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Abstract. Sensor networks are multi-hop wireless networks of resource
constrained sensor nodes used to realize high-level collaborative sensing
tasks. To query and access data generated and stored at the sensor nodes,
the sensor network can be looked upon as a distributed database. The
unique characteristics of sensor networks such as limited memory and en-
ergy resources at each node make efficient execution of database queries
in such networks a challenge. In particular, since message transmissions
is the dominant source of battery power consumption, communication
efficiency is the the main criteria of query optimization.
In this article, we consider energy-efficient implementation of the SQL
join operation in sensor databases, when the join selection condition
is a range predicate. Apart from two simple approaches, we propose
distributed hash-join and index-join algorithms for implementation of
range-join operations in sensor networks. Through extensive simulations,
we show that hash-join as well as index-join approaches significantly
outperform the simple approaches, even for moderately sized networks.
Our experiments also reveal that although both approach scale well,
the index-join algorithm performs better than the hash-join algorithm
especially in large sensor networks.

1 Introduction

Recent engineering advances in miniaturized computing devices and low-power
radios have enabled the development of wireless sensor networks. A sensor net-
work is a multi-hop ad hoc wireless network of resource constrained sensor nodes.
Each sensor node has limited computing capability and memory, and is equipped
with a short-range low-power radio, a small limited battery, and various sensing
devices. Sensor networks combine sensing, computing, and networking capabil-
ities to realize high-level sensing tasks in a collaborative manner. Due to their
autonomous nature, they have found significant applications [2, 8, 9] in monitor-
ing of otherwise inaccessible environments such as ocean floors, emergency-hit
areas, biological habitats, military battlefields, etc.

Each sensor node in a sensor network generates a stream of data items that
are readings (typically, scalar values) from its sensing devices. This motivates
visualizing sensor networks as distributed database systems [4, 11, 22]. Like tra-
ditional database systems, the sensor network database can also be queried to



access and manipulate the data tables, and the traditional database query lan-
guage SQL (Structured Query Language) with some extensions can be used as
a query language for sensor networks. Since sensor networks generate enormous
amounts of data, efficient implementation of SQL queries is of great significance.
Since, message communication is the main consumer of battery energy and sen-
sor nodes have limited battery power, it is important to implement the queries
in sensor networks with minimum communication cost. Moreover, due to the
limited computing and memory resources at each node, the query processing in
sensor networks is necessarily distributed.

In this article, we focus on communication-efficient implementation of certain
special cases of SQL join operation in sensor networks. In particular, we address
in-network processing of the SQL range-join operation, which is a special case
of the join operation when the selection condition involved is a range predicate.
We propose various distributed algorithms viz., naive, centroid, hash-join, and
index-join approaches for processing of the range-join operation. The proposed
hash-join algorithm can be shown to incur optimal communication cost under
certain simplifying assumptions. We compare the performance of our proposed
algorithms through extensive simulations.

Paper Organization. The rest of the paper is organized as follows. We start
with a background on sensor network databases, problem formulation and moti-
vation, and discussion on related work in Section 2. In Section 3, we present our
general approach of implementing range-joins in sensor networks, and propose
various algorithms viz., Naive, Centroid, Hash-join, and Index-join. Simulation
results are presented in Section 4. We end with concluding remarks in Section 5.

2 Range Join in Sensor Networks

In this section, we start with presenting an overview of sensor network databases.
In the following subsection, we motivate the problem of range-joins in sensor
networks. Finally, we present a discussion on related work.

2.1 Sensor Database Systems

A sensor network consists of a large number of sensors distributed randomly in
a geographical region. Each sensor has limited processing capability, is equipped
with sensing devices, and has a low-range radio. Two sensor nodes can commu-
nicate with each other if the distance between them is less than the transmission

radius. We assume that each sensor node in the sensor network has a limited stor-
age capacity. Also, sensors have limited battery energy, which must be conserved
for prolonged unattended operation.

