1 Introduction

Dense matrix multiplication is used in a variety of applications and is one of the core components in many
scientific computations. The standard way of multiplying two matrices of size n x n requires O(n?®) floating
point operations on a sequential machine. Since dense matrix multiplication is computationally expensive,
the development of efficient algorithms for large distributed memory machines is of great interest. Matrix
multiplication is a very regular computation and lends itself well to parallel implementation. One of the
efficient approaches to design other parallel matrix or graph algorithms is to decompose them into a sequence
of matrix multiplications [3, 9].

One of the earliest distributed algorithms proposed for matrix multiplication was by Cannon [2] in 1969
for 2-D meshes. Ho, Johnsson, and Edelman in [8] presented a variant of Cannon’s algorithm which uses the
full bandwidth of a 2-D grid embedded in a hypercube. Some other algorithms are by Dekel, Nassimi, and
Sahni [3], Berntsen [1] and Fox, Otto, and Hey [4]. Gupta and Kumar in [5] discuss the scalability of these
algorithms and their variants.

In this paper we propose two new algorithms for hypercubes. The algorithms proposed in this paper are
better than all previously proposed algorithms for a wide range of matrix sizes and number of processors.

The rest of the paper is organized as follows. In Section 2 we state our assumptions and discuss the
communication models used. In Section 3 we discuss the previously proposed algorithms. In Section 4
we present the new algorithms. Section 5 presents some optimality results. In Section 6, we analyze the
performance of the algorithms on hypercubes for three different communication cost parameters. We present
our conclusions in Section 7.

2 Communication Models

In this paper we analyze the performance of the various algorithms presented for hypercube architectures.
Throughout this paper, we refer to a 2-ary n-cube as a hypercube and all the logarithms used are with
respect to the base 2. We consider hypercube machines with one-port processor nodes as well as machines
with multi-port processor nodes. In case of the one-port hypercube architectures, a processor node can use
at most one communication link (to send and receive) at any given time while in the multi-port architectures
a processor node can use all its communication links simultaneously.

The time required for a processor node to send a message of m words to a neighboring processor node is
modeled as ts + t, m, where t,; is the message start-up cost and t,, is the data transmission time per word.
All the algorithms presented in this paper run on a virtual 2-D or 3-D grid of processors. Any collective
communication pattern involved in an algorithm presented in this paper is along a one-dimensional chain of
processors. In case of a virtual 2-D or 3-D grid embedded into a hypercube, each one-dimensional chain of
processors is in itself a hypercube of smaller dimension [6].

Ho and Johnsson [7] present scheduling disciplines for performing broadcasting and personalized commau-
nication on Boolean n-cube configured ensemble architectures. They address four different communication
patterns, viz. one-to-all broadcast, one-to-all personalized communication, all-to-all broadcast, and all-to-all
personalized communication. In one-to-all broadcast, a data set of size M words is copied from one node to
all other nodes. One-to-all personalized communication involves a single node sending unique data of size
M words to all other nodes. In all-to-all broadcast, each node distributes its data of size M to all other
nodes while in all-to-all personalized communication each node sends a unique piece of information of size M
to every other node. Fundamentally, the difference between broadcasting and personalized communication
is that in the former data replication helps in dissemination of data and hence, it incurs less communica-
tion overhead in comparison to personalized communication. The reverse of the broadcasting operation is
reduction, in which the data set is reduced by applying operators such as addition/subtraction.

When the communication is restricted to one port at a time (as in one-port hypercubes), the spanning
binomial tree (SBT) scheduling results in optimum communication time. In the case of multi-port hyper-

Hypercubes
Communication type
ts term tw term
One-port’ | Multi-port>(M >1log N) |

One-to-All Broadcast log N Mlog N M

One-to-All Personalized Communication || log N (N-1)M (1\110;1])VM
All-to-All Broadcast logN || (N-1)M o

All-to-All Personalized Communication log N M‘?ﬁ %

Table 1: Optimal broadcasting and personalized communication on an N-processor hypercube. M is the
message length in words.

cubes, when each processor is able to communicate on all its ports concurrently, optimum communication
time is achieved by using log N rotated spanning binomial trees simultaneously, where N is the number of
processors in the hypercube. In our analysis of communication overheads for various algorithms we use some
of these results presented by Ho and Johnsson [7] for optimal broadcasting and personalized communica-
tion in hypercubes. Table 1 summarizes the results used in this paper. Note that the message length M
should be greater than or equal to log N, the number of communication links incident on each processor, for
communication patterns on multi-port hypercube so that all the log N spanning binomial trees can be used
concurrently.

3 Distributed Matrix Multiplication Algorithms

In this section we present the well known distributed algorithms for multiplying two dense matrices A and
B of size n x n. The characteristics of the algorithms presented in this and the following section have been
summarized in Table 2 and Table 3.

3.1 Algorithm Simple

Consider a hypercube of p processors mapped onto a /p X /p 2-D mesh. Matrices A and B are block
partitioned into ,/p blocks along each dimension as shown in Figure 1. The sub-blocks A;; and B;; are
mapped onto processor p;;, the processor in the it" row and j** column, 0 < i,j < /P, of the 2-D mesh.
Thus, each processor initially has %2 elements of each matrix.

The algorithm consists of two communication phases. In the first phase, all processors in each row
independently engage in an all-to-all broadcast of the sub-blocks of matrix A among themselves. In the
second phase, all processors in each column independently engage in an all-to-all broadcast of the sub-blocks
of matrix B. At the end of these two phases, each processor p;; has all the required sub-blocks of matrices
A and B to compute the block Cj; of the result matrix.

