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Abstract

In this article we discuss the design of result verification algorithms for optimization
problems. In particular, we design time-optimal result verification algorithms which
verify the solution of all-pairs shortest paths, maximum-flow in a network, and match-
ing problems. We prove that polynomial-time verification algorithms for NP-complete
problems do not exist exist, unless P = NP. Result verification problems for most
of the NP-hard problems are not believed to be in NP. We also consider verification
algorithms for approximation algorithms for NP-complete and NP-hard problems.

1 Introduction

Consider a program A written to evaluate a function f. In this article we address the issue of
being able to verify that the program A works correctly for all inputs i.e., A(z) = f(z) for all
inputs . Most of the approaches to this problem fall under the following broad categories:

formal verification, program testing/checking and result verification.

Formal verification of an algorithm or program requires a formal, rigorous proof of the
correctness of the program, using the syntactic and semantic rules of the language in which

the program is written. Formal verification has had limited success because even small
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programs are hard to verify formally. Because the technique of formal verification checks the
correctness of the code as written on paper, formal verification doesn’t prove the correctness
of the executable code of the algorithm verified. The executable code may still be faulty

because of errors in the compilation process, hardware faults, etc.

Blum et al. [3] introduced the theory of self-testing/correcting, where a self-tester for
a program A estimates the probability that A(z) # f(x) for a random input z and a self-
corrector for A computes f(z) correctly, if the error probability of A is sufficiently low. Both
self-tester and self-corrector can make calls to A, and they are considered efficient if their
total time is linear in the running time of A. This approach has two drawbacks. Firstly,
self-testers and self-correctors are both program specific. Secondly, they are allowed to make
multiple calls to the original program. Hence, in most cases the total running time of the

testor or corrector is more than the time of the original program itself.

Result verification, as the name suggests, involves checking the correctness of a proposed
solution to an instance of the problem. A result verification algorithm for a problem II can be
used to test the output of any program solving the problem II. Moreover, result verification

algorithms do not make any calls to a program solving the original program.

In this manuscript, we discuss and design time-optimal result verification algorithms
for some optimization problems. We discuss the existence of polynomial-time verification
algorithms for NP-complete or NP-hard problems, and for approximation algorithms for
NP-hard problems. The question of existence of polynomial verification algorithms becomes
more interesting when we allow an algorithm to leave behind a trail of data, polynomial in
length of the input, called certification trail [6], [7], in addition to its normal output. A result
verification algorithm might use this additional information cleverly to verify the result in

much less time.

The rest of the article is organized as follows. In the next section we formally define some
terms and design time-optimal result verification algorithms which verify the solution of all-
pairs shortes paths, maximum-flow in a network, and matching problems. In the third section

we discuss the existence of polynomial-time verification algorithms for NP-complete and NP-



hard problems, and for approximation algorithms for NP-hard optimization problems. In
the fourth section, we discuss result verification with the help of certification trails. Finally,

we conclude in section 5.

2 Definitions

In this section we define some terms and present some examples.

Definition 2.1 A problem II is formalized as a binary relation, i.e., a set of ordered pairs.
The domain of II is the set of instances, and the range is the set of solutions. Thus, II
C I x S, where [ is the set of instances and S is the set of solutions for the problem. We
say an algorithm A solves a problem II if for all  in I, when z is input to A, a y in S is
output such that (z,y) € II. In some cases, when each instance has a unique solution, it is

possible to formalize the problem as a function.

Definition 2.2 Given a problem II C I x S, the verification problem for the problem II is
denoted by V(II). The verification problem V(II) is a subset of (I x S) x {0,1} such that
((z,9),1) € V() if (z,y) € II and ((z,y),0) € V(II) if (z,y) ¢ II. An algorithm solving
the problem V(II) is called a wverifier or a verification algorithm for the problem II.

Consider an algorithm A for a problem II and a verification algorithm B solving the
corresponding verification problem V(II). By definition, if B takes as an input the ordered
pair (z,y) where y is the output generated by A on the input z, then B outputs 1 if and

only if A produced a correct output on the input z.