Sensor Network Database. In a sensor network, the data generated by the
sensor nodes is simply the readings of one or more sensing devices on the node.
Each sensor produces data records/tuples of a certain format and semantics.
The sensor node that generates a particular tuple is referred to as its source



node. For example, sensor nodes may generate tuples for Temperature and
Disturbance tables, wherein a tuple for the Temperature table may be of the
form <nodeLocation, timeStamp, temperature> while a tuple for Disturbance
table may be of the form <disturbValue, timeStamp>. Due to the spatial and
real-time nature of the data generated, a tuple usually has timeStamp and node-

Location as attributes. Thus, each sensor node in a sensor network generates a
streams of data tuples, and groups of sensor nodes producing tuples with the
same format contribute to a single data stream table. In a sensor network, such
data stream tables can be looked upon as partitioned horizontally across (or
generated by) a set of sensors in the network. Tradition database query lan-
guage SQL is slightly modified [22] for use with data streams in sensor network
databases.

Motivation for In-network Implementation. A possible implementation
for a sensor database query engine is to route all the data generated by sensors
to an external database system and execute the queries there. In this scenario,
all the sensor nodes would send all the data generated to the external database
system. However, the above approach would incur a very high communication
cost and also cause congestion related problems. In fact, prior research [13] has
recommended developing in-network query processing techniques to minimize
communication cost (and hence, battery power). Thus, there is a great impetus
to design communication-efficient distributed query implementations in sensor
networks.

Sliding Windows of Data Streams. Complete and accurate processing of a
join of two data streams requires every tuple in one data stream to match with
every tuple in the other data stream, which is impractical in systems with limited
memory resources. To deal with unbounded data streams in limited memory
scenarios, only a finite set of tuples called a sliding window from each data
stream is maintained [10, 15]. A sliding window can be specified by a window

predicate which is typically based on tuple timestamps or join-attribute values.
Queries over data streams are essentially continuously running, and produce new
tuples in the query result whenever a new tuple from one of the operand data
stream arrives.

Query Source. In a sensor database system, a query is typically initiated at
a node called the query source and the results are routed to the query source
for storage and/or consumption. The query source maintains all the catalogue
information regarding the rate of tuple generations and set of source nodes for
the data streams, sliding window sizes, estimation of join result size, etc. The
above catalogue information is used in the query optimization algorithms. As
typical sensor network queries are long running, the query source can gather all
the catalogue information needed by initially sampling the operand data streams.

2.2 Problem Formulation and Motivation

Implementation of Range-Join in Sensor Networks. The SQL join (./)
operation is a binary operation used to correlate data from multiple tables. It is



defined as an application of a selection (join) predicate over the cartesian product
of a pair of tables. In this article, we consider a special type of join operation
viz., range-joins. Range-joins are joins wherein the join-predicate is whether
two columns (join-attributes, usually with the same semantics), one from each
operand table, have values that are within a given range of each other. Equi-

joins are a further specialization of range-joins wherein the join-predicate is an
equality of two columns, one from each operant table.

In this article, we consider the problem of efficient in-network implementation
of range-joins in sensor networks. In particular, we consider a join operation, ini-
tiated by a query source node Q, involving two data streams R and S distributed
across some geographic regions R and S in the network. The main performance
criteria for our distributed implementation is minimum communication cost,
which is defined as the total data transfer between neighboring sensor nodes.

Motivating Examples. The following examples illustrate that range-join or
equi-join operations occur in typical sensor network applications.

Example 1. Consider a sensor network that is monitoring the temperature of a
large area, and plotting iso-temperature curves for points from two regions. The
two regions are represented as two data streams R and S that generate tuples
of the form <nodeLocation, timestamp, temperature>. To find iso-temperature
points, we need to check for tuples that have equal timestamp and temperature
attributes.