Each phase of the algorithm involves an all-to-all broadcast of messages of size %2 among ,/p processors
in each row or column and hence takes £, log \/p+t., ”7;(1 — ﬁ) time on a one-port hypercube and £, log /p+
(1-

2 1 H . - H . ~chi
tw m ﬁ) on a multi-port hypercube (see Table 1). On a multi-port hypercube architecture, the
two communication phases can occur in parallel. The size of the message (%) should be greater than or
equal to log ,/p, the number of communication channels along a dimension, for communication patterns on

1Using a Spanning Binomial Tree (SBT)
2Using log N trees concurrently

Figure 1: Matrix A partitioned into 4 X 4 blocks.

multi-port hypercubes. This algorithm is very inefficient with respect to space as each processor uses %

words of memory.

3.2 Cannon’s Algorithm

This algorithm is designed for execution on a virtual 2-D grid of processors. Matrices A and B are mapped
naturally onto the processors as in Algorithm Simple. Cannon’s algorithm executes in two phases. The first
phase essentially skews the matrices A and B to align them appropriately. In this phase sub-block A;;(B;;)
is shifted left (up) circularly by some number of positions along the row (column) of processors such that
the processor p;; receives A; (j1iymodn a0d B(i{j)modn,j- The second phase is a sequence of (/p — 1) shift-
multiply-add operations. During each step A;;(B;;) is shifted left (up) circularly by one processor and each
processor multiplies the newly acquired sub-blocks of A and B and adds the result to the sub-block C; being

. . . 2 .
maintained. Each processor requires % words of memory to store sub-blocks of A, B, and C matrices.

Consider a 2-D grid of processors embedded into a physical p-processor hypercube. The communication
2
time required for the initial alignment on a one-port hypercubeis 2log \/p(ts + tw "7) while the second phase

takes 2(/p—1)ts + 2%2 (y/P—1)t, time as each shift-multiply-add operation takes 2(ts 4 t., %2) In case of the
multi-port hypercube architectures, both the A and B sub-blocks can be communicated in parallel, halving
the time required. The greatest advantage of this algorithm is that it uses constant storage, independent of
the number of processors.

3.3 Ho-Johnsson-Edelman Algorithm

The second phase of Cannon’s algorithm has the same performance on 2-D tori and hypercubes. It can be
further improved on hypercubes by using the full bandwidth available, provided the sub-blocks of matrices A
and B are large enough. Such a variant was proposed by Ho, Johnsson, and Edelman [8]. This algorithm is
different from Cannon’s only for multi-port hypercubes. We present here only a brief sketch of the algorithm
taken from [9]. See Algorithm 1. The reader is referred to the original paper for details.

On a virtual \/p x /p 2-D grid embedded into a p-processor hypercube, the data transmission time for
the shift-multiply-add phase of Cannon’s algorithm is improved by a factor of log /p, the total number of
communication links on any processor along either grid dimension. This algorithm is applicable only when
each processor has at least log ,/p rows and columns, i.e., when % > log \/p. The space requirement is the

same as that for Cannon’s algorithm.

Consider the matrices A and B distributed evenly over a 2D grid of processors with equal dimensions.
The result matrix C is said to be accumulated in place if the processor p, which eventually stores the sub-block
Cjj. is responsible for calculating and accumulating the products A;,By; for all k. Ho et al. [8] prove that
the data transfer time of Ho-Johnsson-Edelman Algorithm is optimal within a constant factor for matrix
multiplication on hypercubes with the result matrix accumulated in place and the operands distributed
uniformly over the processors configured as a 2D grid with equal dimensions.

Algorithm 1: Ho-Johnsson-Edelman

Initial Distribution Each processor p; ; contains A;; and B;;.
Program of processor p; ;

for k =1, log \/p
Let ji, = (k' bit of) -2*
Let iy = (k" bit of i) -2%
Send Ai’j t0 pi j®is
Receive A; ; from p; jei,
/* ® is the bit-wise exclusive-or operator */
Send Bi’j to pj.@i,j
Receive B; ; from pj, @i, ;
end for
Let gi,, be the bit position in which log ,/p-bit gray codes,
left shifted by [bits, of the k" and (k + 1)** numbers differ.
for k=1, /p
Cij = Cij + Aij x By
forall/ = 0, log /p— 1
Send Ai-,j to p; j@2o.k
Receive Aé,j from p; ;ga91.k
/* where Aj ; is the I"" group of columns of A;; */
Send Bf-’j to pigasik j
Receive vaj from p;gank ;
/* where B} is the I*" group of rows of B; ;*/
end forall
end for

Figure 2: Ho-Johnsson-Edelman Algorithm

3.4 Berntsen’s Algorithm

In [1], Berntsen presents an algorithm for a hypercube. Consider a p-processor hypercube where p < n3/2,
Matrix A is split by columns and B by rows into y/p sets. Each set contains SL\/I? rows or columns. The
hypercube is divided into ¢p subcubes each consisting of pz/ 3 processors. The mt? subcube is delegated
the task of calculating the outer product of the m*" set of columns of A and the m*" set of rows of B using
Cannon’s algorithm. Each set of rows (columns) of B (A) is block partitioned as shown in Figure 1 into
¥p x ¢p blocks for mapping onto the respective subcube processors. Each subcube calculates the outer
product using Cannon’s algorithm, with each processor performing a submatrix multiplication between
submatrices of A of size Lp X # and submatrices of B of size # X %. After computation of these ¥/p

outer products, an all-to-all reduction phase occurs among the corresponding processors from each subcube,
2
which takes t;log ¢/p+ty, # (1- 3%/17) time on a one-port hypercube. On a multi-port hypercube architecture

the data transmission time can be reduced by a factor of log ¢/p as compared to a one-port hypercube by

,n2

using the techniques presented in [7] (see Table 1) so that the time required is t,log &/p+t., i W(l — 3%/1_])

The size of each message being % in the all-to-all reduction phase, n? should be greater than or equal to

2/3

plog ¢/p for multi-port hypercubes. As each subcube of p*/° processors uses Cannon’s algorithm to calculate

. . . . 2 2
the outer product, the space requirement for this algorithm is 2”7 + p’;/s words per processor to store the

submatrices of A, B, and the outer product.