We illustrate the above definitions using the maximum clique size problem as an example.
For the maximum clique size problem, II, the set of instances is the set of graphs, and the
set of solutions is the set of natural numbers; (G, k) € II if k is the size of the maximum
clique in GG. For the verification problem, if k is the size of the largest clique in G, then
((G,k),1) € V(II); otherwise, ((G,k),0) € V(II) when k is not the size of the largest clique
in G.



2.1 Verifying Network Flow Problems

In this section we discuss verification algorithms for maximum-flow and minimum-cost flow

problems in networks, and bipartite and general matching problems.

2.1.1 Verifier for the Maximum-Flow Problem

Consider a directed graph G with two distinguished vertices s, the source, and ¢, the sink.
Let the vertex set and edge set of G be V((G) and E(G) respectively. Let m = |E(G)| and let
c(e) be the nonnegative maximum capacity of an edge e in F(G). Let the flow in arc (z,y)

be denoted by f(z,y). Then an s—t flow of value v is defined by the following constraints:

> flu,w)y= Y f(w,u), for each node u # s,t

(u,w)€E(G) (w,u)€E(G)

> flsw)y = Y flws)—v

(s,w)€E(G) (w,s)€E(G)

Y. fhw)y= > flwp)+

(t,w)€E(G) (w,t)eE(G)
f<e

f=0

where f, ¢ € R™ are the flow and the capacity vectors, respectively. A feasible flow is a
function f on vertex pairs which satisfies the above constraints. The value of a flow f is v,
the flow out of the source s. The mazimum-flow problem is that of finding a feasible flow
f of maximum value v. This problem has a rich and elegant theory and many applications
both in operations research and in combinatorics [13], [12].

We need to define a few terms. A residual capacity for a flow f is the function on vertex
pairs given by res(v,w) = c¢(v,w) — f(v,w). The residual graph Ry for a flow f is the graph
with vertex set V(G), source s, sink ¢, and an edge (v, w) of capacity res(v,w) for every pair

v, w such that res(v,w) > 0. An augmenting path for f is a path p from s to ¢t in Ry.

We state the following lemma without proof [12].



Lemma 2.1 A flow f is a maximum flow if and only if there is no augmenting path for f.

Let MF be the maximum flow problem. For the corresponding verification problem
V(MF), the set of instances is I' x F', where T' is the set of graphs with edge capacities, and F
is the set of flows on graphs. An algorithm for V(MF) takes a graph G with a capacity vector
c and a flow f as an input. It outputs 1 if and only if f is a flow with maximum value in
G. According to Theorem 2.1, the algorithm outputs 1 if and only if there is no augmenting
path for f. The existence of an augmenting path for f in G can be easily checked in O(m)
time, because there exists an augmenting path in G if and only if there exists an (s,t) path

in the residual graph Ry, which can be constructed in O(m) time.

Theorem 2.1 The mazimum-flow result verification problem can be solved by an O(m) time

verification algorithm.

2.1.2 Verifiers for Minimum-Cost Flow Problem

Let G be a network such that each edge (v,w) has a cost per unit of flow, cost(v,w), in
addition to a capacity c(v,w). Let vy be a positive flow value given. The min-cost problem

is to find a feasible s—t flow of value vy that has minimum cost, where the cost of a flow f is
cost(f) = > F o) >0 cost(v,w) f(v,w).

We define the residual graph Ry for a flow f exactly as we did in the section 2.2.1, with

the extension that cost(v,w) is the same on Rf as on G.
We state the following lemma [11] without proof.

Lemma 2.2 An s-t flow f in a network is an optimal min-cost flow if and only if there are

no negative cost cycles in the residual graph Rjy.

From the above theorem, verifying the optimality of a given flow f on a given network
G amounts to checking for a negative cost cycle in the residual graph R;. Negative cycles
in a weighted graph can be detected in O(n3) time, where n is the number of vertices in the

graph [1].



Theorem 2.2 There is an O(n®) verification algorithm for the minimum-cost flow veri-

fication problem.

2.1.3 Verifiers for Matching

A matching M of a graph G = (V, E) is a subset of edges with the property that no two
edges of M share the same node. The unweighted matching problem is to find a maximum
size matching M of an unweighted graph GG. Edges in M are called matched edges; the other
edges are free. Nodes that are not incident upon any matched edge are called exposed. A
path p = [uy, ug, us, ....ux] is called alternating if the edges [u1, us], [us, ua, .....[ugj—1, uzj], ...
are free, whereas [ug, ug), [ua, us), .....[t2;, U2j11], ... are matched. The alternating path p is

called augmenting if both u; and u; are exposed vertices.

