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Abstract. In this article, we consider energy-efficient implementation
of the SQL join operation in sensor databases, when the join selection
condition is a range predicate. Apart from two simple approaches, we
propose distributed hash-join and index-join algorithms for implemen-
tation of range-join operations in sensor networks. Through extensive
simulations, we show that hash-join as well as index-join approaches sig-
nificantly outperform the simple approaches, even for moderately sized
networks. Our experiments also reveal that although both approach scale
well, the index-join algorithm performs better than the hash-join algo-
rithm especially in large sensor networks.

1 Introduction

A sensor network is a multi-hop ad hoc wireless network of resource constrained
sensor nodes. Each sensor node has limited computing capability and memory,
and is equipped with a short-range low-power radio, a small limited battery,
and various sensing devices. Sensor networks combine sensing, computing, and
networking capabilities to realize high-level sensing tasks in a collaborative man-
ner. Each sensor node in a sensor network generates a stream of data items that
are readings (typically, scalar values) from its sensing devices. This motivates
visualizing sensor networks as distributed database systems [2,4, 10]. Since, mes-
sage communication is the main consumer of battery energy and sensor nodes
have limited battery power, it is important to implement the queries in sen-
sor networks with minimum communication cost. Moreover, due to the limited
computing and memory resources at each node, the query processing in sensor
networks is necessarily distributed.

In this article, we focus on communication-efficient implementation of certain
special cases of SQL join operation in sensor networks. In particular, we address
in-network processing of the SQL range-join operation, which is a special case of
the join operation when the selection condition involved is a range predicate. We
propose various distributed algorithms. One of our proposed hash-join algorithm
can be shown to incur optimal communication cost under certain assumptions.

2 Range Join in Sensor Networks

In this section, we start with presenting an overview of sensor network databases.



Sensor Network Databases. A sensor network consists of a large number of
sensors distributed randomly in a geographical region. Each sensor has limited
processing capability, is equipped with sensing devices, and has a low-range
radio. Two sensor nodes can communicate with each other if the distance between
them is less than the transmission radius. We assume that each sensor node in
the sensor network has a limited storage capacity. Also, sensors have limited
battery energy, which must be conserved for prolonged unattended operation.
Each sensor node in a sensor network generates a streams of data tuples, and
groups of sensor nodes producing tuples with the same format contribute to a
single data stream table. In a sensor network, such data stream tables can be
looked upon as partitioned horizontally across (or generated by) a set of sensors
in the network. In a sensor database system, a query is typically initiated at a
node called the query source and the results are routed to the query source for
storage and/or consumption.

Problem Formulation. The SQL join (./) operation is a binary operation
used to correlate data from multiple tables. Range-joins are joins wherein the
join-predicate is whether two columns (join-attributes, usually with the same se-
mantics), one from each operand table, have values that are within a given range
of each other. Equi-joins are a further specialization of range-joins wherein the
join-predicate is an equality of two columns, one from each operant table. In this
article, we consider the problem of efficient in-network implementation of range-
joins in sensor networks. In particular, we consider a join operation, initiated by
a query source node Q, involving two data streams R and S distributed across
some geographic regions R and S in the network. The main performance crite-
ria for our distributed implementation is minimum communication cost, which
is defined as the total data transfer between neighboring sensor nodes.

Related work. The vision of sensor network as a database has been proposed by
many works [2, 4, 10, 14]. However, prior research has only addressed limited SQL
functionality – single queries involving simple aggregations [6, 8, 15] and/or se-
lections [9] over single tables [7], or local joins [15]. So far, it has been considered
that correlations such as median computation or joins should be computed on
a single node [1, 9, 15]. The problem of distributed and communication-efficient
implementation for general join operation has not been addressed in the con-
text of sensor networks, except for our recent work [3] described in the next
paragraph.

Chowdhary and Gupta [3] address the problem of communication-efficient
distributed implementation of the join operation in the context of sensor net-
works. The paper presents a provably optimal algorithm for join operation that
incurs provably minimum communication cost under reasonable assumptions,
and a suboptimal heuristic that performs empirically close to optimal. However,
they consider the general join operation that requires matching each tuple of
one operand with each tuple of the other operand. In contrast, we consider im-
plementation of range-join operations in sensor networks, for which we develop
more efficient algorithms by using hashing and indexing techniques.