One of the drawbacks of this algorithm is that the algorithm starts with A and B distributed differently
and the result obtained is not aligned in the same manner as A or B.

3.5 DNS Algorithm

Dekel, Nassimi and Sahni in [3] presented an algorithm for virtual 3-D meshes which uses n® processors. We
consider here the more generalized version of the algorithm which can use upto n® processors by allowing
a processor to store a sub-block rather than an element of a matrix. Consider a 3-D grid of dimensions
IYp X Yp X Yp embedded into a hypercube of p processors. Initially matrices A and B are both mapped
naturally, block partitioned, onto the z = 0 plane (the shaded region in Figure 3) such that processor p; j o
contains the sub-blocks A;; and B;;. The algorithm can be viewed as consisting of three phases. The first
phase involves each processor p; jo transmitting A;; to p; ;; and B;j to p; ji. The second phase consists of
two one-to-all broadcasts among sets of /p processors® with p; ; ; broadcasting A;; along the y-direction to
Pi,«,j and p; j; broadcasting B;; along the z-direction to p. ;;. At the end of this phase, each processor p; ; i
multiplies the sub-blocks A;; and By; acquired during the first two phases. The last phase is an all-to-one
reduction (by addition) which occurs along the zdirection. It is easy to see that the space required per

. 2 - .
processor is 2# words for this algorithm.

On a one-port hypercube architecture, each of the initial two phases takes 2log ¢/p(ts + p?—;tw) time.
The point-to-point communication of the sub-blocks of A and B in the first phase cannot be overlapped on
a multi-port architecture as they both occur along the zdirection. However, in the second phase the two
one-to-all broadcasts can occur in parallel. The reduction phase, being the inverse of a one-to-all broadcast
of messages of size p.’}—fw takes log ¥/p(ts + p.’}—;atw) time on a one-port hypercube and log ¢/pts + p.’}—;tw time
on a multi-port hypercube (see Table 1). Each phase occurs over sets of {/p processors and involves messages

2/3

of size p.’j—ja. Hence, n? should be greater than or equal to p?/3log Yp for multi-port hypercubes.

In [3], Dekel, Nassimi, and Sahni also propose an algorithm, a combination of the above basic DNS
algorithm and Cannon’s algorithm, which calculates the product of the submatrices using Cannon’s algorithm
on a square sub-mesh of processors, saving overall space. More formally, the hypercube is visualized as a
Vs x s x /s 3-D grid of supernodes where each supernode is a square mesh of /7 x /7 processor elements
involved in computing the product of the submatrices of A and B using Cannon’s algorithm. The two new
algorithms presented in the next section have been shown to be better than the basic DNS algorithm in terms
of the number of message start-ups as well as the data transmission time and hence the combination of any
proposed new algorithm with Cannon’s algorithm would yield an algorithm better than the combination
algorithm of the DNS and Cannon. Hence, we present only the basic algorithms in this paper.

4 New Algorithms

In this section we present two new algorithms designed for hypercubes. In order to explain the rationale
behind the algorithms, we present them in various stages. Throughout this section, p; ;1 is used to refer to
the processor whose z,y, and 2z co-ordinates are z, j, and k respectively on the 3-D grid.

4.1 3-D Diagonal Approach

We first present a 2-D version of the 3-D Diagonal scheme and then extend it to the 3-D Diagonal algorithm
in two stages.

3Bach set is a one-dimensional row of processors forming a 2-ary subcube.

1 -First Phase (Point to Point comm.)
2 -Second Phase (Oneto All Broadcasts)

3-Third Phase (All to one reduction)
(0,0,0

Subscripts a,b and ¢ refer to the matrices
involved in the respective phases.

Figure 3: DNS Algorithm

4.1.1 2-D Diagonal Algorithm

Consider a 2-D processor mesh of size ¢ x g, laid out on the z-y plane. We use p; ; to refer to the processor
whose z and y co-ordinates are ¢ and j respectively. Matrix A is partitioned into ¢ groups of columns and
matrix B is partitioned into ¢ groups of corresponding rows as shown in Figure 4. Initially, each processor
pj.j, on the diagonal of the mesh, contains the 4t group of columns of A and the j** group of rows of B. The
set of processors p. ; is delegated the task of computing the outer product of the columns of A and rows of B
initially stored at p; ;. This is achieved by having p; ; scatter (one-to-all personalized communication) the
group of rows of B and broadcast (one-to-all broadcast) the group of columns of A along the z-direction.
After computing the outer products, each processor doing equal amount of computation, the last stage
consists of reducing the results by addition along the y-direction and the result matrix C is obtained along
the diagonal processors, aligned in the same way as matrix A was initially distributed. See Algorithm 2.

The above algorithm can be easily extended to a 3-D mesh embedded in a hypercube with A, ; and B; .
being initially distributed along the third dimension, z, with processor p; ; holding the sub-blocks Ay ; and
B; . The one-to-all personalized communication of B; . is then replaced by point-to-point communication
of B;, from p; ;1 to prs k., followed by one-to-all broadcast of B;j by py i, along the z-direction to pg s «.
Apart from the initial communication of blocks of B, all other communication patterns along with their
directions remain the same as in the 2-D diagonal scheme.