Lemma 2.3 A matching M in an unweighted graph G is mazimum if and only if there is no

augmenting path in G with respect to M.
See [11] for the proof.

One is tempted to devise the analog of the max-flow algorithm for matching: Start with
any matching, and repeatedly discover augmenting paths. Indeed, all known algorithms for

matching are based on exactly this idea.

Bipartite matching problems can be viewed as special cases of network flow problems

[13], [11].

For non-bipartite unweighted matching problems, verification of a solution involves check-
ing for an augmenting path in the graph with respect to the matching presented. Tarjan

[12] describes an algorithm to detect an augmenting path in O(m) time.

For non-bipartite weighted matching problem, the following lemma is of great import
[12]. We state the theorem without proof. Here, the weight of an augmenting path is the
sum of the weights of the edges on the augmenting path.

Lemma 2.4 Let M be a matching of maximum weight among matchings of size |M|, let p

be an augmenting path for M of mazimum weight, and let M  be the matching formed by



augmenting M using p. Then M’ is of mazimum weight among matching of size |M|+ 1.

The above theorem implies that the augmenting path method will compute maximum
weight matchings of all possible sizes if we always augment using a maximum weight aug-
menting path. All known algorithms, use exactly this idea to solve the general weighted
matching problem. Essentially, all algorithms work in stages where each stage searches for a
maximum weight augmenting path. For verification purposes, a stage of such an algorithm
solving the general weighted matching problem suffices to check for correctness of the match-
ing presented. The best known algorithm for solving the weighted nonbipartite matching is
by Galil, Micali, and Gabow [14] which runs in O(nmlogn) time. Each result verification

stage of the algorithm runs in O(mlogn) time.

Theorem 2.3 The unweighted general matching problem has a result verification algorithm
which runs in O(m) time. The result verification algorithm for the weighted general matching

problem runs in O(mlogn) time.

2.2 Veriftying All-Pairs Shortest Paths

Let G be a directed graph with n vertices and m edges, with nonnegative weights on edges.
The all-pairs shortest paths problem is to find a shortest path, i.e., the path with minimum
weight, between each pair of vertices in GG. Here, the weight of a path is defined as the sum of
the weights of its edges. The length of a path is the number of edges in the path. The most
widely known algorithms for the all-pairs shortest paths problem are those of Dijkstra [9] and
Floyd [10]. Dijkstra’s algorithm has a running time of ©(mn + n*logn) when implemented
with a heap. Floyd’s algorithm runs in ©(n?) time. Bellman and Ford [1] also developed an

algorithm which runs in ©(n3) time and handles graphs with negative weights also.

Many algorithms for the shortest-paths problem use edge weights only to compute and
compare the weights of paths. We therefore define a version [8] of the decision tree model

that captures this behavior.

Definition 2.3 A path-comparison-based algorithm A solving the all-pairs shortest paths



problem accepts as input a graph GG and a weight function. The algorithm A can perform
all standard operations. However, the only way it can access the edge weights is to compute

or compare the weights of paths in the graph.

A verification algorithm for the all-pairs shortest paths problem takes as an input a
directed graph G on n vertices, a weight function, and n(n — 1) paths corresponding to the
pairs of vertices in G; the algorithm outputs 1 if and only if for each pair of vertices, the
path presented in the input is actually a shortest path between that pair of vertices in G.
Karger et al. [8] show that any path-comparison-based algorithm for verification of all-pairs
shortest paths for directed graphs requires Q(mn) path-weight comparisons. We present a
path-comparison-based verification algorithm for the all-pairs shortest paths problem which
runs in O(mn) time. This is an improvement over the program checker of Rubinfeld [2],

which runs in O(n?) time.

There are graphs with ©(n?) pairs of vertices whose connecting paths have lengths ©(n)
each. Hence, we cannot verify all-pairs shortest paths in O(mn) time if the verification
algorithm is given as an input all those shortest paths explicitly, because the size of the
input itself could be Q(n?®). Thus the verification algorithm takes as an input only a data
structure from which shortest connecting paths can be constructed in time proportional to
their lengths. This data structure is the predecessor matriz C', where for each vertex pair
i # j the entry C|[t,j] is a vertex k such that the edge (k,j) lies on the shortest path from
¢ to 7. In addition to C, the verification algorithm also takes the distance matriz D as an
input, where each entry D3, j| is the weight of the shortest path from ¢ to j. By definition,
D[i, 1] = 0.

