each bidder to have complex bidding strategies
based on its belief/knowledge about the strategies of other
bidders. A truthful mechanism enforces bidders to behave
truthfully by offering them incentives in the form of reduced
payments. These incentives are based on the presumption that
each bidder’s objective is to maximize its utility.

Definition 3: (Truthful Auction Mechanisms.)Given the
valuation functions, in a truthful auction mechanism, each
bidder’s utility is maximized when it truthfully declares its
valuation functionvi.

More formally, let the true valuation functions of the bidders
bev = (v1, . . . , vn). Consider two declared valuation function
vectors, viz., (i)w = (w1, . . . , wi−1, vi, wi+1, . . . , wn), and
(ii) w′ = (w1, . . . , wi−1, wi, wi+1, . . . , wn) (wherewi 6= vi).
A mechanism(x, p) is consideredtruthful if vi(x(w)) −
pi(w) ≥ vi(x(w′)) − pi(w′) for all v, i, andwi.

Truthfulness and Revenue Maximization.In an untruthful
auction, bidders may bid much lower (than their actual valu-
ations) which may indirectly lead to lowered revenue. Thus,
unless truthfulness is enforced, maximizing revenue may not
be effective. On the other hand, if truthfulness is enforced,
then it is not possible [14, 15] to give any guarantees on
the generated revenue relative to the optimal revenue, for
mechanisms with private valuations. Basically, there is noway

to deal with an astronomical bidder even in the simplest case
of a single-item auction. Thus, we consider a relaxed setting,
known as theBayesiansetting, wherein the valuations are
drawn independently from publicly-known distributions. Un-
der such a setting, it is possible to design truthful mechanisms
with maximumexpectedrevenue for simple bidders [16], as
described below. In this paper, we essentially extend this
classical result to spectrum auctions.

B. Bayesian Setting and Myerson’s Optimal Mechanism

In this subsection, we describe the classical Myerson’s opti-
mal mechanism for single-parameter auctions in the Bayesian
setting. We start with basic definitions.

Single-parameter Auctions. In a single-parameterauction,
each bidderi has a publicly-known set of outcomesOi ⊂ O
known as itswinning alternativesand a privatevaluation-value
vi such thatv(o) = vi for everyo ∈ Oi andv(o) = 0 for every
o 6∈ Oi. Bidders declare (perhaps, untruthfully) their valuation-
value as theirbid wi.

(Valid) Allocation Vector. In a single-parameter auction, an
outcome can be represented by anallocation vectorof n binary
variablesx = (x1, . . . , xn), wherexi is 1 if the bidderi wins
and zero otherwise. However, not all 0-1 vectors of lengthn
may correspond to an outcome of the mechanism. The 0-1
vectors that correspond to an outcome are referred to asvalid
allocation vectors. For instance, in a single-item auction with
4 bidders, wherein the item is given to one of the 4 bidders,
(0,0,0,1) is a valid allocation vector while (0,1,1,0) is not a
valid allocation vector.

Bayesian Setting.In a traditional auction setting, the bid-
der’s valuation is privately-known information which makes
it impossible fortruthful auctions to make any guarantees on
the generated revenue [14, 15]. To circumvent this, researchers
have considered theBayesian settingwherein each bidder’s
valuation-valuevi is drawn from a known probability distri-
bution Fi [17].

Myerson’s Optimal Mechanism. In a seminal work [16],
Myerson presents a truthful optimal mechanism for a single-
item auction under the Bayesian setting. Here, we briefly
present the key points [17] of Myerson’s mechanism applied
to the more general single-parameter auctions.

Given, for each bidderi, the winning alternativesOi,
declared valuation-value (bid)wi, and the distributionFi of the
private valuation-valuevi, the mechanism finds an allocation
vector and payments such that truthfulness is maintained and
the expected revenue is optimal where the expectation is taken
over the randomness in bidders’ valuations [17]. Myerson’s
mechanism is based on the following characterization of
truthful mechanisms for single-parameter auctions.

Theorem 1 ([17, Theorem 13.6]):Consider a single-
parameter auction, wherein the losers pay nothing (i.e.,
xi = 0 implies pi = 0). Under the Bayesian setting, a
mechanism is truthful if and only if, for any bidderi and any
fixed choice of bids by the other bidders:
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(i) xi is monotone nondecreasing inwi, and
(ii) the paymentpi for any winning bidderi is set to the

critical value ti, which is the minimum valuei needs
to bid in order to win. Note that, in general,ti depends
upon the bids of the other bidders.