SELECT R.nodeLocation, S.nodeLocation, R.timestamp, R.temperature
FROM R, S

WHERE R.timestamp = S.timestamp AND R.temperature = S.temperature

Example 2. Consider a sensor network application, where we want to gather
temperature data around any disturbance event for five seconds. Here, the two
data streams Temperature and Disturbance come from the same region. The
Temperature stream has tuples of the form <tempValue, timestamp>and the
Disturbance stream has tuples of the form <disturbValue, timestamp>. The
join-predicate needs to check for tuples that are within five seconds of each other.
The query would have the following form.

SELECT Temperature.tempValue, Disturbance.disturbValue,
Temperature.timestamp, Disturbance.timestamp

FROM Temperature, Disturbance
WHERE |Temperature.timestamp − Disturbance.timestamp | < 5

2.3 Related work

The vision of sensor network as a database has been proposed by many works [4,
11,22, 26], and simple query engines such as TinyDB [22] have been built for
sensor networks. The COUGAR project [5, 26, 27] is one of the first attempts
to model a sensor network as a database system. The TinyDB Project [22] also
investigates query processing techniques for sensor networks. However, TinyDB
implements very limited functionality [21] of the traditional database language



SQL. A simple implementation of an SQL query engine for sensor networks in-
volving shipping all sensor nodes’ data to an external server is proposed in [17].
However, such an implementation would incur high communication costs and
congestion-related bottlenecks, and recent research has instead focussed on in-
network implementation of queries. However, prior research has only addressed
limited SQL functionality – single queries involving simple aggregations [18,
20,27] and/or selections [21] over single tables [19], or local joins [27]. So far,
it has been considered that correlations such as median computation or joins
should be computed on a single node [3, 21, 27]. In particular, [3] address the
problem of operator placement for in-network query processing, assuming that
each operator is executed locally and fully on a single sensor node. In a recent
work [1], authors consider a combination of localized and centralized implemen-
tation for a join operation wherein one of the operands is a relatively small static
table which is used to flood the network. However, the problem of distributed
and communication-efficient implementation for general join operation has not
been addressed in the context of sensor networks, except for our recent work [7]
described in the next paragraph.

Chowdhary and Gupta [7] address the problem of communication-efficient
distributed implementation of the join operation in the context of sensor net-
works. They use the general approach called a path-join approach that computes
the join result by first distributing one of the operand tables along a predeter-
mined path of sensor nodes. The paper presents a provably optimal algorithm for
join operation that incurs provably minimum communication cost under reason-
able assumptions, and a suboptimal heuristic that performs empirically close to
optimal. However, they consider the general join operation that requires match-
ing each tuple of one operand with each tuple of the other operand. In con-
trast, we consider implementation of range-join operations in sensor networks,
for which we develop more efficient algorithms by using hashing and indexing
techniques.

In addition to the work done in the context of sensor network databases,
there has been some work done in the broader area of efficient query processing
in data stream systems [6, 12, 14]. However, stream processing systems are not
necessarily distributed and do not have a notion of communication cost, and
hence, their applicability to sensor network databases is limited.

3 Implementation of Range-Join in Sensor Networks

In this section, we develop various algorithms for communication-efficient imple-
mentation of range-joins in sensor networks. As described in the previous section,
we consider a join operation, initiated by a query source node Q, involving two
data streams R and S being generated by two geographic regions R and S in the
network. We first start with describing our general approach of implementing a
range-join operation in sensor networks.

General Approach. Traditional database join algorithms such as nested-loop
join or merge-join are unsuitable for direct implementation in sensor networks



because they are “blocking” and sensor nodes have limited memory resources. To
perform the join operation in a non-blocking manner, we determine the sliding
windows Wr and Ws of the data streams R and S respectively and store them at
some appropriately chosen regions in the network. We use the generation time
of tuples to determine their membership in sliding windows. The maximum size
of the sliding windows can be determined based upon the statistics of difference
in timestamps of tuples from R and S that match, and the memory constraints
in the sensor network. The size, shape, and location of the regions storing the
windows depends on the memory capacity of each node, maximum size of each
window, and the location of the regions R and S that are generating the respec-
tive data streams.