We explain the algorithm briefly before presenting the pseudo code. The algorithm takes
a weighted directed graph, and an arbitrary solution to the all-pairs shortest paths problem,
1.e., matrices C' and D, as an input. It outputs 0 if the given solution is correct; otherwise, it
outputs 1. The weight of the edge (7, j) is denoted by w(7, j). The first part of the algorithm
determines for each entry C[¢, j] of the matrix C' whether D[i, j] = D[s, C|[¢, j]] + w(C3, ], 7).

If not, then an error is detected and 0 is output. The second part of the algorithm checks



for each source i and each edge (u,v) € E(G) whether using an edge (u,v) could improve
the given shortest path from the source i to v. If D[i,u] + w(u,v) < D[i,v], then the path
from i to u with the edge (u,v) yields a shorter path from ¢ and v and hence, an error is
detected. Following the algorithm, we prove that the algorithm outputs 1 if and only if the

matrices C' and D presented to it are correct.

Let R denote the set of nonnegative real numbers and let w(i, j) denote the value of

the weight function w: F(G) — R* at (i, 7).

Algorithm 1: Verification algorithm for all-pairs shortest paths

Input: Directed graph G, a weight function w : E(G) — R*, the predecessor matrix C,

and the distance matrix D.

1. fori=1ton /* for each source x/

2. forj=1ton /* for each destination */
3. if (j = i and D[, j] # 0)

4. Return(0)

5. elseif (j # i)

6. k= C[i, j]

7. if (D[i, j] # DI[i, k] + w(k, j))

/* From the definition of the predecessor matrix, the edge (k,j) */
/* lies on the given shortest path from i to j. Hence, if C' and D =/

/% are correct, then DJi, j| should equal D[i, k] + w(k,j). */

8. Return(0)

9. endif

10. endif

11. endfor

12. for each edge (u,v) € F(G)



/* Check whether the edge (u,v) could be used to improve the */

/* given shortest path from i to v */

13. if (D[i, u] + w(u,v) < D[, v])
14. Return(0)

15. endif

16. endfor

17. endfor

18.  Return(1)

Proof of Correctness:

Because the algorithm outputs 0 only if there is an obvious error in the input matrices
C or D, Algorithm 1 outputs 1 if the input matrices C' and D are correct. Conversely, we

prove that if Algorithm 1 outputs 1 then the input matrices C' and D are correct.

The verification algorithm verifies single-source shortest paths for source i, in the 7%
iteration of the outermost for loop. Define, for each i, the function p; : [1..n] — [1..n] as

pi(j) = CIi, j]. Interpretation of p;(j) as the parent of j gives a tree T; for each 1.

We claim that if for some ¢, j, the entry D[z, ] is not equal to the distance of the vertex
j from the root ¢ in 7;, then lines 3-10 of Algorithm 1 detect an error, and it returns O.
If some entry in the i*" row of the matrix D is incorrect, then there exists a vertex j such
that D[i, j] is not the distance of j from ¢ in 7. If there is more than one such vertex in 7,
then consider the one whose path from ¢ in 7; has the fewest edges. Let that vertex be j. If
k = Ci, j], then the path from ¢ to k has fewer edges than the path from ¢ to j in 7}, and
hence, by the selection of j, the entry D[i, k| equals the distance of k from ¢ in 7;. Thus, the
distance from ¢ to j in 7; should be D[i, k] + w(k, j). Because the entry D¢, j] is incorrect,
Dit,j] # DJi, k] + w(k,j) and hence, Line 8 returns 0.

Finally, lines 12—-16 check whether the tree T; correctly represents the shortest path tree
for the source ¢. We prove that if Algorithm 1 outputs 1, then D is correct.