Given the above theorem, to specify a truthful mechanism,
we need to only specify a winner determination function
that satisfies the first condition of the theorem; the payments
can be derived from the second condition. In [16], Myerson
specifies the winner-determination function based on “virtual-
bids,” and shows that it leads to optimal expected revenue, if
the payments are determined as described above.

Virtual Bids and Surplus.Myerson’s mechanism [17] starts by
replacing each bidwi with a virtual-bid φi(wi) as follows.

φi(wi) = wi −
1 − Fi(wi)

fi(wi)
, (1)

wherefi(x) = d
dx

Fi(x) is the probability density function.
For a given outcomeo = (x1, x2, . . . , xn), the virtual

surplus is defined as the sum of winning virtual-bids, i.e.,
∑

i xiφi(wi). The following theorem is key to the design of
an optimal truthful mechanism.

Theorem 2 ([17, Theorem 13.10]):The expected revenue
of any truthful mechanism under the Bayesian setting is equal
to its expected virtual surplus. Here, the expectations aretaken
over the distributions of the valuations.

Myerson’s Mechanism, and its Extensions.Myerson’s mech-
anism essentially determines an outcome that maximizes the
virtual surplus, and uses payments based on condition (ii) of
Theorem 1. By the virtue of the above two theorems, such a
mechanism will be truthful and optimal, if (and only if) the
φi(wi)’s are monotonically nondecreasing inwi [17].

Myerson’s technique can be easily extended to more general
single-parameter auctions [18–20]. Some other works have
also extended Myerson’s technique to simple multi-parameter
settings [21–23].

Applying Myerson’s Mechanism To Spectrum Auctions.
In a recent work, Jia et al. [24] present a simple extension
of Myerson’s mechanism for spectrum auctions. However, the
extension results in an exponential-time mechanism, sincethe
corresponding virtual-surplus maximizing problem is NP-hard.
Realizing the seriousness of this shortcoming, [24] presents a
polynomial-time mechanism based on the greedy mechanism
of [25]. However, the expected revenue delivered by such a
mechanism can be arbitrarily bad, as shown in Section III.

Our Work. In this article, we present a polynomial-time truth-
ful spectrum auction mechanism whose expected revenue is
within a constant factor of the optimal expected revenue. Our
mechanism is based on the above described Myerson’s tech-
nique, and involves computing an allocation with approximate
virtual surplus in polynomial-time.

C. Related Work

Traditional auction mechanism are not directly applicableto
spectrum auctions due to the “multi-winner” property of each

item (a direct consequence of the spatial reuse of spectrum
channels) and wireless interference constraints. Moreover, the
corresponding optimization problem of maximizing expected
revenue in the context of spectrum auctions is NP-hard (see
Section III). Below, we start with discussing recent works on
truthful spectrum auctions.

Truthful Spectrum Auctions. To the best of our knowledge,
there has been only three works till date, viz., [24, 26, 27],
that have designed truthful mechanisms for spectrum auction.
We have already discussed [24] in the previous paragraph; we
discuss the other two works below.

The truthful mechanism designed by Zhou et al. [26]
does not attempt to maximize the revenue or social-welfare.
Moreover, their approach is limited to only simple pairwisein-
terference model. As observed in [14, 26], it is rather straight-
forward to design a truthful auction mechanism without any
regard for revenue or social-welfare. However, the authors
in [26] do show through simulations that their mechanism
returns better revenue and social-welfare compared to a simple
truthful mechanism. Recently, this work has been extended to
consider double auctions [28].

In another work, Wu et al. [27] design a spectrum auction
mechanism based on the truthful VCG mechanism [13]. They
focus on modifying the VCG payment function to eliminate
colluding attacks by losing bidders and to improve the total
revenue. However, their altered payment scheme destroys the
truthfulness property of the VCG scheme. In addition, their
mechanism requires solving an integer linear programming
(NP-hard) problem, which makes their approach impractical
for large networks. Note that in practice, cellular networks
may have thousands of base stations [29]. Finally, they assume
either a single-channel system or that each bidder is interested
in only one channel in a multi-channel system.

Other Works. Recently there have been lots of works on
dynamic spectrum allocation [4, 5, 11, 12, 30] using either
auction-based or pricing-based mechanisms, but all of these
works have ignored the truthfulness property.

III. Truthful Spectrum Auction with Approximate
Expected Revenue

In this section, we define and address the problem of de-
signing truthful spectrum auctions with approximate expected
revenue. Throughout the article, we use the terms “bidder” and
“base station” interchangeably.