3 Implementation of Range-Join in Sensor Networks

In this section, we develop various algorithms for communication-efficient imple-
mentation of range-joins in sensor networks. As described in the previous section,
we consider a join operation, initiated by a query source node Q, involving two
data streams R and S being generated by two geographic regions R and S in the
network. We first start with describing our general approach of implementing a
range-join operation in sensor networks.

General Approach. Traditional database join algorithms such as nested-loop
join or merge-join are unsuitable for direct implementation in sensor networks
because they are “blocking” and sensor nodes have limited memory resources. To
perform the join operation in a non-blocking manner, we determine the sliding
windows Wr and Ws of the data streams R and S respectively and store them at
some appropriately chosen regions in the network. We use the generation time of
tuples to determine their membership in sliding windows. The size, shape, and
location of the regions storing the windows depends on the memory capacity of
each node, maximum size of each window, and the location of the regions R and
S that are generating the respective data streams.

After the sliding windows Wr and Ws have been stored in the network, we
perform the following high-level operations whenever a tuple r of table R (and
vice-versa for a tuple of S)1 arrives.

1. Find tuples of the window Ws that match with the new tuple r.
2. Join the matching pairs of tuples, and route the resulting tuples to the query

source Q.
3. Insert the tuple r in the region storing Wr.

It is easy to see that performing the above operations for every arriving tuple of
data streams R and S will correctly compute the join of R and S. The various
approaches proposed in this paper differ in the manner in how and where the
sliding windows are stored and how the above three operations are performed.

Naive Algorithm. The Naive algorithm uses the simplest way of storing the
sliding windows. In particular, the Naive approach stores the windows Wr and
Ws around the center of the regions R and S that are generating the respective
data streams. Let the regions storing the windows Wr and Ws be Wr and Ws

respectively. Now, when a new tuple r of the data stream R arrives, we need to
broadcast r in the Ws region to find matching tuples of Ws.

Centroid Algorithm In the Centroid Algorithm, both the windows Wr and
Ws are stored within a region around some point C in the network region. When
a new tuple r of the data stream table R arrives, it is routed to the point C, and
then, broadcast within the appropriate region around C to find matching tuples
from the window Ws. The resulting joined tuples are routed to the query source
Q. Finally, the tuple r is stored at a nearby node around C with available space.

1 Throughout this article, we discuss the tasks performed on arrival of an R tuple.
The same discussion applies to arrival of S tuples.



The total communication cost incurred in the above described approach con-
sists of the cost of routing r to C, broadcasting r in the region around C, and
routing the resulting joined tuples to the query source Q. It is easy to show that
the total communication cost is minimized when C is the weighted centroid of
4RSQ formed by the centers of the regions R and S , and the query source
Q, where the centroid is weighted by the sizes of R, S, and R ./ S (at Q)
respectively.

3.1 Hash-Join Algorithm

The Naive and Centroid algorithms involve a broadcast of every newly arriving
tuple in an appropriate region. In this subsection, we present a distributed Hash-
Join Algorithm that exploits the fact that the join-predicate is a range predicate.

Basic Idea. The main idea of our distributed Hash-join algorithm is to “buck-
etize” (partition and store) each arriving tuple into certain buckets based on
its join-attribute value. In particular, for each arriving tuple r or R, we hash
its join-attribute value onto geographic coordinates and insert the tuple r at
a node closest to the hashed geographic coordinates (as in GHT [11, 12]). To
minimize communication cost, we wish to execute the “find Ws tuples” and “in-
sert r in Wr” operations in the same region. Thus, use the same hash function
for both operand data streams, and hence, the sliding windows Wr and Ws get
stored in the same common region. For each new tuple r, the node closest to the
hashed geographic coordinates is delegated with the responsibility of storing r,
and performing the join with the stored sliding window Ws.

Hash-Join Algorithm Steps. We now outline the sequence of steps under-
taken for each arriving tuple. For simplicity of presentation, we right now restrict
ourselves to equi-join operations ( and assume that there is sufficient available
memory at each node I to store all hashed tuples (i.e., there is no overflow). We
relax both the assumptions in later paragraphs. Now, for each arriving tuple r

of a data stream R, the following operations are performed.