One of the problems with the above discussed 3-D extension of the 2-D diagonal approach is that the
initial distribution assumed is not the same for matrices A and B. One obvious way to get around this
problem is to first form the transpose of matrix B before executing the actual algorithm. In the next section,
we present a variant of the above discussed 3-D diagonal scheme which computes the matrix product of
matrices with identical initial distribution without any additional communication overhead.

4.1.2 The 3-D Diagonal Algorithm

A hypercube consisting of p processors can be visualized as a 3-D mesh of size {/p x {/p X {/p, where p < n3.
Matrices A and B are block partitioned into p*/3 blocks with ¢/p blocks along each dimension as shown in
Figure 1. Initially, matrices A and B are assumed to be mapped on to the diagonal mesh corresponding to
the 2-D plane z = y (the shaded region in Figure 6), with processor Pii,x containing the blocks Ay, ; and By, ;.

Ax OA*l Ax o A @)

@ ()

(0.0)

©

Figure 4: 2-D Diagonal Algorithm (a) Partitioning of A (b) Partitioning of B (c) The two phases of the
algorithm (Here, p; ; refers to the processor whose z and y co-ordinates are ¢ and j respectively).

Algorithm 2: 2-D Diagonal

Initial Distribution: Each diagonal processor p; ; holds the it"
group of columns and rows of the matrices A and B respectively.

Program of processor p; ;

If (i = j) then
Broadcast A, ; to all processors p, ;
/* A.j is the j'* group of columns of A, initially stored at p;; */
fork=0,q—1
Send Bjy, to py ;
/* Bj. is the jt" group of rows of B, initially stored at
p;,; and Bjy, is the k" group of columns of B; . */
end for
endif
Receive A, ; and Bj; from p; ;
Calculate I, ; = A, ; x Bj;
Send I, ; along the y-direction to p; ;
If (i = j) then
fork=0,¢—1
Receive L. ; from p;
C*,’i = C*,i + I*,'i
endfor
endif

Figure 5: 2-D Diagonal Algorithm

(0,0,0)

X
<IN 2,3 ‘ 1 -First Phase (Point to Point comm.)
= / 2 -Second Phase (Oneto All Broadcasts)
y / 3-ThirdPhase (All to one reduction)

Subscripts a,b and c refer to the matrices
2 involved in the respective phases.

,/

Figure 6: 3D Diagonal Algorithm

In this algorithm the 2-D plane y = j has the responsibility of calculating the outer product of A. ;, the set of
columns initially stored at the processors p; ; .., and B; ., the corresponding set of rows of B. The algorithm
consists of three phases. Point-to-point communication of By ; by p; ;1 to p; i i forms the first phase of the
algorithm. The second phase consists of one-to-all broadcasts of blocks of A along the z-direction and the
newly acquired blocks of B along the zdirection. In other words, processor p; ; broadcasts Ay ; to p. ;5 and
every processor of the form p; » broadcasts By, ; to p; i .. At the end of the second phase, every processor
pi ik has blocks Ay ; and B;j ;. Each processor now calculates the product of the acquired blocks of A and
B. After the computation stage, the reduction by addition of the result submatrices along the ydirection
constitutes the third and the final phase. The result matrix C is obtained aligned in the same manner as
the source matrices A and B. See Algorithm 3. The overall space used by this algorithm is 2n2 YD.

The first phase of the 3DD algorithm, being a point-to-point communication phase of messages of
size 2/3, takes log &/p(ts + ty 2/3) time on a one-port hypercube architecture. On a one-port hypercube
alchltectule the second phase, Wthh consists of two one-to-all broadcasts, takes twice as much tlme as the
first phase. On a one-port hypercube the third phase, an all-to-one reduction of messages of size P /3, can
be completed in the same amount of time as the first phase. On a multi-port hypercube the one to-all
broadcasts of A and B blocks in the second phase can occur in parallel and the data transmission times of
each communication pattern can be reduced by a factor of log /P (see Table 1). Each phase occurs over sets
of ¢/p processors and involves messages of sme . Hence, n? should be greater than or equal to p>/° log Ip
for multi-port hypercubes.

4.2 3-D All Approach

In this section we present another new algorithm designed for hypercube architectures. The algorithm
presented in the previous section forms the basis of this algorithm. First we present an algorithm which
assumes different initial distributions for matrices A and B (transpose of B aligned with A) and then in the
following subsection present the variant which works with identically aligned matrices.

Algorithm 3: 3-D Diagonal

Initial Distribution: Processor p;;j contains Ay; and By,
Program of processor p; ;1

If (i = j) then
Send By; to ps ik
Broadcast Ayg; to all processors p, j k
endif
If (= k) then
Receive Bj; from p; ; i
Broadcast Bj; to all processors p; j .
endif
Receive Ay; from pj j and Bj; from p; j ;
Calculate Iy; = Ap; X By
Send Iy; to p; 4k
If (i = j) then
forl =0, ¢p—1
Receive I, ; from p; 1
Cri=Cri+ Iy
endfor
endif

Figure 7: 3-D Diagonal Algorithm

4.2.1 3-D All_Trans Algorithm

This algorithm is essentially the 2-D Diagonal algorithm extended to the third dimension, where the columns
(rows) of A (B) are mapped onto each column of processors perpendicular to the z = 0 plane (as opposed to
only the diagonal columns). Consider a 3-D grid having §/p processors along each dimension embedded into
a hypercube, where p < n3/2. Matrix A is partitioned into /p x p?*/® blocks as shown in Figure 8, while B
is partitioned into p2/3 x ¥/p blocks as shown in Figure 9. Each processor p; ; contains sub-blocks Ay ¢(; ;)
and By(; j),x, where f(i, j) is defined as (i - {/p + j). We present an algorithm which computes A x B given
this initial distribution. In this algorithm, the transpose of matrix B is initially identically distributed as
matrix A.