Spectrum Auction Model. Our model of a cellular network
consists of a set of geographically distributed base stations.
Spectrum is divided intoorthogonal channels of the same
type, and thespectrum auctioninvolves each base station
bidding for a certain number of channels. Each base station
(bidder) i has a publicly-knowndemandfor di number of
channels. The demanddi determines the winning alternatives
for i to be the outcomes whereini gets at leastdi channels.
Each bidderi declares its valuation-value (bid)wi for the
winning alternatives, which may be different than its private
valuation-valuevi. We consider the Bayesian setting, wherein
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the valuation-valuevi is drawn randomly from a publicly-
known probability distributionFi.

Interference Graph. Each base station is associated with a
region around it called itscoverage-cell; each base station
serves its clients in its coverage-cell. To communicate, the
base station and the client must operate “interference-free” on
a channel. In cellular networks, wireless interference at aclient
may arise due to multiple near-by base stations operating on
the same channel. In a simple model ofpairwise interference,
pairs of base stations with intersecting coverage-cells are said
to interferewith each other if operating on the same channels,
and thus, must not be assigned a common channel. Such a
relationship between pairs of base stations can be represented
by edges in an interference graph, as defined below.

Definition 4: (Interference GraphGt.) The interference
graphGt = (Nt, Et) is an undirected graph where each vertex
represents a base station and there is an edge(i, j) ∈ Et

betweeni and j if the coverage-cells of the corresponding
base stations intersect.

If the coverage-cells of the base stations are unit-radius
disks, then the interference graph is aunit-disk graph. For
clarity of presentation, we assume unit-disk interference graph
below.Later, we extend our techniques to pseudo-disk graphs
and physical interference model.

Valid Spectrum Allocation. Given an interference graph and
the demandsdi, the spectrum allocation must be done in such
a way that no pair of interfering base stations are allocateda
common channel. Thisinterference constraintis incorporated
in the below definition of a valid spectrum allocation.

Definition 5: (Valid Spectrum Allocation.) LetV and C
be the set of base stations and available channels, and let
P (C) denote the power set ofC. A binary allocation vector
(x1, . . . , x|V |) is consideredvalid if there is an assignment
a : V 7→ P (C) such that (i)|a(i)| ≥ di for all i where
xi = 1, and (ii) a(i) ∩ a(j) = ∅ if (i, j) is in Et.

It can be shown it is NP-complete to test whether a given al-
location vector is valid, through a reduction from the problem
of partitioning a graph into minimum number of independent
sets. Thus, it is desirable for the auction mechanism to output
the assignment functiona in addition to the allocation vector,
as is done by the mechanisms designed in this article.

TSA-MER (Truthful Spectrum Auctions with Maximum
Expected Revenue) Problem.Given an interference graph,
the number of available channels, and the bid-demand pair
of each base station along with the distribution from which
the valuation was drawn, theTSA-MER problemis to design
a truthful auction mechanism that returns a valid spectrum
allocation with maximum expected revenue.

Thus, the TSA-MER problem involves determining (i) a
valid spectrum allocation, and (ii) payments by each bidder,
so that the overall mechanism is truthful and the expected
revenue is optimal. The TSA-MER problem can be shown to
be NP-hard, by a reduction from the maximum independent
set problem, since maximizing expected revenue is equivalent
to maximizing virtual surplus (sum of virtual-bids).

(1,1)(1,1)

(1,1)

(m,m)(m,m)

(m m)
(1,1)

(m,m)

(m,m)

Fig. 1. Counter example for the Greedy mechanism. The figure shows the
interference graph over given base stations. The (demand, bid) pair for the
“inner” bidders is(m, m), while for the “outer” bidders is(1, 1); herem is
the total number of channels. The bids are constant, and hence, virtual-bid
of each bidder is equal to its bid. Since all the bidders have the same rank
(= virtual-bid/demand), the Greedy mechanism may pick all the outer bidders
and yield a total revenue ofm/2, while the optimal revenue ism2/4.

Recent Work on TSA-MER.In a recent work, Jia et al. [24]
extended Myerson’s mechanism for the TSA-MER problem.1

However, since maximization of virtual surplus is NP-hard,
due to the interference constraint, Myerson’s technique only
yields an exponential-time mechanism. Thus, [24] designed
a Greedy-heuristic mechanism for the TSA-MER problem
as follows. First, the Greedy algorithm sorts the bidders
in decreasing order of their virtual-bid per channel (i.e.,
φi(wi)/di). Then, the algorithm considers each bidder in
the sorted order, and adds it to the allocation vector if the
interference constraint is not violated. Note that to check
the violation of interference constraint efficiently, we need to
maintain the channels-to-bidders assignment function. Finally,
the payments by the winners are determined as suggested in
Theorem 1. By Theorem 1, it is easy to show that such a
mechanism is truthful. However, the revenue yielded by such
a Greedy mechanism can be arbitrarily bad. (see Figure 1).