10



We prove that each row ¢ of D is correct by showing that for every source 7, the distance
of a vertex j from ¢ in 7T} is the correct shortest distance of 7 from ¢, for all j. Note that by
preceding discussion, D], j| is the correct distance of the vertex j from the root ¢ in 7; if the
algorithm outputs 1. Let 7} be the correct shortest path tree for the source i. We denote
the distance of a vertex j from the root i in T} by D'[i, j]. We show that the distance of a
vertex j in V(G) from the root is the same in 7; and T}, i.e., D[i,j] = D'[4, j] for every j.
We prove this by induction on the level of the vertex j in 7}, where level of a vertex in a
tree is defined as the number of edges on the path from the root of the tree to that vertex.

By convention, the level of the root is 0.
Basis. Level(j) = 0. Here, j = i and the claim is obviously true.

Induction Step. Level(j) = l. Suppose the predecessor of j in Tl-' is k. Because the

level of the vertex k is [ — 1, the induction hypothesis implies D[4, j] = D'[1, k] + w(k,j) =
D[i, k] + w(k, j). Because of the check made in line 13 for the edge (k, j) and the algorithm
outputs 1, D[i, ] < D[4, k] + w(k, ). Also, because D'[i, j] is the correct shortest distance,
D'[i,§] < DI[i, j]. Therefore, D'[i,4] = DJi, j].

Therefore, all the entries of the row ¢ of D are correct. This implies that 7} is a correct

shortest tree path for the source 1.
Hence, the matrix D and the predecessor matrix C', which defines the trees, are correct.
Thus, if Algorithm 1 outputs 1, the input matrices D and C' are correct. O

It is easy to see that Algorithm 1 is a path-based-comparison algorithm and it runs in
O(mn) time for a connected graph G. The algorithm can easily be parallelized to run on

O(mn) processors in O(1) time on an EREW PRAM machine.

Theorem 2.4 Algorithm 1 is a ©(mn) time path-based-comparison verification algorithm

for the all-pairs shortest paths problem.

11



3 Verifiers for Intractable Problems

In this section we discuss the existence of polynomial-time verification algorithms for NP-

complete, and NP-hard problems.

3.1 Verification Problems for NP-complete Problems

Consider a decision problem II: 7 — {0, 1}. The verification problem V(II) for the problem
IT is the relation V(II) C (I x {0,1}) x {0,1} such that ((z,y),1) € V(II) if and only if
(z,y) € II. Tt is important to observe here that an algorithm A for a decision problem II can
be interpreted as a Turing machine accepting the language {z|(z,1) € II}. The language

accepted by an algorithm A for a decision problem II is denoted by L(II).

Because there is a one-to-one correspondence between decision problems and languages
accepted, we define a problem II to be NP-complete if L(II), the language accepted by an
algorithm for II, is NP-complete. We now show that the verification problem for any NP-
complete problem is NP-complete. We show this by proving that for every decision problem

I, L(II) is Karp-reducible to the language L(V(II)).

Reducing L(IT) to L(V(II))

Define f : I — J, where J is I x {0,1}, as f(z) = (z,1). Its easy to see that f(z) €
L(V(1)) if and only if € L(II). Because f is computable in polynomial time, L(II) is
Karp-reducible to L(V(II)).

Also, L(V(IT)) € NP, for any L(II) in NP.
Thus, we have proved the following result.

Theorem 3.1 The verification problem V(II) for any NP-complete problem II is NP-complete.

12



3.2 Verification for NP-hard Problems

Let N be the set of natural numbers. Consider an NP-hard problem H C I x N satisfying
the following property: If (z,y) € H, then y < f(z), where the integer value of f(x) is
polynomial in size of # and the function f is computable in polynomial time. The value
f(z) is essentially the upper bound on the integer value of a solution of z. Let B be a
verification algorithm solving the problem V(H). We show that a polynomial number of
calls to a verification algorithm B is sufficient to solve H. Consequently, if P # NP, then a

polynomial time algorithm for V(H) does not exist.

An algorithm for solving H using B

Input: z
Compute f(z)
for k =1 to f(x)
if (B outputs 1 on the input (z, k))
Return(k)
endif
endfor.

Because the value of f(z) is polynomial in the length of the input z, the NP-hard problem
H is Cook-reducible to the verification problem V(H). For many graph optimization problems
— minimum vertex cover size, maximum clique size, minimum clique cover size, chromatic
number, maximum cycle length size, etc. — the value of the solution y for a given instance
graph z is bounded above by the number of vertices in the graph. Hence, each of these
NP-hard graph optimization problems is Cook-reducible to its corresponding verification

problem.
We state the above result in the form of the following theorem.