The algorithm consists of three phases. In the first phase, each processor p; j sends B j),1 t0 Pk j ks
i.e., each row of B is scattered along the z-direction in the z-z plane it initially belongs. In the second

Ao, £(0,0)[A0,£(0,1)||A0,£(1,0)|A0, £(1,1)

A1,£0,0)|A1,£0,1) |41, £(1,0)| A1, £(1,1)

Figure 8: Partitioning of matrix A for 3-D All_Trans when p = 8.

Bfo,0),0 | Bro,0).1
B0 | Broaya

Br,0),0 | Braoa
Brano | Braaya

Figure 9: Partitioning of matrix B for 3-D All_Trans when p = 8.

phase, all processors engage in an all-to-all broadcast of the sub-blocks of matrix A they contain, along the
z-direction and processor py, j ;. engages in a one-to-all broadcast of the sub-blocks By (, j) 1, acquired in the
first phase, along the zdirection. During the first two phases, each processor acquires /p sub-blocks of
both the matrices A and B. Specifically, each processor p; j acquires By(, j); and Ay f(. ;). Hence each
processor p; ; r can compute Iy ; where matrix I, the outer product computed by the plane y = j, is assumed
symmetrically partitioned along rows and columns into ¥p x /p blocks. The last phase ensures that the
result matrix C is obtained aligned in the same way as the source matrix A by reducing the corresponding
blocks of the outer products by addition along the y-direction. Hence the last phase involves an all-to-all
reduction along the y-direction. The first and second phases involve accumulation of /p blocks of submatrices

of B and A respectively where each submatrix is of size 7 Hence, space required for each processor is 2n? Ip
words.

The first phase, being an all-to-one communication, the inverse of one-to-all personalized communication,
1
along the z-direction, takes t;log /p + ty 2/3 (1— 3—\/5)

consists of a one-to-all broadcast of sub-blocks of B containing pg’—fa data elements, which takes log /p(ts +

time on a one-port hypercube. The second phase

tw p’;%) time and an all-to-all broadcast of sub-blocks of A containing ”Tf data elements, which takes ¢;log ¢/p+

tw p’.j%(l — %) time on a one-port hypercube. The last phase is an all-to-all reduction phase, which is the

n

inverse of an all-to-all broadcast of messages of size 72, and takes t;log ¢/p + twp.’z‘—js(l — =) time on a

3

one-port hypercube. On a multi-port hypercube architecture the two broadcasts in the Sec:)/gd phase can
occur in parallel and the data transmission times can be reduced by a factor of log ¢/p, the total number of
communication links on every node along a virtual grid dimension, by using the techniques presented in [7]
(see Table 1). On multi-ports, for each of the communication patterns the message size M should be greater

than or equal to log ¢/p, the number of processors in each set involved in the communication patterns. The

message size 7’ is the least for the last phase and hence, it suffices for n? to be greater than or equal to
plog Ip for multi-port hypercubes.

4.2.2 The 3-D All Algorithm

One possible drawback of the 3-D All_Trans algorithm is that the initial distributions required for the
matrices A and B are not identical. In this subsection, we present the 3-D All algorithm, a variant of the 3-D
All_Trans algorithm, which starts with identical initial distributions of the matrices A and B and computes
the result matrix C with even lower communication overhead.

Following the same notations as in the previous subsection, in the 3-D All algorithm each processor p; ; x
initially contains sub-blocks Ay ¢(; ;) and By, f(; j), with matrices A and B being partitioned identically, as
shown in Figure 8. The main difference between the 3-D All_Trans algorithm and the 3-D All algorithm
is in the first phase of the algorithm which requires proper movement of the data elements of matrix B.
The first phase of the 3-D All algorithm consists of an all-to-all personalized communication of sub-blocks
of B along the y-direction, where each processor p; ; transmits Bllc,f(i,j)v the I** group of rows of By, (i)
0 <1 < {p, to processor p; ;. The only other difference is that in the second phase the newly acquired
sub-blocks of B are all-to-all broadcast along the z-direction, as opposed to the one-to-all broadcast in the
3-D All_Trans algorithm. All other communication and computation steps are exactly the same as in the
3-D All_Trans algorithm. See Algorithm 5. The space requirement for this algorithm is the same as that for

10

Algorithm 4: 3-D All_Trans

Initial Distribution: Each processor p; j contains Ay ¢(; j) and By j) k-
See Fig. 8 & 9.

Program of processor p; j

Send Bf(i,j),k to pr.j .k
If (i = k) then
fori=0,yp—-1
Receive By j),, from pyj x
Broadcast By, j),; along the zdirection to all processors p; ; «
endif
Broadcast Ay, ¢(; j) along the z-direction to all processors p. ;
Receive By, j); from p; ;;
forl=0,yp—-1
Receive Ay, ¢ ;) from py ; x
I=¥p-1
Calculate Iii =2 1—0 (Ak,f(l,j) X Bf(l,j),i)
forl =0, yp—1
Send I,lm- to pi ik
/* I,l” is the [t" group of columns of Ij, ; when
I ; is split into ¢/p groups by columns */
forl =0, yp—1
Receive I,]H from p;
Cr.siig) = Crstig) + i
endfor

Figure 10: 3-D All_Trans Algorithm

11

Algorithm 5: 3-D All

Initial Distribution: Each processor p; j contains Ay ¢(; j) and By £ j)-
See Figure 8.