1. Hash the join-attribute value of the tuple r to geographic coordinates.
2. Route r to the node I that is closest to the hashed geographic coordinates.

We use the standard location-aided routing mechanism such as GPSR [5] to
route to I.

3. Insert r at the node I.
4. Join of r with matching tuples of Ws can be computed at I, since the match-

ing tuples (having the same join-attribute value as that of r) of Ws must be
available at I.

5. Route the resulting join tuples to the query source Q.

We note here that the above described distributed Hash-join approach is similar
to the symmetric hash-join [13] algorithm proposed for evaluation of equi-joins
in streaming database systems. We omit the proof of the following theorem for
lack of space.



Theorem 1 Let C be the weighted centroid of the centers of the regions R and

S, and Q, where the weights correspond to the sizes of the tables R, S, and

R ./ S respectively. Consider the hash-function that hashes the join-attribute

values uniformly around C.

The Hash-join algorithm using the above hash-function incurs optimal com-

munication cost for implementation of an equi-join operation if each sensor node

has sufficient memory to store all the hashed tuples. �

Hash-Join for Range-Joins. In order to extend the Hash-join algorithm to
perform range-join operations, we need to only modify the fourth step of finding
the matching tuples of Ws. More specifically, in case of a range-join operation,
the tuples of Ws that may match with r need not have the same attribute value
as that of r, but would be within a range of r’s join-attribute value. If we use a
locality preserving hash function, i.e., a hash function that maps close attribute
values to close geographic coordinates, then the fourth step of our distributed
hash-join algorithm can be modified to the following.

– The tuples of Ws that match with r must be available at nearby nodes around

I. Thus, the tuple r should be broadcast in a region around I to find the
matching tuples. The size of the broadcast region depends on the range of
the join-predicate and the locality of the hash function, assuming there are
no overflows.

Hash function for Range-Joins. To enable communication-efficient processing of
range-joins, we use a hash function that maps a join-attribute value to radii
coordinates (d, θ) with respect to the centroid C. In particular, we use the lower-
order bits of the join-attribute value to obtain d, and the higher-order bits to
obtain θ. Thus, a small range of join-attribute values would get mapped from
(d1, θ) to (d2, θ) with respect to the centroid C for some values of d1, d2, and θ.
Then, the set of tuples of Ws for a given range of of join-attribute values will lie
on a radial straight line away from the centroid (see Figure 1 (a)), which can be
efficiently targeted using location-aided routing such as GPSR [5].

Managing Overflows. Due to memory limitations, a sensor node I may not
be able to store all the Wr and Ws tuples hashed to it. There are many ways to
solve such an overflow problem. Our technique to handle overflows at individual
nodes is to store the overflow tuples in nodes close (as close as possible) to the
originally hashed node I. The node I keeps track of the maximum distance of
the node that stores the overflow tuples, using overflow radii variables OI

r and
OI

s for R and S data streams respectively. The overflow radius variables are kept
updated.

The third step of inserting the tuple r in Wr and the fourth step of finding
the matching tuples in Ws of the Hash-join algorithm need to be modified to
incorporate our overflow technique. For the third step, if the node I doesn’t
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Fig. 1. (a) Hash-join algorithm, and (b) Index-join algorithm

have available memory to store the tuple r, it needs to find the closest node with
available memory around it and possibly, update the OI

r value. For the fourth
step, to find matching tuples in Ws, the newly arrived tuple is broadcast in a
region of radius OI

s around I. In practice, the extent of overflow reduces the
efficiency of the Hash-join algorithm.

To handle node failures and mobility, we can replicate tuples of a node I at
nearby nodes.

3.2 Index-Join Algorithm

In this subsection, we propose an algorithm based on a distributed index data
structure to achieve efficient searching of matching tuples for every newly arrived
tuple. Essentially, the proposed Index-join algorithm uses a distributed index
structure embedded within the sensor network to efficiently route the newly
arrived tuple to the sensor nodes storing the matching tuples. In particular, we
choose to build the classical B-tree index structure in a distributed manner in
the sensor network. To avoid the cost of routing to two different regions, we use
a single index structure to store both Wr and Ws windows.

