Index Selection for OLAP*

Himanshu Gupta

Venky Harinarayan

Anand Rajaraman
Jeffrey D. Ullman
Department of Computer Science
Stanford University
Stanford CA 94305
{hgupta, venky, anand, ullman}@db.stanford.edu.

June 27, 1999

Abstract

On-line analytical processing (OLAP)
is a recent and important application
of database systems. Typically, OLAP
data is presented as a multidimen-
sional “data cube.” OLAP queries are
complex and can take many hours or
even days to run, if executed directly
on the raw data. The most common
method of reducing execution time is
to precompute some of the queries into
summary tables (subcubes of the data
cube) and then to build indexes on
these summary tables. In most com-
mercial OLAP systems today, the sum-
mary tables that are to be precom-
puted are picked first, followed by the
selection of the appropriate indexes on
them. A trial-and-error approach is
used to divide the space available be-

*This work was supported by NSF grant
TRI-92-23405, ARO grant DAAH04-95-1-
0192, and Air Force Contract F33615-93-1—
1339.

tPresent address of V. Harinarayan and A.
Rajaraman: Junglee Corp., Palo Alto, CA.

tween the summary tables and the in-
dexes. This two-step process can per-
form very poorly. Since both sum-
mary tables and indexes consume the
same resource —space — their selec-
tion should be done together for the
most efficient use of space. In this pa-
per, we give algorithms that automate
the selection of summary tables and
indexes. In particular, we present a
family of algorithms of increasing time
complexities, and prove strong perfor-
mance bounds for them. The algo-
rithms with higher complexities have
better performance bounds. However,
the increase in the performance bound
is diminishing, and we show that an
algorithm of moderate complexity can
perform fairly close to the optimal.

1 Introduction

Decision-support systems are an in-
creasingly important application of
databases. Corporations are begin-
ning to use the accumulated opera-

tional data to help understand and run
their business. Towards this purpose,
data from the different operations of a
corporation are reconciled and stored
in a central database commonly called
a “data warehouse.” Analysts use the
data warehouse to extract the business
information that enables better deci-
sion making. This interactive decision-
support process is called OLAP (On-
line Analytical Processing) to distin-
guish it from conventional OLTP (On-
line Transaction Processing) applica-
tions.

OLAP applications require view-
ing the data from many different busi-
ness perspectives (dimensions). Data
cube [GBLPY5] is a multidimensional
view of a databases where a critical
value, e.g., sales, is organized by sev-
eral dimensions, for example, sales of
automobiles organized by model, color,
day of sale and so on. The metric of in-
terest is called the measure attribute,
which is sales in the example. It
is generally accepted that OLAP sys-
tems need to present such a multidi-
mensional view of the data to users.
Each cell of the data cube corresponds
to a unique set of values for the differ-
ent dimensions and contains the value
of the measure for this set of values.
As mentioned in [GBLPY5], the do-
main of each dimension is augmented
with the special value “ALL.” In order
to present this multidimensional view,
the data is usually stored in the form
of “summary tables” corresponding to
the subcubes of the data cube.’

I'This approach of storing a data cube is
known as ROLAP (Relational OLAP). The
other approach in which the data cube is
stored as a multidimensional array is known

as MD-OLAP. MD-OLAP is very space con-

In [HRU96], the efficient implemen-
tation of “data cubes” was considered.
In particular, we investigated the prob-
lem of selecting a set of views of the
data cube to materialize, in order to
minimize the time needed to execute a
given population of queries. An algo-
rithm that was both polynomial-time
and competitive (always gives a solu-
tion that i1s within a constant factor
of the optimum) was presented. This
“greedy” algorithm is guaranteed to
give at least 63% of the benefit of the
optimal solution.

While the greedy algorithm can be
shown to be competitive (in the for-
mal sense given above) for a variety of
materialized view problems, there are
also problems for which the greedy ap-
proach can be shown arbitrarily bad
([G97]). In this paper, we investi-
gate a simple but important example
of a problem where straightforward ap-
proaches are neither polynomial nor
competitive, yet there is a technique
that gives us both of these desirable
properties. We study data cubes with
indexes on the materialized views per-
mitted. The problem is that when we
have the option of putting one or more
indexes on a view in order to speed cer-
tain queries, then all the benefit of ma-
terializing a view might reside in one or
more of the indexes that we later build
for that view. We are thus faced with
two apparently bad choices:

1. Treat a view and any set of its in-
dexes as one view that we might
choose to materialize. Then, the
number of different views avail-
able grows exponentially. While

suming for sparse data cubes and hence is
rarely used.

the greedy algorithm might then
be both competitive and polyno-
mial in the size of its data, the
fact that its data has grown ex-
ponentially makes the approach
unlikely to be successful, even for
relatively small data cubes.

2. Treat
separate “views” that we might
materialize. Here, the problem is
that until the underlying view is
chosen by the greedy algorithm,
there is no benefit in choosing
an index. Thus, a simple greedy
algorithm might never material-
ize the underlying view, because
it perceives no immediate bene-
fit in doing so. Thus, we could
be locked out of the opportunity
to make major improvements in
the average query time by mate-
rializing the view and several of
its indexes.

indexes as

We might imagine that the solu-
tion is simple: look at several “objects”
(views or their indexes) at a time. Un-
fortunately, the more objects we con-
sider at a time, the higher the de-
gree of the polynomial that measures
the running time. We thus consider
both this “k-greedy” approach and an-
other approach that often has a slightly
lower performance guarantee but re-
mains close to quadratic in running
time per step of the greedy algorithm.
Our conclusion is that we can, with
small degradation of performance com-
pared with the no-index case consid-
ered in [HRU96], incorporate indexes
into the framework of data cube de-
sign.