Program of processor p; ;1

forl=0,yp—-1
Send B,lc,f(i,j) to pilk
/* Biqf(w.) is the I"" group of rows of By, ;i ;) */
endfor
forl =0, yp—-1
Receive B,i’f(iyl) from p;
endfor
Broadcast B]i’f(i,*) along the zdirection to all processors p; j «
Broadcast Ay, f(; ;) along the z-direction to all processors p. j
form=0,¢yp—1
Receive Ay ¢(m,j) from pm .k
Receive Bfn’f(i’*) from p; j m

/* B! i) is essentially Bj(,, ;) ; if B is visualized to be
partitioned as in Figure 9. */
endfor

Calculate Ik,’i = EZE(S/ﬁ_l(Ak,f(m,j) X Bf(m,j),z')
forl =0, yp—-1
Send I,lcyi to pik
/* I,lm- is the It" group of columns of I ; when I} ; is split
into ¢/p groups by columns */
forl =0, yp—1
Receive 11]“ from p; ;1
Crsig) = Crsiig) + Tis
endfor

Figure 11: 3-D All Algorithm

the 3D All_Trans algorithm.

Proof of correctness

Starting with the initial distribution with each processor p; j r containing Ay, f(; ;) and By, ¢ j), the first

phase ensures that each processor p; ;1 gets Bi FiD) for all 0 <1 < ¢/p, where B,]c £l @S defined earlier,

is the jf'h group of rows of B, £(i,0) when it is partitioned into ¢p groups of rows. If B is visualized as
partitioned into p blocks as in Figure 9, then the set of data elements B,’; £ is essentially By j),;- The
newly acquired blocks of the matrix B and the initial blocks of the matrix A are all-to-all broadcast along the
z and z directions respectively in the second phase. Hence, by the end of the second phase, each processor
pi,j.k acquires By, jy; and Ay (. j). During the computation stage, a 2-D plane, y = j, calculates in a
distributed fashion one of the outer products, I, corresponding to A*yf(*yj) and By (. j) - A processor p; j i
calculates It; where I is assumed symmetrically partitioned into ¢/p x /p blocks as in Figure 1. There are
¥/p such outer products calculated, one by each z-z plane. It is easy to see that the block I ; is the same
as the group of sub-blocks I} f(; .« if I is visualized as partitioned into p sub-blocks similar to the initial

12

1
2t/ / 1-FirstPhase (Al to All Personalized)
v 2 -Second Phase (All to All Broadcasts)
3-Third Phase (All to All reduction)

Subscripts a,b and c refer to the matrices
involved in the respective phases.

Figure 12: 3D All Algorithm

distribution of the matrix A (Figure 8). In the final reduction phase each processor p; ;; needs to send
Iy, ¢(;,1y to processor p; 1 for all 0 <1 < ¥p. Thus, each processor p; ;1 receives I ¢(; ;) from each z-z plane
and hence getting the required data elements from all of the y/p outer products computed. O

The first phase of the 3-D All algorithm can be completed in log ¢/p(ts + tw%) time on a one-port
hypercube and in #log ¢/p + tw% time (see Table 1) on a multi-port hypercube since it is an all-to-all

personalized communication of messages of size in a one-dimensional line of §/p processors forming a

n?
PP

subcube. The second phase now consists of two all-to-all broadcasts of messages of size ”Tf along different
dimensions, with each taking t;log /p + tu,p.?—;(l — 3%/1_7) time on a one-port hypercube. The third phase,
2
n

being an all-to-all reduction phase, the reverse of all-to-all broadcasting of messages of size R takes the
same amount of time as an all-to-all broadcast in the second phase. On a multi-port hypercube the data
transmission time can be reduced by a factor of log ¢/p by the techniques presented in [7] (see Table 1).

Also, on a multi-port hypercube the two all-to-all broadcasts during the second phase can be overlapped. In
n2
or equal to log /p for full utilization of the bandwidth on multi-port hypercubes. When % < log ¥p but

this algorithm, the message size is the least for the first phase. Hence, it suffices for to be greater than

%2 > log ¢/p, multiple ports can be used only for the second and third phases.

For a given matrix of size n x n, the 3-D All algorithm can be applied on upto n®/2 processors, since
the maximum number of processors which can reside on an z-y plane is n. A slight modification namely,
mapping a 3-D grid of size {/p X {/p x /p onto a p-processor hypercube, can allow us to use upto n?2
processors. Though the communication time reduces in terms of the number of start-ups required, the
overall space requirement increases to nz\/[) +n? /D

5 Optimality Results

In this section, we state a lower bound result on the number of sequential data movement steps required to
perform matrix multiplication on a machine. This result is a slight generalization of the lower bound result
by Gentleman [10].

The function f(k) is defined to be the maximum number of processors at which data originally available
only at a single given processor can be made available in k or fewer data movement steps. For a two-
dimensional mesh, f(k) = 2k? + 2k + 1, while for a hypercube f(k) = 2*.