B-Tree in Sensor Networks. To build a distributed B-Tree index structure
in a sensor network, we need to first determine the location of the B-tree root
and number of children/keys at each node (which in turn determines the height
of the tree). Using similar arguments as in Theorem 1, we can show that to
optimize the overall communication cost, the root of the B-tree index structure
should be located at the weighted centroid C of 4RSQ. The number of children
(degree) at each node is determined by the memory available at each node for
join processing and the number of communication-neighbors of a node in the
network. Once the degree of the B-tree has been determined, we can determine
the join-attribute key values to be used at each node in the B-tree starting
from the root. At each node in the B-tree, the children nodes are distributed
at uniform angles around the parent node. Due to limitations in the number of



direct communication neighbors available, a child may not necessarily be a direct
communication neighbor of its parent. In fact, the communication distance of a
child from its parent may increase with the increase in the node’s depth from
the root.

To start building the index, the chosen root node determines its children, sets
its child-pointers to its children, and sends a message to the chosen children with
information about the range of join-attribute values each child is responsible for.
Note that in traditional database systems, B-tree nodes use memory addresses
as pointers to point to their children. However, in sensor networks, we can use
geographic coordinates as pointers and use location-aided routing mechanism
to reach children that are multiple hops away. The above process of creating
more B-tree levels terminates when the remaining data range at each sensor
node is small enough that the corresponding set of tuples of Wr and Ws can be
stored at a single node. Finally, we need to set sibling pointers at the leaves,
which can be done easily. To alleviate the problem of maintenance of the B-
tree structure in response of insertions and deletions, we keep additional empty
space in each sensor node to accommodate future insertions and do not reclaim
space of expired/deleted tuples (since the overall rate of insertions is same as
the overall rate of deletions).

Index-Join Algorithm. For every arriving tuple r of the data stream R, we
essentially search for matching tuples in Ws using the constructed B-tree index
structure, and then insert the tuple r in the index structure.

More specifically, we search for tuples in Ws with join-attribute value a,
which is the lowest join-attribute value that could possible match with the join-
attribute value of the tuple r. The root node finds the range in which the value
a lies, and transmits the tuple to the geographic coordinates corresponding to
the appropriate child. Eventually, a leaf node is reached and the sibling pointers
are followed to access all the nodes storing tuples of Ws having join-attribute
values from a to the maximum join-attribute value that could possibly match
with the join-attribute value of r. The resulting joined tuples are finally routed
to the query source.

Insertion of the tuple r happens similarly. In particular, we search for the
leaf node that stores tuples of Wr with join-attribute value equal to that of
r, and try to insert the tuple r at that node. Typically, the node should have
enough space to store the new tuple because of the expiry of older tuples and the
additional space available to accommodate insertions. In case of inavailability of
empty space, we use the standard technique of insertions into B-trees. To make
the distributed B-tree structure more load balanced, we replicate the higher-level
nodes (ones closer to the root) into multiple nodes in a region around them.

4 Performance Evaluation

In this section, we present our simulation results which compare the performance
of various range-join algorithms viz., Naive, Centroid, Hash-join, and Index-
join algorithms, proposed in our article. Since incurred communication cost is
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Fig. 2. Varying transmission radius for three different predicate ranges (10, 30, and
50).

the dominant consumer of limited battery power in the sensor nodes and the
computation performed by all algorithms is minimal, we present only the total
communication cost (in number of hops) incurred by various algorithms. Below,
we present a discussion on our simulation results.

Experiment Setup. In our simulations, we generate a sensor network by ran-
domly placing 10,000 nodes in an area of 10×10 units. Each sensor has a uniform
transmission radius and two sensors can communicate with each other if they are
located within each other’s transmission radius. Varying the number of sensors
is equivalent to varying the transmission radius, and hence, we fix the number
of sensors and measure performance of our algorithms for different transmission
radii. Each sensor node stores tuples in a local table of fixed size (5 tuples/node)
occupying 300 bytes of memory. For the distributed Index-join algorithm, we use
the same memory to also store the index structure entries, so as to be fair across
various algorithms in terms of memory usage at individual nodes. Data tuples
are generated at a uniform rate of 600 tuples/second by sensor nodes in the re-
gions R and S, and the (default) sliding window size consists of tuples that are
at most 0.5 seconds old resulting in a sliding window size of about 300 tuples for
each data stream. We perform simulations demonstrating the effect of varying
various parameters such as transmission range, range of the join-predicate, size
and shape of 4RSQ, and the size of the sliding window.