Theorem 3.2 Consider an NP-hard problem H C I x R, such that if (z,y) € H then

y < f(z), where f is computable in polynomial time. Also, f(x) is polynomial in size of .

13



A polynomial time verification algorithm for V(H) does not exist, unless P = NP.

Let R be the set of real numbers. Consider an NP-hard optimization problem H C I x R.
For each =z € I, x has a certain set of real candidate solutions. We illustrate the term, real
canditate solutions, through the following examples. For the maximum clique size problem,
y is a candidate solution of a graph G if GG has a clique of size y. For the traveling salesman
problem, y is a candidate solution of an instance G if there exists a tour of cost y in G. In
contrast, a feasible solution of an instance z is a combinatorial structure or vector which
is a valid solution to the problem. For example, a feasible solution of the minimum vertex
coloring problem is an actual valid coloring of the vertices of the input graph. Similary, a
feasible solution of the maximum clique size problem is the set of vertices which induce a
clique in the input graph. Intuitively, a candidate solution is the cost of a feasible solution,

and the optimization problem is to find the optimum candidate solution.

For some optimization problems, it is possible to compute the optimum feasible solution
of an instance in polynomial time using an oracle which computes the optimum cost of
any given instance. Such optimization problems are known as self-reducible problems. For
example, it is an easy to design a polynomial time bounded graph coloring algorithm A,
which colors a given graph with minimum number of colors (chromatic number), using an
algorithm which returns the chromatic number of any given graph. Similarly, finding the
maximum clique in a graph is also a self-reducible problem because it is easy to find a
maximum clique in a graph, using an algorithm which returns the maximum clique size of
any given graph. Note that for these optimization problems, it may not possible to compute
the optimum solution of an instance [ in polynomial time, if we are given only the optimum
cost of the instance /. We should be able to query the optimum costs of the “subinstances”

of I also in constant time.

H is an NP-hard maximization problem if for each (z,y) € H, y is the largest candidate
solution of z. Also we define the corresponding decision problem, Ny, for a maximization
problem H as: ((z,v),1) € Ny if (z,z) € H for some z > y. Suppose H is an NP-hard

maximization problem and the corresponding decision problem Ny is NP-complete (as is the

14



case with many NP-hard optimization problems).

Observations

e Ny C (I x ®R)x {0, 1}. ((z,y), 1) € Ny if and only if 2 has a candidate solution z
such that z > y.

e V(H) C (I xR)x {0, 1}. ((z,y), 1) € V(H) if and only if y is the maximum candidate

solution of z.

Let II be the maximum clique size problem, which is an NP-hard maximization problem.
If (G, k) € II, then the value of k is bounded by the number of vertices in G. Hence, for
the problem II, f(G) = |V(G)|, which is polynomial in the size of G. For a graph G, vy is
a candidate solution of G if and only if G has a clique of size y. An algorithm solving Il
outputs the maximum candidate solution of . The corresponding decision problem for II is
known as the Clique-Size decision problem where (G, k) € Clique-Size if the graph G has a
clique of size greater than or equal to k. Moreover, (G, k) € V(II), the verification problem

for II, if and only if & is the size of the largest clique in the graph G.

Definition 3.1 A language L is in the class DP if and only if there are two languages L; €
NP and Ly € coNP such that L = Ly N Ly [4], [5]. Obviously, NP C DP and all DP-complete
languages are NP-hard.

V(H) is the “exact cost” version of the NP-complete optimization problem Ny. The “exact
cost” versions of many of the NP-complete optimization problems known (independent set,

knapsack, max-cut, max-sat, maximum clique size, etc.) have been shown to be DP-complete

[4], [5]. Also, if V(H) is DP-complete, then V(H) ¢ NP unless DP = NP.

Theorem 3.3 Consider an NP-hard problem H such that the “exact-cost” version of its
corresponding decision problem Ny is DP-complete. The verification problem V(H) for H is
DP-complete and V(H) ¢ NP unless DP = NP.