Related Work

Gray et al. in [GBLP95] introduce the
data cube operator as a generalization
of the SQL groupby operator. The
key to this generalization is the intro-
duction of the “ALL” keyword. In
many commercial systems, subcubes of

1.1

this data cube are precomputed to im-
prove performance. In [HRU96], Hari-
narayan et al. look into the problem
of determining which subcubes to pre-
compute. They give a simple greedy al-
gorithm to select subcubes, and prove
a strong performance guarantee for
the algorithm. Gupta [G97] develops
a framework for the general problem
of selecting views to materialize in a
datawarehouse. Johnson and Shasha
in [JS96] introduce a new index struc-
ture that reduces the number of index
accesses in data cube queries.

The issue of what indexes to build
has not been investigated before from
a research perspective. A two-step
process — picking subcubes first, fol-
lowed by the indexes — is typically
adopted [MS95]. An ad hoc ap-
proach is used in dividing the space
and in picking indexes. For example,
[MS95] builds indexes on the most fre-
quently used dimensions. This paper is
the first to explore the index-selection
problem and automate it with prov-
ably near-optimal algorithms.

1.2 Paper Organization

The rest of the paper is organized as
follows. In Section 2, we present a mo-
tivating example based on the TPC-D
benchmark database which illustrates
why the two-step process of first pick-
ing subcubes and then indexes can lead

to bad choices. In Section 3, we look
at the universe of views, queries, and
indexes that arise in a data cube. The
cost model 1s introduced in Section 4.
We present the algorithms along with
the analysis of their performance guar-
antees in the following section. Exper-
imental results are stated in Section 6.
Finally, we present our conclusions in
Section 7.

2 Motivating Exam-
ples

We use an example taken from TPC-D
[TPCDY5], a decision-support bench-
mark to motivate the index-selection
problem. The example illustrates the
complexity of this problem, and the
difficulty of doing the selection well in
the two-step selection process.

For this example, we use only a
subset of the dimensions that exist in
the schema of the TPC-D benchmark.
TPC-D models a business warehouse
with dimensions part, supplier, and
customer. The business buys a part
from a supplier and sells it to a
customer. The measure of interest is
the total sales: We use the
TPC-D database as a running exam-
ple throughout this paper and wher-
ever it is clear from the context, we
abbreviate part to p, supplier to s,
and customer to ¢. We also use the
terms dimensions and attributes inter-
changeably.

sales.

We first discuss the universe of sub-
cubes, queries, and indexes possible.
This discussion is formalized in Sec-
tion 3.

Subcubes

The subcubes considered for precom-
putation correspond to elements of the
power set of the set of dimensions viz.
{part, supplier, customer}. The el-
ement {part, customer}, for example,
corresponds to the subcube which has
the sales for each (part, customer)
pair over all supplier’s. In SQL
terms, the subcubes differ only in their
groupby clause, and an element of the
power set gives the attributes in the
groupby clause of the corresponding
subcube. The eight subcubes consid-
ered for precomputation are shown in
Figure 1 organized into a lattice as ex-
plained in Section 3.4. The numbers
(e.g., 6M, i.e., 6 million) associated
with the subcubes denote the number
of rows (cells) in each and none indi-
cates the empty subset.

Queries

The queries we consider can use each
dimension as a selection attribute or
as an output attribute (in SQL terms,
as a groupby clause attribute or as a
where clause attribute respectively).
A possible query @ is:

e Find the sales to each customer

of a given part

“widget” bought from a given
supplier

“Widgets-r-us”.

In this query, sales and customer
are output attributes, and part and
supplier are selection attributes.
Since all queries have sales as an out-
put attribute, we do not use the sales
dimension in specifying a query. Us-
ing the abbreviations for the dimen-
sions, we write query @ as Yc0ps; v

specifies the output or groupby at-
tributes, while o specifies the selection
attributes of the query. The order of
the dimensions in v and ¢ is unimpor-
tant. Also, any subcube that has all
the output and the selection attributes
of a query can be used to answer the

query.

Indexes

We can construct B-Tree indexes (or
variants) to speed up query processing.
For subcube ps, for example, we can
construct the following indexes:

o [,s: the search key for this index
is a concatenation

of the p and s dimensions.

o [;p: the search key for this index

is a concatenation
of the s and p dimensions.

The order of the dimensions in the
Given a value for p,
we can use Ip; to retrieve those rows in
subcube ps that have this value for p.
Similarly for ps, given a value for p and
s we can use [, to retrieve the required
row from subcube ps. However, given
a value for s, the index [,, cannot be
used efficiently to retrieve those rows
in subcube ps with that given value
of s. In general, an index Ix, . x,
is only useful in answering any query
which has some prefix of X1,..., X in
its selection attributes.

indexes matter.

Cost Model

Suppose that the cost of answering any
query is the number of rows processed.
Consider answering Q1: vp05. Now (1
can be answered using either subcube
ps at a cost of 0.8M rows, or using sub-
cube psc at a cost of 6M rows. Con-

sider now answering (J; using the index
I, on subcube ps.? The average num-
ber of rows associated with each value
of s in subcube ps is % = 80. Thus
the cost of answering ()1 using I, is
the cost of processing 80 rows. Indexes
are thus very useful in reducing query
costs dramatically and should be con-
sidered in any precomputation strat-

egy.

Figure 1 also shows the queries and
indexes associated with one subcube,
ps. Queries are associated with the
smallest subcube that can be used to
answer them.

EXAMPLE 2.1 Returning to our
original problem: the precomputation
strategy for the TPC-D benchmark
database, the question is now: which of
the possible subcubes and indexes do
we materialize for good query perfor-
mance? For simplicity, assume that all
queries are equiprobable. To material-
ize all possible subcubes and indexes,
we would require space for around 80M
In most practical situations
there is not enough space (or equiv-
alently load time) to precompute ev-
erything. For this example, assume
that we have around 25M rows worth
of space available.