Varying Transmission Radius for Different Predicate Ranges. In this
set of experiments, we fix the locations of the regions R and S and the query
source Q, and analyze the effect of increasing transmission radius on the total
communication cost incurred for different values of the predicate range. The
regions R and S are centered around the coordinates (1,1) and (9,1) which
are the far-left and far-right corners at the bottom of the network, while the
query source Q is located at (5,9) towards the top of the network. We vary the
transmission radius from 0.15 to 0.24. Lower transmission radii left the sensor
network disconnected, while higher transmission radius resulting in very low
communication cost. We chose three different ranges of the join-predicate, viz.,
10, 30, and 50. Note that range of the join-predicate signifies join-selectivity
factor, and hence, determines the size of the join result.

The simulation results are shown in Figure 2. In all the figures of this section,
we have not shown the plot for Naive approach, since it performed much worse
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Fig. 3. Varying predicate range for three different transmission ranges viz., 0.15, 0.18,
and 0.21.

(incurred twice the communication cost incurred by Centroid) than all other
approaches. In Figure 2, we can see that the Hash-join and Index-join algo-
rithms significantly outperform the Centroid approach in all three graphs. Also,
the Index-join consistently outperforms the Hash-join algorithm. Note that the
better performance of Index-join with respect to Hash-join does not contradict
Theorem 1 due to the underlying assumptions made therein. With the increase
in the transmission radius, the reduction in the number of hops leads to decrease
in the overall communication cost incurred. All the three predicate ranges de-
pict the above behavior, with the higher predicate ranges resulting in higher
communication cost.

Varying Predicate Range for Different Transmission Radii. In this set
of experiments, we fix the locations of the regions R, S, and Q as before, and
analyze the effect of increasing the join-predicate range for different values of
transmission radius. We vary the join-predicate range from 10 to 50, for three
different transmission radii viz., 0.15, 0.18, and 0.21. The simulation results are
shown in Figure 3. Here also, we observe the similar trend as in the first set of
experiments, i.e., Index-join and Hash-join algorithms significantly outperform
the Centroid approach, Index-join slightly outperforms the Hash-join, and in-
crease in the transmission radius or predicate ranges causes the communication
cost to decrease or increase respectively.

Varying 4RSQ for Different Predicate Ranges. In this set of experiments,
we study the effect of different shapes and sizes of 4RSQ on the total commu-
nication cost, for three different predicate ranges (10, 30, and 50). Here, we fix
the transmission radius to be 0.18. To vary the size and shape of the 4RSQ,
we fix the centers of the regions R and S, and change the position of the query
source Q. We plot the graphs in Figure 4, where on the x-axis we represent the
various instances of 4RSQ in the order of the area of the triangle. Again, we
see that the Hash-join and Index-join algorithms perform significantly better
than the Centroid, with Index-join consistently performing much better than
the Hash-join algorithm. We note that increase in the area of the triangle for a
fixed predicate range causes increase in the total communication cost incurred,
since increase in the area of the triangle results in increase in the distance to the
centroid.
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Fig. 4. Various 4RSQ for three different predicate ranges viz., 10, 30, and 50. Here,
the transmission radius is 0.18.

5 Conclusion

In this article, we have proposed techniques for communication-efficient imple-
mentation of range-joins in sensor networks. We designed various approaches viz.,
Naive, Centroid, Hash-join, and Index-join, and evaluate their relative perfor-
mance in random sensor networks. Our simulations indicate that the Hash-join
and Index-join approaches perform much better than the other two simple ap-
proaches. Our designed algorithms could be incorporated in the sensor network
query engines such as TinyDB. Some of the promising future directions include
generalizing our technique for join for more than two tables, determining efficient
join ordering, approximate evaluation of joins, and multiple query optimization
involving join queries.
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