13

Algorithm One-port Hypercubes Multi-port Hypercubes
Communication overhead (a, b) Communication overhead (a,b) | Conditions
Simple (logp,225(1 — &) (3logp, ez (1= J5)) n?® > plog \/p
(2(vP = 1) +logp, 2
1 n’ 1 log
Cannon i 1 (\/ﬁ—l—l—ilogp,%(l—ﬁ-pz—\%i)) -
nZ _ 2 oep
2 (2— 2 4 losp))
(yP—1+ $logp,
Ho et al. - n > /p-log./p
ﬁ(i -2 4 1&&2))
VP \logp V/Plogp 2/p
(2(¢F — 1) +1logp, (P — 1+ 3logp,
Berntsen . . n? > plog Yp
(31— 55) + 55 a1+ 525)(1— 35) + 5%2))
= T 2
DNS (3 logp, s (§logp)) (5 logp. 4375) n® > p*/*log /p
3DD (% log p, #(% logp)) (log p, 3;3/3) n2? > p*/3log I
3D All_Trans || (%logp, #(3(1 - %) + tlogp)) (log p, pﬁ—;g(ﬁ(l - 3%/5) +1)) n? > plog ¢/p
. (logp, 55 (o (1= g5) +335) | n* 2p*/°log ¢p
n? lo p* ogp Vp 23/p
3D All (£ logp. 2o (3(1— 35) + 5E)) |
(logp, 275 (e (1 — 52) + £52)) n? > plog {/p

Table 2: Communication overheads for various algorithms on hypercubes with one-port and multi-port
architectures. Communication time for each entry is tsa + #,b.

Algorithm Conditions | Overall Space used
Simple p<n? 2n/p
Cannon p<n? 3n?

Ho et al. p<n? 3n?
Berntsen p < nd/? 2n? 4+ n? Yp
DNS p<nd 2n? Ip

3DD p<nd 2n® I/p

3D All_Trans | p < n®/? 2n® /p

3D All p < nd/? 2n I/p

Table 3: Some architecture independent characteristics for various algorithms.

14

Theorem 1. Under the assumption that each element of the given operand matrices is represented once
and only once within the machine, and not using any broadcast facility, the multiplication of two nxn matrices
A and B to produce the n x n product matriz C requires at least k sequential data movement operations,
where f(2k) is greater than or equal to the number of processors initially storing the input matrices.

Proof. Similar to the proof by Gentleman [10]. O

Corollary 1. On a p-processor hypercube, the multiplication of two n x n matrices A and B requires at
least %log(%) sequential message start-ups, where S is the mazimum space available at each processor.

Proof. Since S is the maximum space available at each processor, the minimum number of processors initially
storing the input matrices is ZL As f(k) = 2% for the hypercube, the minimum number of sequential data

movement steps required to multlply AandBis 5 log E. a

As the function f(k) is same for the one- po1t as well as multi-port hypercubes, Corollary 1 holds for
both the hypercube architectures. When § = 23~ 2273 the minimum number of data movement steps required
is g log p. Hence, the DNS, 3DD, 3D All_Trans, and 3D All algorithms are optimal within a constant factor
in the number of message start-ups, when the space available per processor is O(pz/a) When p = n®, DNS

and 3DD algorithms have a data transmission overhead of O(logp), which is also optimal within a constant
factor, under the space constraint, because each data movement step involves a data transfer of at least one
word.

To our knowledge, there are no non-trivial lower bounds known for the data transmission overhead
Sp’
data transmission time on one-port distributed machines. This lower bound is independent of the network
topology.
Proposition 1: Consider a one-port distributed machine consisting of p processors, each having a
local memory of S words. The data transmission time required for multiplying two n X n matrices on this

machine is at least O(maaz(s , "Tj)), under the assumption that the operand matrices have an identical initial
distribution and each element of the operand matrices is represented once and only once within the machine.

for distributed matrix multiplication algorithms. We derive here a lower bound of O(maac(— 7)) for

Proof: 1t is easy to derive this lower bound by observing that data transfer of one word can result in
at most min(S,n) multiplications, and matrix multiplication requires O(n®) multiplications. Initial distri-
butions being identical, with no replications, can result in at most ((n/ \/13)31)) multiplications without any
data transfer. O

6 Analysis

In this section we analyze the performance of the algorithms presented in the previous two sections, for
one-port hypercubes and multi-port hypercubes. The communication overheads and other characteristics of
the algorithms have been summarized in Table 2 and Table 3. For multi-port hypercubes, the full bandwidth
of the hypercube can be used by multi-port processors only if size of each message is greater than or equal
to the number of communication links on any node along the dimension of the communication pattern. This
imposes some conditions on the minimum size of the matrix required to be able to use all the links. Table 3
lists some architecture independent characteristics for the algorithms. We require there are no processors
which are idle throughout the execution of the algorithm. For this purpose, the conditions listed in Table 3
need to be satisfied. The overall space used is the same for one-port hypercubes and multi-port hypercubes.

In our analysis, we compare the performances of Cannon, Berntsen, Ho-Johnsson-Edelman, 3DD and
3D All algorithms. Algorithm Simple has not been considered since it is the most inefficient algorithm with
respect to the space requirement. From the tables, it can be easily seen that the 3DD and 3D All algorithms
perform at least as well as the DNS and 3D All_Trans algorithms respectively, for both the architectures
discussed, irrespective of the values of n, p, ts, t,,. The results are based on analytical reasoning and statistics
generated by a computer program on the basis of the expressions in Table 2. We present graphical results

15

X X Cannon
t.=10
t

! 200 H
! tg=150 3DD; ! s=
30D | t,=3 o _
| w ; ! w=
1 :A
1 ol
1 'nl
p / p i
1 K
; 3-DAIl ki 3-DAll
/ /
! !
/ /
/ /
/ ’
/ ’
(4,0) _ng. 100 (4,0) _ng 100

—l F 30D cannon
200 : ! 1000 _
/ tg=05 tg=150,10,05
H ! t,=3 t,=3
IA
Do
pl |/
: p
i 3-DAIl ’ 3-DAIl
s
i
"
7
4
4
- 20
(4,0 % 100 100 n 10,000
(© (d)
ALL SCALESARE X - The region where none of
€g
LINEAR. the algorithms apply.