Below, we design a polynomial-time mechanism that is
truthful and yields a valid spectrum allocation withapprox-
imateexpected revenue.

Outline of the Truthful Mechanism with Approximate
Expected Revenue.Based on Theorems 1 and 2 of Subsec-
tion II-B, our method for designing a truthful spectrum auction
mechanism with approximate expected revenue is outlined in
the following two steps:

1) Determine a valid spectrum allocation with approximate
virtual surplus, satisfying condition (i) of Theorem 1.

2) Determine payments using condition (ii) of Theorem 1.

We discuss the above steps in the following paragraphs.

Valid Allocation with Approximate Virtual Surplus. Given
a network with base stations, the unit-disk interference graph,
the demand-bid pairs, and the probability distributions of
the bidder valuations, we determine a valid allocation with
approximate virtual surplus as follows. Basically, we divide the
entire network into small hexagonal regions, solve the simpler
optimization problem in each hexagon independently, and

1We note that [24] actually considers a more general model wherein bid-
demand pairs are associated with a service provider which controls multiple
base stations. We consider such a generalization in SectionIV-B.
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then, “combine” the solutions. At a high-level, our algorithm
consists of the follows steps.

1) Replace each bidwi with a virtual-bid φi(wi) as defined
by Equation (1).

2) Divide the entire network region into small hexagons of
unit side-length.

3) Uniformly-color the hexagons with seven colors.
4) Allocate channels to base stations in each hexagon

independently, treating it as a Knapsack problem where
the virtual-bids are the “values” of items to be placed
in the knapsack and the demands are their “weights.”
The well-known fully polynomial-time approximation
scheme (FPTAS) [31] can be used to get a(1 + ǫ)-
approximate virtual surplus of each hexagon for any
ǫ > 0. Note that the interference subgraph in each
hexagon is actually a complete graph.

5) For each color, combine the results from all hexagons
of that color.

6) Pick the color that has the highest total virtual surplus
and allocate the channels to the winners accordingly.

7) Perform a post-processing step to greedily satisfy the
demands of more base stations.

The resulting allocation is guaranteed to have at least a
1/7(1 + ǫ)-factor of the optimal virtual surplus for anyǫ > 0.
Moreover, its running time is polynomial in1/ǫ and the size
of the input, i.e., inn and log m, wheren is the number of
base stations andm is the number of channels.

Plane Division and Coloring.A basic idea in our algorithm is
to divide the plane into hexagons of unit side-length (thus,
creating a hexagonal division of the plane), and proceed to
“uniformly” coloring these hexagons using 7 colors. See
Figure 2. In such a coloring, the following two properties hold.

Property 1 Every pair of base stations in the same
hexagon interfere with each other.

Property 2 Base stations in different co-colored
hexagons do not interfere with each other.

Property 1 follows directly from the definition of unit-
disk interference, whileProperty 2 follows from the fact
that the distance between base stations in different co-colored
hexagons will be at least(

√

3(7) − 2) > 2 (from Lemma 2).

Allocation in Each Hexagon.The above properties imply that
the channels cannot be re-used inside the same hexagon, but
can be re-used across different hexagons of the same color.
Thus, allocation in each hexagon can be treated as a Knapsack
problem where the virtual-bids are the “values” of items to be
placed in the knapsack and the demands are their “weights”.
The FPTAS of [31] can thus be used to get a(1 + ǫ)-
approximate virtual surplus of each hexagon for anyǫ > 0.

Combining The Results.Since base stations in different
hexagons of same color do not interfere with each other
(Property 2), we can combine allocations of co-colored
hexagons to form one single allocation. Thus, we get seven
allocations, one for each color. Among these seven allocations,
we pick the allocation with the highest virtual surplus. If

62 515 6347
47 262 1 153 53 7476 62 1 2 1534

7 1 3 6 1 43
45 5
7 2276 34

Fig. 2. Hexagons uniformly-colored using 7 colors.

needed, the derived allocation can be easily converted into
a channels-to-bidders assignment function.

Post-Processing Step.We will show in Theorem 3 that the
above allocation algorithm satisfies the monotonicity ofxi’s
(i.e., the first condition of Theorem 1). Incidentally, we can
further improve the above allocation algorithm,without violat-
ing the monotonicity ofxi’s (as will be shown in Theorem 3),
by allocating more bidders in a greedy manner. In particular,
we sort theremainingbidders by their virtual-bids per demand
(i.e.,φi(wi)/di), and consider them for allocation in that order
without violating the interference constraint. To efficiently
implement the above, we would need to maintain the channels-
to-bidders assignment function. We note that the above post-
processing however does not improve the approximation factor
of our algorithm.