After the sliding windows Wr and Ws have been stored in the network, we
perform the following high-level operations whenever a tuple r of table R (and
vice-versa for a tuple of S)1 arrives.

1. Find tuples of the window Ws that match with the new tuple r.

2. Join the matching pairs of tuples, and route the resulting tuples to the query
source Q.

3. Insert the tuple r in the region storing Wr.

It is easy to see that performing the above operations for every arriving tuple of
data streams R and S will correctly compute the join of R and S. The various
approaches proposed in this paper differ in the manner in how and where the
sliding windows are stored and how the above three operations are performed.
In the following subsections, we propose four approaches, viz., Naive, Centroid,
Hash-join, and Index-join.

3.1 Naive Algorithm

The Naive algorithm uses the simplest way of storing the sliding windows. In
particular, the Naive approach stores the windows Wr and Ws around the center
of the regions R and S that are generating the respective data streams. Let the
regions storing the windows Wr and Ws be Wr and Ws respectively. Now, when
a new tuple r of the data stream R arrives, we need to broadcast r in the W s

region to find matching tuples of Ws. See Figure 1 (a).

The total communication cost incurred in the above described Naive ap-
proach consists of the cost of routing r to Ws, broadcasting r in Ws, routing
the resulting tuples to Q, and inserting r in its own window region Wr. If the
size of the region Wr is comparable to that of R, then the communication cost
of inserting r in Wr may be minimal since it can be stored in its own source
node or a nearby node.

1 Throughout this article, we discuss the tasks performed on arrival of an R tuple.
The same discussion applies to arrival of S tuples.
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Fig. 1. (a) Naive algorithm, and (b) Centroid algorithm

3.2 Centroid Algorithm

In the Centroid Algorithm, both the windows Wr and Ws are stored within
a region around some point C in the network region. When a new tuple r of
the data stream table R arrives, it is routed to the point C, and then, broadcast
within the appropriate region around C to find matching tuples from the window
Ws. The resulting joined tuples are routed to the query source Q. Finally, the
tuple r is stored at a nearby node around C with available space. See Figure 1 (b).

The total communication cost incurred in the above described approach con-
sists of the cost of routing r to C, broadcasting r in the region around C, and
routing the resulting joined tuples to the query source Q. It is easy to show that
the total communication cost is minimized when C is the weighted centroid of
4RSQ formed by the centers of the regions R and S , and the query source
Q, where the centroid is weighted by the sizes of R, S, and R ./ S (at Q)
respectively. As mentioned before, the catalogue at the query source maintains
the required information about sizes.

3.3 Hash-Join Algorithm

The Naive and Centroid algorithms involve a broadcast of every newly arriving
tuple in an appropriate region. Since the communication cost incurred by a
broadcast operation is linear in the size of the region, the Naive and Centroid
algorithms can be very inefficient for networks of nodes with very limited memory
(which will entail large regions to store the sliding windows). In this subsection,
we present a distributed Hash-Join Algorithm that exploits the fact that the
join-predicate is a range predicate.

Basic Idea. The main idea of our distributed Hash-join algorithm is to “buck-
etize” (partition and store) each arriving tuple into certain buckets based on
its join-attribute value. In particular, for each arriving tuple r or R, we hash
its join-attribute value onto geographic coordinates and insert the tuple r at



a node closest to the hashed geographic coordinates (as in GHT [23, 24]). To
minimize communication cost, we wish to execute the “find Ws tuples” and “in-
sert r in Wr” operations in the same region. Thus, use the same hash function
for both operand data streams, and hence, the sliding windows Wr and Ws get
stored in the same common region. For each new tuple r, the node closest to the
hashed geographic coordinates is delegated with the responsibility of storing r,
and performing the join with the stored sliding window Ws.