The Two-Step Approach. The
two-step process [MS95] would divide
this available space between subcubes
and indexes. Subcubes are picked in
the first step to fit within the space al-
lotted to them and indexes are picked
in the second step again fitting within
the space allotted to them. Note

TOWS.

2In this example, we restrict ourselves to
only “fat” (“covering”) indexes, i.e., the in-
dexes which correspond to the permutations
of the dimensions in the subcube.

Queries

psc 6M
pc 6M sc 6M

A
Tps Isp

p 0.2M

c 0.1M s 0.01M

none 1

Figure 1: Subcubes, Queries and Indexes in the TPC-D database.

that indexes can only be built for
those subcubes picked in the previ-
ous step. An important problem is
dividing the space available between
the subcubes and the indexes. One
possibility is dividing the space avail-
able equally between the subcubes and
indexes. In this example, we use a
greedy algorithm as given in [HRU96]
to pick the best subcubes and indexes
in each step. On dividing the space
equally between the two steps and
running this algorithm, we pick the
following subcubes in the first step:
psc, ps, ¢, s, p,none, sc, and the follow-
ing indexes in the next step: Icsp, fpes-
This selection leads to an average
query cost of 1.18M rows. That is, each
query requires us to process on an av-
erage 1.18M rows .

The 1-Greedy Approach. Now
consider integrating the subcube se-
lection and index selection into one
step. We use the simplest algorithm
we give in this paper: a l-greedy
algorithm that at every stage picks

the subcube or the index on a sub-
cube (if the underlying subcube has
already been picked) that gives the
greatest benefpit in terms of the num-
ber of rows processed. The 1-greedy
algorithm gives us the following se-
lection in order of decreasing benefit:
psc, Iesp, S, Ipes, Ispe, C, 5, p, none.

The selections made by this algo-
rithm result in an average query cost
of 0.74M rows. By integrating the
two-steps into one, we have improved
the average query cost by almost 40
percent. The reason is the following:
while in the two-step process we allo-
cate half of the 25M rows available to
the indexes, it turns out that we are
best off allocating three-quarters of the
available space to the indexes. The ac-
tual fraction of space we should allo-
cate to the indexes depends on a num-
ber of factors like the sizes of the sub-
cubes and indexes, and it is difficult to
determine this fraction a priori with-
out considering the relative benefits of
subcubes and indexes at every stage of

the selection process.

Interestingly, we see a law of dimin-
ishing returns here too. The remaining
subcubes and indexes which have a to-
tal of around 55M rows provide virtu-
ally no benefit and do not impact the
query cost at all. a

It may still be argued that one can
design better strategies to ensure that
the two-step process does not perform
so badly. But as we shall show, even
the one-step 1-greedy algorithm can
perform arbitrarily badly in the gen-
eral case. In practice moreover, the
general strategy used in the two-step
case is one of trial-and-error. The algo-
rithms and the associated performance
guarantees that we give in this paper
are thus a significant step towards au-
tomating this complex task of deciding
what to precompute for the best query
performance.

3 Views, Queries, and
Indexes

In this section, we outline the type of
views, queries and indexes which we
consider in a data cube. Note that, our
algorithms are robust and their cor-
rectness or performance guarantees do
not depend upon the choice of views,
queries and indexes.

3.1 Views

In a data cube, we associate a subcube
with every set of groupby attributes
possible. These subcubes are the units
of precomputation and form the poten-
tial views considered for materializa-
tion. Here, we provide a rationale for

such a partitioning scheme of the data
cube into its subcubes.

There are many ways of partition-
ing a data cube. The boundary cases
illustrate the problems of too many
partitions and too few. When ev-
ery row of the data cube is treated
as a subcube, in a ROLAP setting, a
separate table is associated with each
row. The overhead cost and complex-
ity of the metadata make such a choice
very difficult to implement. On the
other hand, consider the case when
we have only one partition: the en-
tire data cube itself. This approach
leads to poor utilization of space, since
we do not precompute anything unless
we can precompute the entire cube.
Thus any available space which is less
than the size of the entire data cube is
wasted.

It is important that we strike a bal-
ance between these two extremes. A
commonly used ROLAP partitioning
scheme [HRU96], is to associate a sub-
cube with every element of the power
set of the set of dimensions, as was
mentioned in Section 2. The subcubes
when specified in SQL differ only in the
groupby clause. The element of the
power set gives the set of attributes
in the groupby clause of the corre-
sponding subcube. Thus, for exam-
ple, {part, customer} corresponds to
the subcube given by the SQL query:

SELECT Part, Customer,
SUM(sales)
AS TotalSales
FROM R

GROUP BY Part, Customer;

In this paper we denote a sub-
cube by the attributes in the groupby
clause. The subcube above is denoted

by part, customer. When we ab-
breviate the dimensions, we just con-
catenate the abbreviations in specify-
ing the subcubes — the subcube above
could also be written as pc. Note that
the order of the dimensions is irrele-
vant.

In practice too, such a partition-
ing scheme is common. The popu-
lar “snowflake schema” [ADS96] is an
example of this partitioning scheme.
Since the subcubes are now just aggre-
gate views, some of which are materi-
alized, we refer to them as views.

3.2 Queries

A user query in the TPC-D example,
asks for the sales grouped by a certain
set of attributes, after selecting on an-
other set of attributes. The selection
attributes are disjoint from the group-
by attributes. For example, a user
query could ask only for the sales of a
single part, say “widgets,” grouped by
the customers it was sold to. We write
this query as 4. (Upzwidget(R)). Here
the subscripts of v denote the group-by
attributes and those of o, the selection
attributes.