Determining Payments. The payments are determined ac-
cording to Theorem 1 as follows. For each winneri, we
use a binary search to find its critical valueti (for the given
fixed bids of other bidders) such thati wins if wi ≥ ti and
loses otherwise. Note that such a valueti is guaranteed to
exist, since our allocation algorithm results in monotonically
nondecreasingxi’s. Then, for each such winning bidder, we
set its paymentpi as ti. Losing bidders pay zero.

The critical values for bidders who win in the post-
processing step can be determined using ideas based on the
“critical neighbor” technique of [24]. The critical value for
a bidderi who wins in the first step (involving coloring of
hexagon cells) can be computed using at mostlog wmax runs
of the allocation within its hexagon cell2 followed by the above
“critical neighbor” technique; herewmax is the maximum
valuation-value of any bidder. The latter part may be needed
to determine the critical value fori’s win due to the post-
processing step; note that even if lowering the bid ofi makes
its hexagon color a loser in the first step, bidderi can still win
due to the post-processing step.

Proof of Truthfulness and Approximation.
Theorem 3:For the TSA-MER problem under the Bayesian

setting and the pairwise interference with unit-disk model,
the above described mechanism is truthful and returns a valid
spectrum allocation whose expected revenue is at least1

7(1+ǫ)
of the optimal expected revenue, for a givenǫ > 0.
Proof: Truthfulness.By Theorem 1, we need to only show

2Note that the allocation within other hexagon cells does notchange with
the variation ini’s bid.
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that our allocation algorithm results in monotonically non-
decreasingxi’s. First, note that the FPTAS algorithm used
in each hexagon is monotonic since the FPTAS algorithm
is an optimal algorithm over “scaled-down” values and the
optimal algorithm is trivially monotonic. Now, to show the
monotonicity of our overall mechanism, we need to consider
two cases: (i) when a bidderi is selected as a winner in the
first step, and (ii) when a bidderi is selected as a winner in the
post-processing step. In the first case, if the bids of all other
bidders remain fixed, then an increase in the bid ofi would not
change (a) the presence ofi in the FPTAS knapsack-solution
(due to its monotonicity), and (b) the winning of the color of
i’s hexagon. In the second case, increasing the bid ofi will
maintain its inclusion in the greedy post-processing step until
the color of i’s hexagon becomes a winning color. However,
when the color ofi’s hexagon becomes a winning color (due
to the increase ini’s bid), i must still remain a winner in its
hexagon (otherwise its hexagon’s color wouldn’t have become
a winning color).

Valid Spectrum Allocation.By virtue of Property 2 and
the fact that the allocation within each hexagon is a Knapsack
solution, the allocation constructed before the post-processing
step is valid. Since the post-processing step doesn’t violate
the interference constraints, the spectrum allocation returned
by the designed mechanism is valid.

Approximate Expected Revenue.By Theorem 2, we only need
to show that the virtual surplus of the allocation deliveredby
the mechanism is within a7(1+ǫ)-factor of the optimal virtual
surplus. Since the post-processing step only improves the total
virtual surplus, we show below that the allocation before the
post-processing step has a7(1+ǫ)-approximate virtual surplus.

Consider a particular colorc. For the set of allc-colored
hexagons, letIc be the allocation constructed by our algorithm
and Oc be the allocation with the maximum virtual surplus.
We show that the virtual surplus ofIc is within a factor of
(1+ǫ) of that ofOc. Note that for any particular hexagon cell,
our algorithm constructs an allocation whose virtual surplus is
within a factor of(1+ǫ) of the optimal for that hexagon. Now,
by Property 2, the virtual surplus ofIc (Oc) is equal to
the sum of the virtual surpluses of the constructed (optimal)
allocations for the individualc-colored hexagons. Thus, the
virtual surplus ofIc is within (1 + ǫ)-factor of that ofOc.
Finally, the optimal virtual surplus of the full network is upper-
bounded by the sum of optimal virtual surplus of each of
the seven colors. Since the designed mechanism picks the
color with the highest virtual surplus, the virtual surplusof
the overall allocation of the designed mechanism is within a
factor of 7(1 + ǫ) of the optimal.