Figure 13: Performance analysis for one-port hypercubes

for three different sets of values of t5 and t,,. In Fig. 13 and Fig. 14, each region of the parameter space is
marked with the algorithm which performs the best in that range of n and p.

6.1 Hypercubes with one-port processors

From the expressions of communication overheads for the various algorithms given in the Table 2, it is easy
to see that the 3D All algorithm performs better than the 3DD, Berntsen’s and Cannon’s algorithms for
all values of p greater than or equal to 8, irrespective of the values of n, t; and t,, wherever the 3D All
algorithm is applicable. In the region n? > p > ny/n, the 3DD algorithm should have less communication

ts

overhead than Cannon’s Algorithm for large values of the ratio ;=.

The graphs in Figures 13 (a)—(d), generated by a computer program support our above analysis. The
3D All algorithm has the least communication overhead in the region n®/2 > p. In the region n> > p > n?/2,
the 3DD algorithm performs the best over the whole region for t;, = 150, ¢, = 3 while for very small values
of tg, Cannon’s algorithm performs better over most of the region. The 3DD is the only algorithm applicable

in the region n® > p > nZ.

6.2 Hypercubes with multi-port processors

In case of multi-port hypercubes, the Ho-Johnsson-Edelman algorithm, wherever applicable, is better than
Cannon’s algorithm. From Table 2, we see that the 3D All algorithm will always performs better than the
3DD algorithm wherever both the algorithms are applicable. Similarly, the 3D All algorithm has better
performance than Berntsen’s algorithm for all values of p greater than or equal to 8, independent of n, t; and
tw. The Ho-Johnsson-Edelman algorithm might perform better than the 3D All algorithm for very small

16

X
200 l,

II _ 200 1 _
! ;S—:l350 30D, tg=10
30D w ! t,,=3
1 ”
! |
p / p !
/ 3-DAIl / 3-DAIl
I’ I’
! i
/ /7
/ ’
4 7’
’ ’
4 4
(4,0) n__ 100 (4,0) no_ 100
@ (b)
_ 1000 B
tg=05 tg=150,10,0.5
; ty=3 ty=3
i P
Do
i 3-DAll
)
L
)
i
I
r
n 20 n
(4,0 —_— 100 100 10,000
© (d)
ALL SCALESARE X - The region where none of
LINEAR the algorithms apply.

Figure 14: Performance analysis for multi-port hypercubes

values of p when both are applicable, but 3D All should tend to be better for larger values of p or ¢; because
of the number of start-ups in the Ho-Johnson-Edelman algorithm being of O(,/p).

In Figures 14 (a)—(d) presented, we see that 3D All, wherever applicable, performs the best among the
four algorithms. In the region n? > p > ny/n, Cannon’s algorithm has an edge over the 3DD algorithm for

very small values of ;.

7 Conclusion

In this paper we have analyzed most of the existing popular algorithms for dense matrix multiplication on
hypercubes and designed two new algorithms. We showed that the newly proposed algorithms are optimal,
within a constant factor, in the number of sequential data movement steps, when the space available per

processor is O(p?—;). We compared the communication overheads of the various algorithms on hypercubes
with one-port processors and hypercubes with multi-port processors. One of the proposed algorithms, 3D

ALL, has the least communication overhead whenever applicable for almost all values of p, n, ts and t,, in
the region p < ny/n. In the region n\/n < p < n3 the other proposed algorithm, 3DD, performs the best for

a major part of the region.
References

[1] J. Berntsen, Communication efficient matrix multiplication on hypercubes, Parallel Computing, 12

(1989) 335-342.

17

2]

3]

[4]

[5]

[6]
[7]

8]

[9]

[10]

[11]

L. E. Cannon, A cellular computer to implement the Kalman Filter Algorithm, (Technical report, Ph.D.
Thesis, Montana State University, 1969).

E. Dekel, D. Nassimi, and S. Sahni, Parallel matrix and graph algorithms, STAM Journal of Computing,
10 (1981) 657-673.

G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms on a hypercube I: Matrix multiplication,
Parallel Computing, 4 (1987) 17 31.

A. Gupta and V. Kumar, Scalability of Parallel Algorithms for Matrix Multiplication, Proceedings of
the 1993 International Conference on Parallel Processing, 3 115—123.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation (Prentice Hall, 1989).

S. L. Johnsson and C. T. Ho, Optimum broadcasting and personalized communication in hypercubes,
IEEE Transactions on Computers, 38(9) (1989) 1249-1268.

C. T. Ho, S. L. Johnsson and A. Edelman, Matrix multiplication on hypercubes using full bandwidth
and constant storage, In Proceeding of the Sixzth Distributed Memory Computing Conference (1991)
447-451.

J. W. Demmel, M. T. Heath, and H. A. Van der Vorst, Parallel Linear Algebra, Acta Numerica 2
(Cambridge Press, New York, 1993).

W. M. Gentleman, Some Complexity Results for Matrix Computations on Parallel Processors, Journal
of the ACM 25 (1978) 112-115.

H. Gupta and P. Sadayappan. Communication Efficient Matrix Multiplication on Hypercubes. In Pro-
ceedings of the Sizth ACM Symposium on Parallel Algorithms and Architectures, 320-329, 1994.

18