In general, a query of the form
e (O'p:constant(R)) asks for a slice
through the subcube customer, part.
We denote a generic query of this
form by ~.0, and call it a slice
query on the subcube customer,
part. We can associate a query
YG1,...,Gr OS,4,...,5; With the subcube de-
noted by G1,...,Gg, Sy, ...,S;, which
is the smallest subcube that can an-
swer this query. We regard a user
query that asks for an entire sub-
cube as a special kind of slice query
where the set of selection attributes

is empty. Thus all queries are slice
queries. An r-dimensional subcube
has 2" slice queries associated with it,
because any subset of the dimensions
can occur in the select part. An n-
dimensional data cube has a total of
(:f) r-dimensional subcubes. There-
fore, the total number of slice queries
associated with an n-dimensional data

cube is 3°7_; ()27, which equals 3".

3.3 Indexes

B-Tree indexes can improve query re-
sponse times substantially. There can
be several indexes on a given view.
For subcube ps, for example, we can
construct the following four indexes:
L, (ps), I;(ps), Ips(ps), Isp(ps). In each
case we list the search key attributes as
the subscript, while the subcube ps on
which the index is built, 1s mentioned
in parentheses. The order of the at-
tributes in the indexes matters as we
saw in Section 2.

We can have one index for every
subset of the attributes of a view and
every ordering of the subset. Thus
the number of possible indexes for a
view with m attributes is given by
Soreo (™) r! which approaches (e—1)m!
for large m. Using a similar calcula-
tion, the total number of indexes as-
sociated with an n-dimensional data
cube is close to (e — 1)%n! which is ap-
proximately 3n!. The number of fat in-
dexes — search key attributes are per-
mutations of the subcube attributes —
in an n-dimensional cube is (e—1)n!, or
approximately 2n!. In general, an in-
dex can help answer slice queries when
some prefix of the index attributes cor-
respond to some of the selection at-
tributes in the query.

3.4 The Computability and
Dependence Relations

We define the computability relation
& between queries and views as fol-
lows. For a query @ and a view V,
we say QQ KV if the result of query
@ can be computed using the tuples
in view V. For example, the query
@1 = V.05 can be computed from the
view V; = sc and also from the view
Vo = psc. Therefore, @1 < V7 and
@1 < V5. However, if V3 = pe, 1 can-
not be computed from V3.

Define the partial order =< on
the views as follows: Vi <X VW,
iff the set of attributes of V5 is
a superset of the set of attributes
of Vi. Thus, part=< part and
part= part, customer, but part A
customer and customer A part. The
different subcubes of a data-cube form
a lattice under <, which we call the
dependence relation for views. The lat-
tice of the views (subcubes) involved in
the TPC-D example is shown in Fig-
ure 1.

There 1s a relationship between the
computability relation < and the de-
pendence relation <: if V; < V5, and
@1 € Vi, then Q1 € V5. Therefore, the
lattice in Figure 1 also helps us build
the < relation.

The <« relation can be represented
using a bipartite graph as done in Sec-
tion 5. If a query @) is computable from
a view V| we draw an edge between)
and V. Each edge (@,V) also has a
weight: the cost of answering @ using
V. Consider now an index [on a view
V that helps answer a query) more
quickly. The effect of this index on the
graph is an additional edge between)
and V labeled by a pair consisting of

I and the cost of answering @ using V'
and I. The algorithms we outline in
Section 5 take this graph for the <
relationship as an input.

3.5 Summary

An n-dimensional data cube has asso-
ciated with it:

o 2" views;

e 3" slice queries; and

e about 3n! possible indexes, about
2n! of these

being fat indexes.

It is to be noted here that the prob-
lem size varies as a factorial of the
number of dimensions.

4 A Cost Model

In this section, we present a cost model
to estimate the time to answer a query
using a view in conjunction with an
index on the view. We then consider
the problem of estimating the sizes
of views, indexes, and query results
without actually materializing all of
them (as we have seen, the number
of queries, views, and indexes can be
quite large even for data cubes of small
dimension). Our algorithms do not de-
pend upon any cost model for correct-
ness and performance guarantees.

4.1 The Linear Cost Model

Suppose we answer a query) using a
view V. We need to process the table
corresponding to V' to answer). De-
pending on the availability of indexes,
we may have to process only some of
the rows of the table for V. The cost of

answering () is a function of the num-
ber of rows of the table V we must
process in order to answer (. In this
paper, we choose the simplest possible
cost model:

e The cost of answering) is the
number of rows of

the table for V' that must be
processed to
construct the result of Q.

This “linear cost model” was presented
in [HRU96] and is also used in the
MetaCube product [STG95].

Let @ be a slice query such that
@ <V, and consider answering) us-
ing V. For example, suppose @ is
a query about the sales of a single
part “widget,” and V is the view part,
supplier. That is, Q = Ynoneo,. If
there are no suitable indexes on V,
we must scan almost the entire ta-
ble for V| and the query cost is given
by |V|, where |V| is the number of
rows in V. Suppose we have avail-
able the index I,(V). We can use
this index to process only those rows
of V that @ asks for. On average, V
has |V |/ |mp(V)| rows corresponding to
each part, and so this is the average
number of rows we would have to pro-
cess to answer the slice query (). Here
m is the distinct projection, and so
|7p(V)| gives the number of distinct
values of part in V. Noticing that
the number of distinct part values is
the same as the number of rows in the
subcube part, we get |[mpart(V)| =
|part|, where |part| is the size of
the subcube part. We conclude that
the average cost of answering the
slice query ynoneo, using the view V
and the index I, (V) is |V]/|part| =
|part, supplier| / |part|. In comput-
ing the cost, we disregard the number

of index nodes processed.