Pseudo-Disk Interference Graphs.We now consider the
more generalpseudo-disk interference model, wherein the
coverage cells of base stations may have irregular shapes but
are contained within a disk of radiusr1 while containing a
disk of radiusr2 < r1. For clarity, we assume thatr1 andr2

are uniform for all base stations, andr2 is unit; our techniques
can be easily generalized to the non-uniform case using ideas

from [32]. For the above pseudo-disk model, our technique
works unchanged except that we useq (instead of 7) colors
to uniformly3 color the hexagons, where

q = min{x|x ≥ 4r2
1/3 and x = i2+j2+ij where i, j ∈ Z

+}.

It can be shown [33] that such aq-coloring of hexagons
ensuresProperty 2. Thus, the modified mechanism is
truthful and yields aq(1 + ǫ) approximate revenue.

IV. Extensions

In this section, we generalize our technique to physical
interference model and the service-provider based bidding
model. We refer the reader to [33] for other generalization,
viz., multi-type channels and fraction-minded bidding model.

A. The Physical Interference Model

We now extend our techniques to the physical interference
model. We start by introducing the physical interference
model, and redefining the concept of valid spectrum allocation
in this context.

Physical Interference Model. In the physical interference
model, a reception at a certain distance from a base station
is successful, if the “signal to noise plus interference ratio”
(SINR) at the receiver is greater than a thresholdβ. More
formally, a reception from a base stationi is successful at a
point p if and only if,

P/δα
i

N +
∑

j∈B′ P/δα
j

≥ β, (2)

whereP is the uniform transmission power,B′ is the set of
other base stations operating on the same channel asi, δx is
the distance of the pointp from a base stationx, N is the
ambient noise, andα is the path loss exponent based on the
terrain propagation model.

Communication Radius (r). The communication radius [11]
r of a base stationi is the maximum distance fromi within
which wewant the SINR fromi to be at least as large asβ.
Essentially, the above is based on the stipulation that the cell of
base stationi is a disk of radiusr. In our context, the value of
r can be arbitrarily large (but finite), since the approximation
ratio and time complexity of our designed algorithms are
independent ofr. Thus, the concept of communication radius
must not be looked upon as an assumption.

Valid Spectrum Allocation. Let V, C, P (C) be the set of
bidders, channels, and the power set of channels respectively.
In the physical interference model, a spectrum allocation vec-
tor (x1, . . . , xn) is considered valid if there is an assignment
function a : V 7→ P (C) such that (i)|a(i)| ≥ di for all i
wherexi = 1, and (ii) for anyi andc such thatc ∈ a(i), the
SINR of channelc at any pointp within a distance ofr from i
should be greater thanβ, i.e.,(P/δα

i )/(N+
∑

j∈B P/δα
j ) ≥ β

3Informally, in a uniform coloring of hexagons, the distancebetween the
“closest” co-colored hexagons is uniform.
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whereB is the set of base stationsj such thatc ∈ a(j) and
δx is the distance ofx from p.

Allocation Algorithm. The allocation algorithm for the phys-
ical interference model is similar to that for the pairwise
interference model, except for the chosen side-length of the
hexagons and the number of colors used for uniform-coloring
of the hexagons. To ensure correctness of our approach in the
context of physical interference, we need to do the hexagonal
division and coloring in such a way that the following two
properties are satisfied.

Property 3 Every pair of base stations in the same
hexagon cannot be concurrently active on
the same channel.

Property 4 If in each hexagon with the same color
there is at most one active base station,
then the transmission from each of these
base stations must be successful within their
communication radius.

Plane Division and Coloring.It is not hard to see from the
SINR Equation (2) that dividing the network region into
hexagons of side-length

r′ =
( α

√
β + 1)r

2
(3)

would ensure the satisfaction ofProperty 3. Here (and in
Lemma 1 below), for simplicity, we have assumed the ambient
noiseN to be zero; nonzero noise can be incorporated using
techniques similar to [32]. Now, to determine appropriate col-
oring needed to satisfyProperty 4, we state the following
three lemmas; we omit the proof of the first lemma, while the
latter two are derived from [29, 34].

Lemma 1:Given a division of the region into hexagons
of side-lengthr′, Property 4 is satisfied if the minimum
distance between co-colored hexagons is at least

√

3q′1r
′,

whereq′1 is

q′1 =

(

4
√

7

(3
√

7 − 6)( α

√
β + 1)

)2
(

6β

(α − 2)

)
2

α

. (4)

Lemma 2: In a hexagonal division with side-lengthr′ and
uniformly-colored with x colors, the distance between the
centers of a pair of co-colored hexagons is at least

√
3xr′.