Hash-Join Algorithm Steps. We now outline the sequence of steps under-
taken for each arriving tuple. For simplicity of presentation, we right now restrict
ourselves to equi-join operations and assume that there is sufficient available
memory at each node I to store all hashed tuples (i.e., there is no overflow). We
relax both the assumptions in later paragraphs. Now, for each arriving tuple r

of a data stream R, the following operations are performed.

1. Hash the join-attribute value of the tuple r to geographic coordinates.
2. Route r to the node I that is closest to the hashed geographic coordinates.

We use the standard location-aided routing mechanism such as GPSR [16]
to route to I.

3. Insert r at the node I.
4. Join of r with matching tuples of Ws can be computed at I, since the match-

ing tuples (having the same join-attribute value as that of r) of Ws must be
available at I.

5. Route the resulting join tuples to the query source Q.

We note here that the above described distributed Hash-join approach is similar
to the symmetric hash-join [25] algorithm proposed for evaluation of equi-joins
in streaming database systems. We omit the proof of the following theorem for
lack of space.

Theorem 1 Let C be the weighted centroid of the centers of the regions R and

S, and Q, where the weights correspond to the sizes of the tables R, S, and

R ./ S respectively. Consider the hash-function that hashes the join-attribute

values uniformly around C.

The Hash-join algorithm using the above hash-function incurs optimal com-

munication cost for implementation of an equi-join operation if each sensor node

has sufficient memory to store all the hashed tuples. �

Hash-Join for Range-Joins. In order to extend the Hash-join algorithm to
perform range-join operations, we need to only modify the fourth step of finding
the matching tuples of Ws. More specifically, in case of a range-join operation,
the tuples of Ws that may match with r need not have the same attribute value
as that of r, but would be within a range of r’s join-attribute value. If we use a
locality preserving hash function, i.e., a hash function that maps close attribute



values to close geographic coordinates, then the fourth step of our distributed
hash-join algorithm can be modified to the following.

– The tuples of Ws that match with r must be available at nearby nodes around

I. Thus, the tuple r should be broadcast in a region around I to find the
matching tuples. The size of the broadcast region depends on the range of
the join-predicate and the locality of the hash function, assuming there are
no overflows.

Hash function for Range-Joins. To enable communication-efficient processing of
range-joins, we use a hash function that maps a join-attribute value to radii
coordinates (d, θ) with respect to the centroid C. In particular, we use the lower-
order bits of the join-attribute value to obtain d, and the higher-order bits to
obtain θ. Thus, a small range of join-attribute values would get mapped from
(d1, θ) to (d2, θ) with respect to the centroid C for some values of d1, d2, and θ.
Then, the set of tuples of Ws for a given range of of join-attribute values will lie
on a radial straight line away from the centroid (see Figure 2 (a)), which can be
efficiently targeted using location-aided routing such as GPSR [16].

Managing Overflows. Due to memory limitations, a sensor node I may not
be able to store all the Wr and Ws tuples hashed to it. There are many ways to
solve such an overflow problem. Our technique to handle overflows at individual
nodes is to store the overflow tuples in nodes close (as close as possible) to the
originally hashed node I. The node I keeps track of the maximum distance of
the node that stores the overflow tuples, using overflow radii variables OI

r and
OI

s for R and S data streams respectively. The overflow radius variables are kept
updated.

The third step of inserting the tuple r in Wr and the fourth step of finding
the matching tuples in Ws of the Hash-join algorithm need to be modified to
incorporate our overflow technique. For the third step, if the node I doesn’t
have available memory to store the tuple r, it needs to find the closest node with
available memory around it and possibly, update the OI

r value. For the fourth
step, to find matching tuples in Ws, the newly arrived tuple is broadcast in a
region of radius OI

s
around I. In practice, the extent of overflow reduces the

efficiency of the Hash-join algorithm.