We can follow exactly the same pro-
cess and arrive at the same cost if
we had used the index I,,(V) instead.
However, suppose we had either the in-
dex I (V) or the index I,,(V) avail-
able. We cannot use either of these
indexes to reduce the number of rows
of V' that we need to process to answer
. Therefore, the cost of answering
is |V|, if there are no helpful indexes.

4.1.1 Cost Formula

We generalize these observations to ob-
tain a formula for the cost of answering
query @ using view V and index J.

Let @ be the query yio5, where
A and B are sets of dimensions. We
have B = § iff Q is a subcube query,
and A = J denotes aggregation over all
dimensions. Let V be a view C'. Now,
Q< Vifand onlyif AUB C C. Also,
let J be the index I5(V). We use D to
emphasize that the order of attributes
matters; Disa sequence of attributes
rather than a set. In particular, D = ()
(the empty sequence) denotes the case
where we are not using an index.

Let E denote the largest subset of
B such that the attributes in £ form
a prefix (not necessarily proper) of D.
The cost of answering () using the view
V in conjunction with the index J is
given by:

—
Ll
~—

c(Q,V,J):l — |

I(E)]
Recall that |(C)| and |(E)| denote the
number of rows in the tables corre-
sponding to views (C) and (E) respec-
tively.
As an example consider the TPC-D
database, with the view V' = psc of size

5

6 million rows, query) = v., 0ps and
the index J = I, on subcube psc. In
this case, C' = psc and E = s, since the
largest subset of attributes of ps that
forms a prefix in scp is s. From Sec-
tion 2 we know the desired cardinali-
ties: |(psc)| = 6 M, |(5)| = 0.01 M. The
cost is therefore ¢(Q,V,J) = 723 =
600 In other words, 600 rows have to
be accessed in answering query () using
index J on view V.

The above formula works in all
cases. The case when E = (§ deserves

some discussion. This case might occur
either because no index is available on
V', or because) is a subcube query, or
because the index used has no prefix
composed only of select attributes of
@. In all these cases, we must process
all the rows in V' to answer @, and so
e(Q,V,J) = |V]. The formula gives ex-
actly the same result, because |(#)] = 1
(recall that () denotes the view none,
which has 1 row).

4.2 Determining View and
Index Sizes

Our algorithms require the following
information:

e The size of each view.
e The size of each index.
e For each (query, view, index)
triple, the cost of
answering the query using the
view and an
index.

Section 4.1.1 shows how to obtain
item (3) given item (1). But we still
need to know the sizes of each view and
each index. The problem is nontrivial
because the number of views and in-
dexes is very large even for cubes of

moderate dimension (Section 3 shows
that the number of views and indexes
is exponential in the cube dimension).

4.2.1 Estimating View Sizes

There are many ways of estimating
the view sizes that avoid materializ-
ing all the views. We can use sam-
pling and analytical methods to com-
pute the sizes of the different views if
we only materialize the largest element
Vi in the lattice (the view that groups
by all the dimensions). For a view, if
we know that the grouping attributes
are statistically independent, we can
estimate the size of the view analyti-
cally, given the size of V. Otherwise
we can sample 1V} (or the raw data)
to estimate the size of the other views.
The size of a given view is the number
of distinct values of the attributes it
groups by. Thus for example, the size
of the view that groups by part and
supplier is the number of distinct val-
ues of part,supplier in the raw data.
There are many well-known sampling
techniques that we can use to deter-
mine the number of distinct values of
attributes in a relation [HNSS95].

4.2.2 Estimating Index Sizes

Given the view sizes, we can estimate
index sizes. The size of each view in
our cost model 1s the number of rows
in the view. For indexes too, we follow
a similar model to estimate the space
cost. The size of each index (B-Tree) is
the number of leaf nodes in the index.
The number of leaf nodes of an index
is approximately the number of rows in
the underlying view. Thus,

e The size of any index on a view

V is the same as
the size of view V.

Our model of index sizes has the
important consequence of pruning our
space of possible indexes. Consider two
indexes J1 = I;(V) and J; = I5(V)
on the same view V. If B is a proper
prefix of A, then surely e(@Q,V, J1) <
e(Q,V, J2) for any query @, using our
cost formula. Moreover, the sizes of J;
and Jy are approximately the same un-
der our index size model. Therefore, in
any reasonable scheme of materializing
views and indexes, we can ignore the
index Jy in favor of the index Jy. Thus,
for each view, we need to consider only
the fat indexes: those indexes whose
search attributes are not a proper pre-
fix of the search attributes of any other
index on the same view. If the view V'
is (C), the exactly the set of indexes
is {I5(V) | D is a permutation of C}.
This result is similar to that in [JS96],
where they consider only fat indexes.
It can be shown that this pruning re-
duces the number of indexes of inter-
est by approximately a factor of e — 1,
where e is the base of the natural log-
arithms.

5 Materializing
Views with Indexes

In this section, we develop algorithms
for selecting views and indexes to be
materialized in the data cube. Infor-
mally, we are given a set of views, each
of which has a set of indexes, and a set
of queries that are to be supported by
the system. A view with one of its in-
dexes can be used to answer a query

at some specified cost. The goal is to
select a set of views and indexes which
will minimize the total cost to answer
the queries, under the constraint that
the set of views and indexes selected do
not occupy more than a given amount
of space, S.

The
above problem is NP-complete, even
in the absence of indexes and even
when each view occupies a unit space;
there is a straightforward reduction
from Set-Cover. We develop heuris-
tic algorithms which provably deviate
from the optimum selection of views
and indexes by only a small amount.

First, we state the above problem
formally. Then, we present a class of
algorithms which have different guar-
antees of performance ratios and time
complexities. We also rigorously ana-
lyze the performance of the algorithms
presented.