15



3.3 Approximate Verifiers

Consider an NP-hard maximization problem, H C I x R, where, as defined in the previous
section, (z,z) € H if z is the largest candidate solution of the instance . An algorithm for
H is an (a,c) approzimation algorithm if on input z in I, it outputs y in R such that y is a
candidate solution of z, andif (z,z) € H, then z < a-y+c, where a, c € R. Similarly, an (q, c)
approzimation verifier for the problem H is defined as the problem AH C (I x ®) x {0,1},
such that ((z,v), 1) € AHif y <z < a-y+ ¢, where z is such that (z,2) € H. Note that y

need not be a candidate solution of z.

An (a,c) approximation algorithm for the maximum clique size problem would take a
graph G as an input and would output y such that G has a clique of size y, and if k is the
size of the largest clique of G, then £k < a-y+c.

We show that if there exists a polynomial-time (a, ¢) approximation algorithm for an NP-
hard maximization problem H, then L(Ny), the language accepted by an algorithm for the
NP-complete decision problem Ny corresponding to H (as defined in 3.2), is Cook-reducible
to L(AH), the language accepted by the (a, ¢) approximation verifier for the problem H. Let

AA be a polynomial-time (a, ¢) approximation algorithm for the problem H.

Observations

o L(Ny) CI xR (z,y) € L(Ny) if and only if = has a candidate solution z such that
z2 2.
o L(AH) C I xR. (z,y) € L(AH) if and only if y < 2z < a-y+ ¢ where 2 is the maximum

candidate solution of z.

Cook-reduction of L(Ny) to L(AH)

Input: (z,y)
1.  Call AA with the input z. Let the output be m.

2. /* Let z be the maximum candidate solution of z. Then m <z <a-m+ ¢ %/
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3. if (y < m) Return(1) /* Because y < m < z %/

4. if (y > m)

5. if (y > a-m + ¢) Return(0) /% Because z < a-m+c<y x/

6. else

7. Use the oracle for language L(AH) to determine whether (z,y) € L(AH).

8. if ((z,y) € L(AH)) Return(1) [*(z,y) e LAH) = y<z<a-y+ec x/
9. else Return(0)

10. /*y>m = a-y+c>a-m+ec. Because z is not between y and a-y+ cx* /
11. /* but is less than a-m + ¢ (line 2.), m < z < y. * /

12. endif

13. endif

14.  endif

The above reduction returns 1 if and only if z, the maximum candidate solution of the
instance z, is greater than or equal to y. A similar reduction can be shown for NP-hard

minimization problems.
Thus, we have proved the following result.

Theorem 3.4 Let H be an NP-hard optimization problem whose corresponding decision prob-
lem, Ny, is NP-complete. Also, let H have a polynomial-time (a,c) approzimation algorithm.

Then there is no polynomial-time algorithm for an (a,c) approximate verifier of H, unless

P # NP.

It should be noted here that given a polynomial time (a,c) approximation algorithm A,
there always exists a polynomial time verification algorithm which verifies the correctness
of A, i.e., given an ordered pair (z,y), it checks if y is the output to be produced by fault-
free A when run on the input . The fault-free algorithm A itself would suffice as such a
verification algorithm. Such verification algorithms are algorithm specific, in contrast to the

algorithms solving the (a,c) approximation verifier problem. For example, for bin-packing
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NP-hard minimization problem there exists a polynomial time approximation algorithm
which implements the “first-fit” hueristic and is guaranteed to return a solution of value no
more than }—g -OPT + 1, where OPT is the optimal solution. Now, given an input z and an
arbitrary candidate solution vy, it is easy to verify whether y could be output by the “first-fit”
hueristic algorithm on input z, but it is not easy to verify whether y < }—g -OPT + 1.

4 Verification using Certification Trails

Sullivan and Masson [6, 7] introduced a conceptually novel and powerful technique to achieve
fault tolerance in software systems. We consider using this technique in the context of

verifiers, as defined in this article.

Let us consider a problem II C I X S and an algorithm A solving II. The algorithm A
takes € I as an input, and outputs y € S such that (z,y) € II. The verification problem
V(II) is a relation on (I x S) x {0,1}. A verification algorithm verifying the correctness of A
takes the ordered pair (z,y) as an input, where y is the output produced by A on the input
z, and outputs 1 if and only if A produced a correct output on the input z, i.e., (z,y) € II.
To make the task easier for the verification algorithm, we modify the algorithm A to A¢ so
that it now produces a trail of data, polynomial in the length of the input, which we call
certification trail, in addition to its normal output. The verification algorithm would try to

use this additional information to verify the result more quickly.