Lemma 3:A hexagonal division can be uniformly colored
usingc colors if and only ifc is of the formi2 + j2 + ij for
some positive integersi andj.

The below theorem follows from the above three lemmas.
Theorem 4:Given a division of the region into hexagons

of side-lengthr′, the number of colorsq1 required to satisfy
Property 4 is given4 by:

q1 = min{x | x ≥ q′1, x ≥ 7, and x = i2 + j2 + ij

where i, j ∈ Z
+} (5)

4Note that in our context we should use at least 7 colors, irrespective of
the values ofα andβ.

Overall Allocation Algorithm. As discussed above, dividing
the region into hexagons of side-lengthr′ (Equation (3))
and coloring them uniformly usingq1 (Equation (5)) col-
ors, allows us to satisfyProperty 3 and Property 4.
Property 3 ensures that allocation in each hexagon can be
treated as a Knapsack problem, whileProperty 4 allows us
to re-use channels across hexagons with the same color. Thus,
we can use the same allocation algorithm as in the previous
section for the pairwise unit-disk interference, with the above
hexagonal division and coloring. Thus, we have the following.

Theorem 5:For the TSA-MER problem under the Bayesian
setting and the physical interference model, the above de-
scribed mechanism is truthful and returns a valid spectrum
allocation whose expected revenue is at least1/(q1(1+ ǫ)) of
the optimal expected revenue, for a givenǫ > 0. Here,q1 is
as defined in Equation (5).

B. Service-Provider Based Bidding

Till now, we have implicitly assumed the base stations
(i.e., their demands) are independent. We now consider a
more general model considered in [24], wherein base stations
belonging to the same service provider bid collectively. More
formally, each given base station belongs a unique service
provider, and the demand of each service provideri is given
by (di1, di2, . . . , dij , . . . , dil, wi) wheredij is the number of
channels required for thejth base station of theith service
provider, l is the total number of base stations for theith

service provider, andwi is the bid (payment made) ifall the
above demands are satisfied. For simplicity, we assume a unit-
disk interference graph between the base stations. Now, to
extend our techniques for the above model, we need to assume
that the distance between base stations of a service provider
is bounded. In other words, all the base stations belonging to
a particular service provideri can be enclosed in aR-radius
disk centered at a pointzi, whereR is a given constant.

Our techniques generalize to the above model as follows.
First, as before, we divide the region into hexagons of unit
side-length, but useq2 colors to uniformly color them where

q2 = min{x|x ≥ 4R2/3 and x = i2+j2+ij where i, j ∈ Z
+}.

Using q2 colors ensures that if a hexagon contains base
stations from different service providersi and j then their
corresponding disk-centerszi andzj (as defined above) are in
hexagons of different colors. The allocation algorithm works
as follows.

For each hexagonh, we formulate and solve the following
multi-dimensional knapsack (MDKP) problem. Consider the
set of hexagonsf(h) such thatf(h) contains a base station
of a service provideri whose disk-centerzi lies in h. The
MDKP problem has|f(h)| dimensions, and each dimension
has the size-constraint ofM/7 whereM is the total number
of available channels. An item of the MDKP is af(h)-
dimensional object corresponding to a demand-bid vector ofa
service provideri whose disk-centerzi lies inh; here, demands
for base stations ofi belonging to the same hexagon have
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Fig. 3. Generated revenue (left-sidey-axis; black solid lines) and the spectrum utilization (right-sidey-axis; red dotted lines) on random (first row) and real
(second row) networks. The default number of channels is 1000. For random networks, the default number of base stations is 1000, while for real networks,
the default region is R2. The default uniform radius of the coverage-cells is 50 units and 5 Km for random and real networksrespectively.

been aggregated yielding af(h)-dimensional object. Note that
|f(h)| is bounded due to boundedR. Solution to the above
MDKP problem yields near-optimal allocation of channels to
base stations inf(h) that belong to service provider with disk-
centers inh.

We solve the above MDKP problem for each hexagonh
in the network region. Then, from theq2 colors, we pick the
color c such that the combination of the MDKP-solutions of
the c-colored hexagons yields the most virtual surplus. It can
be shown [33] that the picked allocation is valid (partly, due
to the choice ofM/7 constraint on each dimension of MDKP
problems) and has a7q2(1+ǫ)-approximate expected revenue.

V. Simulation Results

The main purpose of our simulations is to compare the per-
formance of our designed auction mechanism with the Greedy
mechanism of [24] under various settings and performance
metrics. We start by describing our simulations set-up.