5.1 Problem Definition

Consider a bipartite multigraph, G =
(VUQ,E), called a query-view graph.
V' contains the set of views and @ con-
tains the set of queries.

o With each view v; € V is associ-
ated a tuple (5, I;), where

S; 1s the space occupied by the
view, and

I; 1s the set of indexes on the
view. I;p 1s used to denote the
kth index of v;.

e With each query ¢; € @ is associ-
ated a default cost T; of answer-
ing the query ¢;, even without us-
ing any other view or index in G.
(Tn data cube, the default cost of

answering any query is the cost
incurred in answering the query
using the raw data table(s)).

e Every edge (¢i,v;) has a label
(k,ti;jx) associated with it, where
t;jk is the cost of answering the
query ¢; using the view v; and
its k** index. When k = 0, ik
is the cost of answering ¢; using
just v;.

Goal: Given a set of views V' and a set
of queries @), we must select M C V|,
a set of views and indexes to be mate-
rialized, under the constraint that the
views and indexes in M can be accom-
modated in S (a given constant) units
of space. M must minimize the total
cost incurred answering each query in
@ from one of the views in M. More
formally, we wish to minimize the fol-

lowing quantity
1Q
M) = in(7; i tis
(G M) =3 min(ls,, i, G5)

under the constraint that the total
space occupied by the structures® in M
is less than S.

The above problem is a simple for-
malization of the problem of select-
ing views and indexes in data cube.
We have assumed that the queries sup-
ported by the system are uniformly dis-
tributed across the queries in Q). Our
algorithms generalize easily to the case
when there is a frequency f; associated
with each query ¢; (by including the
factor f; with the term associated with
¢; in the summation used to define 7).

3A structure is a view or an index.

5.2 The Benefit of a Choice
of Structures

Let C be an arbitrary set of views and
indexes in a query-view graph G. We
use S(C) to denote the total space oc-
cupied by the structures in C'. The
benefit of C' with respect to M, an al-
ready selected set of structures, is de-
noted by B(C, M) and is defined as
(r(G, M) — (G, M UC)), where 7 is
the function defined above. Benefit of
C per unit space with respect to M is
B(C,M)/5(C). Also, B(C, ¢) is called
the absolute benefit of the set C'.

5.3 The
Algorithm

r-Greedy

The r-greedy algorithm executes in a
number of stages, selecting at each
stage a subset C' having at most r
structures. The set C consists either
of

e A view and some of its indexes,
or

e A single index whose view has al-
ready been

selected in one of the previous

stages.

At any given stage, the set C' that
has the maximum benefit per unit
space with respect to M, the set of
structures selected prior to this stage,
is selected. See Algorithm 5.1.

Suppose there are v views and each
view has at most ¢ indexes. Then
at each stage, the r-greedy algorithm
must consider and calculate the bene-
fit of at most vi + v (ril) possible sets.
Hence an upper bound on the running
time of the algorithm is O(km"), where
m is the number of structures in the
given query-view graph and k is the

number of structures selected by the
algorithm, which is S in the worst case.

EXAMPLE 5.1 We illustrate the
working of r-greedy algorithm through
a simple example.

Consider the query-view shown in
Figure 2. For simplicity, we have as-
signed a space cost of 1 unit to each of
the indexes and views. Let the value
of S be 7 units.

We now see how the r-greedy algo-
rithm works on the example for differ-
ent values of r.

1. 1-greedy:

Initially, absolute benefit of ev-
ery index is zero. Absolute bene-
fits of the views in order of their
subscripts are viz. 0, 0, 6, 5, and
7. Hence, at the first stage the 1-
greedy algorithm selects V5. Ex-
cept for the indexes of Vs, the
benefits of all views and indexes
with respect to M = {Vs} re-
main the same as their absolute
benefits. The benefits of 5 ;,1 <
1 < 4, relative to M become 7
each. Hence, the 1-greedy algo-
rithm choses one by one all the
indexes of V5 in the later stages,
followed by V5 and Vi. Thus,
the solution returned by 1-greedy
is {V5, 151,152, I5 3, I5 4, V3, V4 },
with an absolute benefit of 46.

2. 2-greedy: In the first stage, the
2-greedy algorithm selects C' =
{V1, 11,1} which has an absolute
benefit of 10 x 9 = 90. Benefit of
{Vo, I} for any i < 8 with re-
spect to C'is 40 (i.e., 20 per unit
space). Hence, {Va, I4 1}, whose
benefit with respect to C is 41

Algorithm 5.1 r-Greedy Algorithm

Given: G, a query-view graph, and S, the space.
BEGIN
M = ¢; /x M = set of structures selected so far. x/
while (S(M) < 95)
Look at all sets of one of the following forms:
° {UZ', Iijlalijga ey Iijp}7 such that (2 ¢ M,
Lij g Mfor 1<l <p,and 0<p<r, or
e {I;;}, such that v; is in M, and I;; ¢ M.
Among these sets, let C' be the set which has the
maximum benefit per unit space w.r.t. M.
M=MUC;
end while;
return M;
END.

(i.e., 20.5 per unit space), gets se-
lected in the second stage In the
later stages, the other indexes of
Va4 get selected one by one. Thus,
the solution returned by 2-greedy
is{Vi, 01,1, Va, Ia, 1a 9, 1a3, s 4}
with an absolute benefit of 194.

3. 3-greedy: As in the 2-greedy
case, the first stage of the 3-
greedy algorithm selects C' =
{V1, I1 1}, with the absolute ben-
efit of 90. The second stage
selects {Va,I31,I32}, having a
benefit of 82 with respect to C
(i.e., 27.3 per unit space), as the
benefit of V; with any two of
its indexes is at most 80 with
respect to C (i.e., 36.7 per
unit space). The structures se-
lected in the later stages are
I3z, and I34. Thus, the so-
lution returned by 3-greedy is

labels:

Default cogt, T, of answering any query is 100 units.