Handling Node Failures and Mobility. In addition to the above issues, we
need to address the situation that may arise due to node failures or topological
changes due to nodes’ mobility. In particular, if a node I storing tuples of Wr or
Ws fails or moves, then the tuples stored at I become unavailable to the Hash-
join algorithm. To handle such situations, we replicate tuples of I at nearby
nodes. If the node I fails or moves, then the new node J that is closest to the
hashed geographic coordinate is guaranteed to have the tuples stored by I. In
addition, the node J ensures that there are sufficient nodes around it that have
the copies of tuples stored at J . In face of node failures and topological changes,
the above process guarantees correctness of the distributed Hash-join algorithm
at the expense of minimal (localized) traffic and data replication.
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3.4 Index-Join Algorithm

The distributed Hash-join algorithm described in the previous section may suffer
(as with any hash-based join scheme) due to overflows which may incur addi-
tional (and possibly, unbounded) communication cost. In this subsection, we
propose an algorithm based on a distributed index data structure to achieve
efficient searching of matching tuples for every newly arrived tuple. Essentially,
the proposed Index-join algorithm uses a distributed index structure embedded
within the sensor network to efficiently route the newly arrived tuple to the sen-
sor nodes storing the matching tuples. In addition, the indexing strategy allows
for efficient online maintenance of the index data structure, instead of having to
deal with overflows.

In particular, we choose to build the classical B-tree index structure in a
distributed manner in the sensor network. To avoid the cost of routing to two
different regions, we use a single index structure to store both Wr and Ws win-
dows. In the following paragraph, we briefly describe our algorithm for building
a distributed B-tree index structure for sensor networks.

B-Tree in Sensor Networks. To build a distributed B-Tree index structure
in a sensor network, we need to first determine the location of the B-tree root
and number of children/keys at each node (which in turn determines the height
of the tree). Using similar arguments as in Theorem 1, we can show that to
optimize the overall communication cost, the root of the B-tree index structure
should be located at the weighted centroid C of 4RSQ. The number of children
(degree) at each node is determined by the memory available at each node for
join processing and the number of communication-neighbors of a node in the
network. Once the degree of the B-tree has been determined, we can determine
the join-attribute key values to be used at each node in the B-tree starting
from the root. At each node in the B-tree, the children nodes are distributed
at uniform angles around the parent node. Due to limitations in the number of
direct communication neighbors available, a child may not necessarily be a direct
communication neighbor of its parent. In fact, the communication distance of a



child from its parent may increase with the increase in the node’s depth from
the root.

To start building the index, the chosen root node determines its children, sets
its child-pointers to its children, and sends a message to the chosen children with
information about the range of join-attribute values each child is responsible for.
Note that in traditional database systems, B-tree nodes use memory addresses
as pointers to point to their children. However, in sensor networks, we can use
geographic coordinates as pointers and use location-aided routing mechanism
to reach children that are multiple hops away. The above process of creating
more B-tree levels terminates when the remaining data range at each sensor
node is small enough that the corresponding set of tuples of Wr and Ws can be
stored at a single node. Finally, we need to set sibling pointers at the leaves,
which can be done easily. To alleviate the problem of maintenance of the B-
tree structure in response of insertions and deletions, we keep additional empty
space in each sensor node to accommodate future insertions and do not reclaim
space of expired/deleted tuples (since the overall rate of insertions is same as
the overall rate of deletions).

Below, we discuss the process undertaken when a new tuple r of R arrives,
which forms the core of our Index-join algorithm.

Index-Join Algorithm. For every arriving tuple r of the data stream R, we
essentially search for matching tuples in Ws using the constructed B-tree index
structure, and then insert the tuple r in the index structure.