Network. We consider two types of networks:

• Random Networks:We randomly place base stations
within a fixed area of1000 × 1000 square units. We
vary the network density by varying the number of
base stations from 100 to 1500 (default being 1000). To
generate the interference graph, we use coverage-cells of
uniform radius, which is varied from 20 to 100 (default
being 50) units.

• Real Networks:We use locations of real cellular base
stations available in FCC public GIS database [35] and
choose base stations deployed in 4 different regions of
increasing size and number of base stations.

– R1: 843 base stations in the state of MA.
– R2: 2412 base stations in the New England area.
– R3: 4467 base stations in New England and NY.
– R4: 8618 base stations in North East USA.

The default region is R2. For all regions, we choose a
realistic coverage-cell radius of 5 kms.

Channels, Demands, and Bids.We set up an auction of
up to 1500 orthogonal single-type channels with the default
being 1000 channels; this is a reasonable range based on
the past FCC auctions [14, 36]. The demandsdi are each
chosen randomly from the interval[1, m], wherem is the total
number of available channels, and the valuationsvi are chosen
randomly (and uniformly) from [0,di] so that the valuation per
channel of each bidder is in the uniform range of [0,1]. For
simplicity, we have chosen the valuation-distributionsFi’s to
be the uniform distributions.

Auction Mechanisms Compared. In our experiments, we
compare our auction mechanism with the Greedy mechanism
of [24], the only mechanism in the literature for the TSA-
MER problem. The Greedy mechanism is truthful, but has no
guarantees on the expected revenue. We note that computing
the optimal revenue was computationally infeasible even for
small networks.

Simulation Results.We compare our enhanced auction mech-
anism with the Greedy [24] mechanism, in terms of the
generated revenue and spectrum utilization. Here, thespectrum
utilization is defined as

∑

i dixi, the total number of channels
allocated across all bidders; it is a measure of the spatial
reuse of the spectrum. We conduct experiments for varying:
(i) number of base stations, (ii) number of channels, and (iii)
the uniform radius of the coverage-cells. We plot our results
in Figure 3. We observe that our mechanism significantly
outperforms Greedy in terms of revenue as well as spectrum
utilization by an average factor of about 50%, for all parameter
values. Moreover, the performance gap generally increases
with the the increase in the number of channels/base stations
or with the decrease in coverage-cells’ radius.
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Fig. 4. Performance ratio for “lop-sided” demands. The demands di are
randomly chosen from([1,Im] ∪ [m − Im, m]) whereI ∈ [0, 1]. We use
random networks of size 1500 base stations with a uniform radius of 50 for
the coverage-cells, distributed uniformly in a region of1000×1000. Number
of channels is 1000.

Experiments With “Lop-Sided” Demands. In the above
experiments with randomly generated demands and bids, our
mechanism outperforms the Greedy mechanism by about
50-60%. However, in some cases (as shown in Figure 1),
Greedy mechanism can perform arbitrarily bad compared
to our mechanism. We now try to generate quasi-random
instances, wherein the performance of our mechanism is much
better compared to the Greedy mechanism. In particular, we
consider randomly generated networks as before, but assign
“lop-sided” demands and almost-equal bids to bidders as
follows. First, we randomly choose the demandsdi from
([1, Im] ∪ [m − Im, m]), where I is some value between
1/m and 1. Then, we assign the low-demand biddersi (i.e.,
bidders withdi in [1, Im]) a per-channel bid chosen randomly
from [0.95,1]; the (high-demand) bidders get a per-channel
bid from [0.9,0.95]. The above assignment of bids is intended
to give a slight advantage to the low-demand bidders, for
allocation by the Greedy mechanism. Note that, in practice,
there is no reason why the bids and demands should have a
random distribution. The above specialized setting may reflect
a scenario where small start-up concerns compete with large
service providers.

In Figure 4, we show the performance ratio of our mech-
anism to the Greedy mechanism, in networks of 1500 base
stations with coverage-cells of radius 50 units randomly dis-
tributed in an region of1000×1000 units. Number of available
channels is 1000. We see that the performance ratio is as high
as 2.5, for low values ofI, and as expected, the ratio decreases
with increase inI .

VI. Conclusions

The recent trend of dynamic spectrum access creates a
setting for auctioning pieces of wireless spectrum to competing
base stations. To mitigate market manipulation, a truthful
spectrum auction is highly desired, so that bidders can simply
bid their true valuations. In this article, we designed a truthful
spectrum auction that delivers an allocation with near-optimal
expected revenue, in the Bayesian setting. We have shown
the superiority of our mechanism over the Greedy mechanism
(the only known mechanism in the literature for our problem)
using both theoretical and empirical analysis. In future work,
we would consider more general bidding models.
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