(1,50), (2550), ... (8,50)

(0,9)

Figure 2: A query-view graph

Vi, 11, Va, I3 1, 139, 13,3, I3 4},
which has an absolute benefit of
226.

4. Optimal Solution:It is not dif-
ficult to see that the optimal so-
lution for the given example is

Vo, 1,159,153, 124,155, I2 6},
having an absolute benefit of 300.

O

Theorem 5.1 In the case when each
structure occupies a unit space, the r-
greedy algorithm produces a solution M
that uses at most S + r — 1 units of
space. Also, the absolute benefit of M
is at least (1—1/e"=1)/7) times the op-
timal benefit achievable using as much
space as that used by M .

Proof: It is easy to see that the solu-
tion M produced by the r-greedy algo-
rithm has at most S+ r — 1 structures.
Let k = |M]|. Let the optimal solution
containing k structures be O and the

absolute benefit of O be B.

Consider a stage at which the r-
greedy algorithm has already chosen a
set G having [structures with “incre-
mental” benefits a1, as, a3z, ..., a;. The
absolute benefit of G is thus Zi:l a;.
Surely the absolute benefit of the set
O U Gy is at least B. Therefore, the
benefit of the set O with respect to G,
B(O,Gy), is at least B — 22:1 a;.

Without loss of generality, we can
assume that the optimal set O doesn’t
contain any index whose correspond-
ing view is not in O. Hence, if
O contains m views, it can be split

into m digjoint sets O1,0s,...,0pn,
such that each O; consists of a
view and its indexes in O. Then,

B(0,Gy) < Y7, B(O;,Gy). There-
fore, by pigeon hole principle, there ex-
ists an O; such that B(O;, G))/|0;| >
B(O, G;)/k. Now, consider the best r-
subset* O, of such an O;. Its bene-
fit per unit space with respect to G

4j.e., set of size at most r.

is at least (“21) (1) (B(O1, G1)/|04).
which happens when the benefit of the
view in O; is zero and |O;| = k. Let,
k' = (’";1)(%) As O, (or its best
subset) is also considered for selection
at this stage of the r-greedy algorithm,
the benefit per unit space with respect
to Gy of the set C' selected by the
algorithm is at least k' B(O;, Gi)/|0;],
which is at least k'(B — 2221 a;)/k.
Note that O, may contain some struc-
tures from Gy, but the argument still
holds. Distributing the benefit of C
over each of its structures equally (for
the purpose of analysis), we get a;4; >
K(B—=Y_, a;)/k, for 0 < j<|C| As
this is true for each set C' selected at
any stage, we have

I = ,
ngaj—l—z:ai, for 0 <j<k.
i=1

Let k" = k/k.
jt* equation by (k;;ﬁl)k_j, and af-
ter adding all the equations and some
minor manipulations we get A/B >
1— (k;;l)k, where A = Zf‘:l a;, the
absolute benefit of M. This implies
A/B 21— (5% > 1 —1/e8 >
1—1/elr=D1r, .

Multiplying the

We have come up with instances of
the problem for which the r-greedy al-
gorithm performs as bad as the worst
case bound of 1 —1/e(r=1/

5.4 Inner-Level Greedy Al-
gorithm

The

Inner-level greedy algorithm works in
stages. At each stage, it selects a sub-
set C', which consists either of

e A view and some of its indexes
selected in a greedy
manner, or
e A single index whose view has al-
ready been
selected in one of the previous
stages.

Note that there is no constraint on
the size of set C'. Each stage can be
thought of as consisting of two phases.
In the first phase, for each view v; we
construct a set /G; which initially con-
tains only the view. Then, one by one
its indexes are added to IG; in the or-
der of their incremental benefits until
the benefit per unit space of IG; with
respect to M, the set of structures se-
lected till this stage, reaches its maxi-
mum. That /G; having the maximum
benefit per unit space with respect to
M is chosen as C'. In the second phase,
an index whose benefit per unit space
is the maximum with respect to M
is selected. The benefit per unit space
of the selected index is compared with
that of C, and the better one is selected
for addition to M. See Algorithm 5.2.

The running time of the Inner-level
greedy algorithm is O(k?m?), where m
is the total number of structures in the
given query-view graph and k is the
maximum number of structures that
can fit in S units of space, which in
the worst case is S.

EXAMPLE 5.2 We illustrate the
working of the Inner-level greedy algo-
rithm for the example in Figure 2.

As the absolute benefit per unit
space of V5 with at most six of its in-
dexes is less than 43, the algorithm se-
lects {V4, 1,1}, whose absolute benefit
is 90 (i.e., 45 per unit space) in the first
stage. In the next stage, the algorithm

selects V5 and six of 1ts indexes with an
“Incremental” benefit of 240 (i.e., 34.3
per unit space). Thus, the solution
returned by the Inner-level greedy is
Wi, i, Vo, In1, Io 9, 1o 3, Io,4, I 5, o 6}
with an absolute benefit of 330. Note
that the size of the solution returned
is 9 units, slightly more than the given
space limit. The optimal solution us-
ing 9 units of space is V» with its eight
indexes, having an optimal benefit of

400. 0O

Theorem 5.2 The Inner-level greedy
algorithm produces a solution M that
uses at most 2 S units of space. Also,
the absolute benefit of M is at least (1—
1/€%53) = 0.467 of the optimal benefit
achievable using as much space as that
used by M, assuming that no structure
occupies more than S units of space.