Hence, we define a certification-trail verification algorithm VA for the modified algorithm
Ac as one which takes (z,y,c) as an input, where y and ¢ are the output and certification
trail respectively produced by the algorithm Ac on the input x, and outputs 1 if y and ¢
are the correct output and certification trail generated by Ac; otherwise, it outputs 0. Note
that VAc is expected to output 0 even when A outputs both y and c¢ incorrectly on the
input z. Hence, this definition differs slightly from the one proposed in [6], which allows the

verification algorithm to behave erratically when both y and ¢ are incorrect.

We illustrate the concept of certification-trail verification algorithm with the help of an
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example. Let us consider the single-pair shortest path problem SP. Let Agp be an algorithm
solving SP, and VAgp be a verification algorithm for SP. The input to Agp is a weighted
graph G and a pair of vertices (s,t). The output of the algorithm is the shortest path
from s to t in G. The verification algorithm VAgp takes a weighted graph G and a path
between a pair of vertices (s,t) in G as an input and it checks whether the path given is
actually the shortest path from s to t. Now, if Agp also calculates shortest paths from s
to every other vertex in G' (most of the known algorithms solving SP work this way), then
Agp could provide the verification algorithm VAgp with some additional information. In
this case, we require Agp to output for each other vertex, u € V(G), its predecessor in the
shortest path from s to u and the weight of the shortest path from s to u. This additional
information is output as a certification trail. The verification algorithm VAgp, hence, takes
a weighted graph G, the shortest path between s and ¢, and the certification trail consisting
of predecessor and shortest distance for each other vertex, as the input. As shown in section
2.2, this information can be used to detect an error in O(m) time, where m is the number

of edges in G.

Next we claim that if the certification-trail verification algorithm VA runs in polynomial
time, then the original verification problem V(II) € NP. Consequently, for an NP-hard
problem H whose corresponding decision problem is NP-complete, the verification problem
for H does not have even a certification-trail verification algorithm which runs in polynomial
time, because V(H) for most of the well known “exact cost” version optimization problems

is not known (or believed) to be in NP (Refer Theorem 3.3).

To show that V(II) € NP, we use the algorithm VAc to develop a polynomial time non-
deterministic algorithm ND; that accepts L(V(II)). On input (z,y), ND; guesses a string c,
polynomial in the length of (z,y), and calls VA¢ with the input (z,y,c). If VAc outputs 0,
then NDj loops forever; otherwise, ND; outputs 1 when VA¢ outputs 1. To see that ND;
accepts L(V(II)), we observe that NDj accepts an input (z,y) if and only if there exists a
string ¢ such that VA¢ outputs 1 on (z,y, ¢) if and only if (z,y) € V(II). Hence, V(II) € NP.

Thus, we have proved the following theorem.
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Theorem 4.1 If there exists a polynomial time certification-trail verification algorithm

V A, for an algorithm solving the problem 11, then the verification problem V (II) € NP.

5 Conclusions

We have shown that verification problems for NP-complete problems are NP-complete. Ver-
ification problems for many the well known NP-hard maximization problems whose cor-
responding decision problems are NP-complete have been proved to be DP-complete and
NP-hard. Furthermore, (a, c) approximate verifiers of NP-hard languages having polynomial

time (a,c) approximation algorithms cannot have polynomial time algorithms unless P =

NP.

We have also discussed the existence of polynomial time verification algorithms when
they are presented with some additional information (certification trail). We proved that if
a certification-trail verification algorithm VA exists for an algorithm A solving the problem

II, then VA. € NP.

The verification algorithms discussed in the section 2.1 belong to the class of primal-dual
algorithms [11], which is a general framework for solving linear programming. A primal-dual
algorithm works in stages, where each stages checks for the optimality of the current solution.
Hence, each stage of a primal-dual algorithm is essentially a result verification stage. This
leaves us with the following open question. Is there a broader characterization of algorithms

consisting of stages whose each stage can be used as a result verification stage.
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