More specifically, we search for tuples in Ws with join-attribute value a,
which is the lowest join-attribute value that could possible match with the join-
attribute value of the tuple r. The root node finds the range in which the value
a lies, and transmits the tuple to the geographic coordinates corresponding to
the appropriate child. Eventually, a leaf node is reached and the sibling pointers
are followed to access all the nodes storing tuples of Ws having join-attribute
values from a to the maximum join-attribute value that could possibly match
with the join-attribute value of r. The resulting joined tuples are finally routed
to the query source.

Insertion of the tuple r happens similarly. In particular, we search for the
leaf node that stores tuples of Wr with join-attribute value equal to that of
r, and try to insert the tuple r at that node. Typically, the node should have
enough space to store the new tuple because of the expiry of older tuples and the
additional space available to accommodate insertions. In case of inavailability of
empty space, we use the standard technique of insertions into B-trees, i.e., we
still insert the tuple at the reached leaf node, but have the adjacent sibling-node
store the largest join-attribute value tuple of the current node. There may be
a need to update the join-attribute key values of nodes in the upper levels. As
mentioned before, we do not reclaim space of expired/deleted tuples since the
rate of insertions is same as the rate of deletions.

Load Balancing and Fault Tolerance. Note that the communication cost
incurred by nodes that are closer to the root of the tree is much higher since
they are responsible for a much larger join-attribute value range, and many
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Fig. 3. Varying transmission radius for three different predicate ranges (10, 30, and
50).

more newly arrived tuples pass through them. To make the distributed B-tree
structure more load balanced, we replicate the higher-level nodes (ones closer to
the root) into multiple nodes in a region around them. The replicated nodes share
the same functionality and undertake the same processing tasks. In particular,
a geographic coordinate referring to a node’s child actually refers to a set of
duplicated children around that geographic coordinate, and each newly arrived
tuple is routed to and processed by one of the duplicated children in that region.
The above strategy of node duplication makes our B-tree index structure tolerant
to node failures, and balances the communication cost incurred by various nodes
in the tree.

4 Performance Evaluation

In this section, we present our simulation results which compare the performance
of various range-join algorithms viz., Naive, Centroid, Hash-join, and Index-
join algorithms, proposed in our article. Since incurred communication cost is
the dominant consumer of limited battery power in the sensor nodes and the
computation performed by all algorithms is minimal, we present only the total
communication cost (in number of hops) incurred by various algorithms. Below,
we present a discussion on our simulation results.

Experiment Setup. In our simulations, we generate a sensor network by ran-
domly placing 10,000 nodes in an area of 10×10 units. Each sensor has a uniform
transmission radius and two sensors can communicate with each other if they are
located within each other’s transmission radius. Varying the number of sensors
is equivalent to varying the transmission radius, and hence, we fix the number
of sensors and measure performance of our algorithms for different transmission
radii. Each sensor node stores tuples in a local table of fixed size (5 tuples/node)
occupying 300 bytes of memory. For the distributed Index-join algorithm, we use
the same memory to also store the index structure entries, so as to be fair across
various algorithms in terms of memory usage at individual nodes. Data tuples
are generated at a uniform rate of 600 tuples/second by sensor nodes in the re-
gions R and S, and the (default) sliding window size consists of tuples that are
at most 0.5 seconds old resulting in a sliding window size of about 300 tuples for
each data stream. We perform simulations demonstrating the effect of varying
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Fig. 4. Varying predicate range for three different transmission ranges viz., 0.15, 0.18,
and 0.21.

various parameters such as transmission range, range of the join-predicate, size
and shape of 4RSQ, and the size of the sliding window.

Varying Transmission Radius for Different Predicate Ranges. In this
set of experiments, we fix the locations of the regions R and S and the query
source Q, and analyze the effect of increasing transmission radius on the total
communication cost incurred for different values of the predicate range. The
regions R and S are centered around the coordinates (1,1) and (9,1) which
are the far-left and far-right corners at the bottom of the network, while the
query source Q is located at (5,9) towards the top of the network. We vary the
transmission radius from 0.15 to 0.24. Lower transmission radii left the sensor
network disconnected, while higher transmission radius resulting in very low
communication cost. We chose three different ranges of the join-predicate, viz.,
10, 30, and 50. Note that range of the join-predicate signifies join-selectivity
factor, and hence, determines the size of the join result.