Proof: The proof is almost identical
to the proof of Theorem 5.1. The only
difference is that in the case of Inner-
level greedy algorithm the value of &’
is 0.63 and 1s independent of the sizes
of the views and indexes. This fol-
lows from the result in [HRU96] on
the performance guarantee of the sim-
ple greedy algorithm under space con-
straint. As the value of &k’ is indepen-
dent of the relative sizes of structures,
the result holds for arbitrary sizes of
views and indexes. n

6 Performance of the
Algorithms

Figure 3 plots the performance guar-
antees of the family of r-greedy algo-
rithms against r. Observe that the per-
formance guarantee of the 1-greedy is

Algorithm 5.2
Inner-Level Greedy Algorithm

Given: G, a query-view graph, and S, the space.
BEGIN
M = ¢; /* M = Set of structures selected so far /
while (S(M) < 9)
C=¢
/* C = Best set containing a view and some
of its indexes found so far */
for each view v; ¢ M
IG = {v; };
/* IG = Set of v; and some of its indexes
selected in a greedy manner. */
while (S(IG) < S) /+ Construct IG */
Let I;. be the index of v; whose benefit per
unit space w.r.t (M UIG) is maximum.
I1G =1G U Ii;
end while;
if (B(IG,M)/S(IG) > B(C,M)/|C])
or C'=¢
C = IG,;
end for;
for each index I;; such that its view v; € M

ifB(IZ'j,M)/S(IZ'j) > B(C, M)/S(C)

C={li};
end for;
M=MUC;

end while;
return M;
END.

Performance Guarantee

8 10 12
rin"rgreedy’

Figure 3: Performance guarantees
of various algorithms

0: it is possible to construct examples
where the the ratio of the benefit of the
1-greedy choice to that of the optimal
choice arbitrarily small. The perfor-
mance guarantee initially rises rapidly
as we increase r beyond 1, but the in-
creases are exponentially diminishing.
The actual performance guarantees for
2-greedy, 3-greedy, and 4-greedy are
0.39, 0.49, and 0.53 respectively. The
graph has a “knee” at r = 4, and
the increments for greater r are vanish-
ingly small. The performance guaran-
tee approaches 0.63 as r approaches in-
finity (more precisely, as r approaches
the number of structures we are will-
ing to materialize). Recall hat the run-
ning time is O(m") where m is the to-
tal number of structures, and that m
is large even for small cube dimensions.
Therefore, it seems that in practice, us-
ing r-greedy algorithms is not worth
the additional complexity for r > 4.
For comparison, the Inner-greedy
algorithm runs in time O(m?) and has
a performance guarantee of 0.47, which
is between the ratios for 2-greedy and

3-greedy. Thus Inner-greedy is prefer-
able to 2-greedy because it gives a bet-
ter guarantee than 2-greedy for ap-
proximately the same running time.
We experimented with the r-greedy
family of algorithms on cubes of di-
mension up to 6, for r = 1,2,3. We
generated cubes using the analytical
model in [HRU96], extended to incor-
porate indexes and slice queries. We
varied different parameters: the cardi-
nality of each dimension, the sparsity
of the cube, and the query frequen-
cies. (The sparsity of a data cube is
the ratio of the number of rows in the
raw data relation to the product of the
cardinalities of the individual dimen-
sions.) For dimensions up to 6, we
observed that the algorithms in the r-
greedy family produced solutions that
were extremely close to the optimal.
The results are encouraging because
they indicate that in practice, we can
obtain near-optimal solutions using an
algorithm of low complexity.

7 Conclusions

In this paper we investigate the prob-
lem of what indexes to build to
improve OLAP query performance.
While this problem is very important
to the success of ROLAP systems,
commercial systems today usually use
ad hoc solutions. In this paper we show
that the precomputation of subcubes
and indexes should be integrated into
one step. ROLAP systems currently
use a two-step process which can ad-
versely affect query performance. We
give an example of the poor perfor-
mance of the two-step process using an
example based on the TPC-D bench-

mark database.

We provide a family of one-step al-
gorithms that select which subcubes
and indexes should be precomputed for
improved query performance, given the
space constraint. We give strong per-
formance bounds for our algorithms
and show the trade-off between the
performance bounds and the complex-
ity of the algorithm. Our results in-
dicate that an algorithm of moder-
ate complexity performs almost as well
as that of high complexity. We also
present the experimental results which
validate our analysis.

References

[ADS96] Archer Decision Sciences.
Star Schema 101. White
Paper. Available at URL

http://members.aol.com/nraden/str

[GBLP95] J. Gray, A. Bosworth,
A. Layman, H. Pirahesh.
Data Cube: A Relational

Aggregation Operator Gen-
eralizing Group-By, Cross-
Tab, and Sub-Totals. Mi-
crosoft Technical Report No.
MSR-TR-95-22.
[GIT] H. Gupta. Selection of
Views to Materialize in a
Data Warehouse. To appear
in ICDT, January, 1997,
Delphi, Greece.

[ANSS95] P. J. Haas, J. F. Naughton,
S. Seshadri, L. Stokes.
Sampling-Based Estimation
of the Number of Distinct
Values of an Attribute. In

[HRU96]

[7596]

[MS95]

[TPCD95] F. Raab,

[STG95)]

@(in%hmark(tm)

Proceedings of the 21st In-
ternational VLDB Confer-
ence, pages 311-320, 1995.

V. Harinarayan, A. Rajara-
man, and J. D. Ullman. Im-
plementing Data Cubes Ef-
ficiently. ACM SIGMOD
1996, pages 205-216, 1996.

T. Johnson and D. Shasha.
Hierarchically Split Cube
Forests for Decision Sup-
port: description and tuned
design. Personal Communi-
cation.

Microstrategy Inc. The Case
for Relational OLAP. White

Paper. Available at
http://www.strategy.com.
editor. TPC

(Decision

Proposed Revi-
Transaction Pro-

po{"qc)
sion 1.0.
cessing Performance Coun-
cil, San Jose, CA 95112, 4
April 1995.

Stanford Technology Group,
Inc. Designing the Data
Warehouse On Relational
Databases. White Paper.