The simulation results are shown in Figure 3. In all the figures of this section,
we have not shown the plot for Naive approach, since it performed much worse
(incurred twice the communication cost incurred by Centroid) than all other
approaches. In Figure 3, we can see that the Hash-join and Index-join algo-
rithms significantly outperform the Centroid approach in all three graphs. Also,
the Index-join consistently outperforms the Hash-join algorithm. Note that the
better performance of Index-join with respect to Hash-join does not contradict
Theorem 1 due to the underlying assumptions made therein. With the increase
in the transmission radius, the reduction in the number of hops leads to decrease
in the overall communication cost incurred. All the three predicate ranges de-
pict the above behavior, with the higher predicate ranges resulting in higher
communication cost.

Varying Predicate Range for Different Transmission Radii. In this set
of experiments, we fix the locations of the regions R, S, and Q as before, and
analyze the effect of increasing the join-predicate range for different values of
transmission radius. We vary the join-predicate range from 10 to 50, for three
different transmission radii viz., 0.15, 0.18, and 0.21. The simulation results are
shown in Figure 4. Here also, we observe the similar trend as in the first set of
experiments, i.e., Index-join and Hash-join algorithms significantly outperform
the Centroid approach, Index-join slightly outperforms the Hash-join, and in-
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Fig. 5. Various 4RSQ for three different predicate ranges viz., 10, 30, and 50. Here,
the transmission radius is 0.18.

crease in the transmission radius or predicate ranges causes the communication
cost to decrease or increase respectively.

Varying 4RSQ for Different Predicate Ranges. In this set of experiments,
we study the effect of different shapes and sizes of 4RSQ on the total commu-
nication cost, for three different predicate ranges (10, 30, and 50). Here, we fix
the transmission radius to be 0.18. To vary the size and shape of the 4RSQ,
we fix the centers of the regions R and S, and change the position of the query
source Q. We plot the graphs in Figure 5, where on the x-axis we represent the
various instances of 4RSQ in the order of the area of the triangle. Again, we
see that the Hash-join and Index-join algorithms perform significantly better
than the Centroid, with Index-join consistently performing much better than
the Hash-join algorithm. We note that increase in the area of the triangle for a
fixed predicate range causes increase in the total communication cost incurred,
since increase in the area of the triangle results in increase in the distance to the
centroid.

Varying Sliding Window Size. In this set of experiments, we fix the locations
of R, S, and Q as before, transmission radius as 0.15, predicate range as 30, and
vary the size of the sliding windows.

With increase in the size of sliding windows,
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Fig. 6. Varying sliding
window size.

communication cost is expected to (and does) in-
crease in general. We note that for a small slid-
ing window size, the number of tuples is very less
and hence, all approaches perform the same. On
increasing the sliding window size, the communi-
cation cost increases drastically for the Centroid
algorithm, while the Hash-join and Index-join ap-
proaches show fairly stable behavior. We again note
that the communication cost incurred by the Index-

join and Hash-join algorithms is much lower than that incurred by the Centroid
algorithm.



5 Conclusion

In this article, we have proposed techniques for communication-efficient imple-
mentation of range-joins in sensor networks. We designed various approaches viz.,
Naive, Centroid, Hash-join, and Index-join, and evaluate their relative perfor-
mance in random sensor networks. Our simulations indicate that the Hash-join
and Index-join approaches perform much better than the other two simple ap-
proaches. Our designed algorithms could be incorporated in the sensor network
query engines such as TinyDB. Some of the promising future directions include
generalizing our technique for join for more than two tables, determining efficient
join ordering, approximate evaluation of joins, and multiple query optimization
involving join queries.
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