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Abstract— Caching can significantly improve the efficiency of the related work. Section Ill presents the optimal dynamic
information access in networks by reducing the access latency programming algorithm for tree topology networks. In Sec-
and bandwidth usage. However, excessive caching can lead toon 1y we design centralized and distributed heuristics for

prohibitive system cost and performance degradation. In this - . .
article, we consider the problem of caching a data item in a general graph networks. Simulation results are presented in

network wherein the data item is read as well as updated by Section V, and concluding remarks in Section VI.

other nodes and there is a limit on the number of cache nodes

allowed. ‘More formally, gi_ven a network graph, the read/write Il. Data Caching Problem Formulation

frequencies to the data item by each node, and the cost of ] ] )
caching the data item at each node, the problem addressed in In this section, we present our model of the network, give
this article is to select a set ofP nodes to cache the data item a formal definition of the problem, and present a discussion

such that the sum of the reading, writing (using an optimal on related work. We use the tergache nodeto refer to a
Steiner tree), and storage cost is minimized. For networks with network node that caches the data item

a tree topology, we design an optimal dynamic programming . )

algorithm that runs in O(|V|>P?), where |V| is the size of Network Model and NotationsWe model the network as a

the network and P is the allowed number _Of caches. For the connected general grapli; (V, E), where V is the set of
generatl ggae%':r;‘ﬁgggoﬁgh ;/i\g;ﬁ:rgntg?tspé?sbtlrieﬁts d ’i\'mp'l‘;OnTepAteéﬁbx"e nodes/vertices, anHl is the set of edges. There is a single data
resen . ; L

ghrough extensive simulations in general graphs,pwe show that item in the network, which is to be cached at sele_zcted network
the centralized heuristic performs very close to the exponential Nodes. For each node= V, the frequency of reading the data
optimal algorithm for small networks, and for larger networks, item is r;, the frequency of writing the data item is;, and
the distributed implementation and the dynamic programming the cost of caching (i.e., storing) the data item at node
algorithm on an appropriately extracted tree perform quite close si. Let d;; denote the shortest distance (in number of hops)
to the centralized heuristic. between any two nodes j, and letd(i, M) = minjen d;j
be the shortest distance frohto some node in a set of nodes
M. Also, let S(X) be the optimal cost of a Steiner tree over
the set of nodes{. Given a set of cache nodég where the

In recent years, with the advent of wireless technology agfta item is cached, the total cost of reading the data item by
file sharing applications, the traditional client-server model hasnodei is r;d(i, M), while the cost of writing by node is
begun to lose its prominence. Instead, information Sharl%S(M U {Z}) Note that we do not assume a server for the

by spontaneously connected nodes has emerged as a Bgw item in the network, since in our model, a server can be
framework. In such networks, all network nodes are equal j§oked upon as a predetermined cache node.

terms of capacity and functionality. Moreover, the ownersh
of the files is not critical, and a file (data item) does not belo ove network model can be defined as follows. Given a

to a specific node and hence, is read and written by multi &twork graphG(V, E) and a numbeP(1 < P < |V']), select

nodes in the network. Caching an object at various netwoglf most P cache nodes such that the total (reading, writing,

nodes can play an important rolg in imprpving overall syst.eghd storage) cost is minimized. For a given network graph
performance by drastically reducing the time to read an objeg.and a set of cache nodeg, the total cost is denoted by
In this article, we address the data caching problem in aboy M) and is defined as: '

described multi-hop networks wherein the given data item ma
be read and written by multiple other network nodes, and the(G, M) = Zrid(i, M)+ ZwiS({i} UM)+ Z si (1)
objective is to minimize the total reading, writing, and storage eV icVv ieM

cost by placing a limited number of caches. Here, the cost, the apove equation, the terms on the right hand side
of reading the data item by a node is defined as the distanggesent total read cost, total write cost, and total storage
to the closest cache node times the read frequency, the st respectively. Essentially, the data caching problem is to

of writing is defined as the cost of the minimum Steiner treg,ect a set of cache nodas (|M| < P) such that the total
over the writing node and all the cache nodes times the WrESstT(G,M) is minimized. o

ILetanZ?;)iliezrir:]itt?ﬁeSr:g:j?e cost s the given cost of CalChllgglated Work. When there are no writers angt = |V,

The rest of the paper is organized as follows. In Section
we present our network model, formulate the data cachi
problem addressed in this article, and present an overviewEg)O

I. Introduction

Bata Caching Problem. The data caching problemin the

e data caching problem is exactly the same as well-known
acility-location problem. When there are only read costs, the
a caching problem is the well-knowP-median problem.
th the problems are NP-hard, and a number of constant-
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hgupta,bintang@cs.sunysb.edu of the problems [1], [6], [2], under the assumption that



Subtree Notations.Let G(V, E) be a given network tree, and
let » be a network node (i.er, € V). Let T;. denote the entire
network tree rooted at. In general, we us&;, to denote the
subtree rooted at in the treeT;,.. We useT,, to also represent
the set of nodes in the subtrdg. Now, consider two nodes
v and u in the network tree, such that is an ancestor of
uw in T,. Let 7(v,u) denote the unique path from nodeto
nodev in 7;.. As shown in Figure 1, leL, , be the subtree
in T, consisting of nodes on the left of the patfw, v), but
excluding the nodes on the patffv, u). Also, letR, ., be the
subtree consisting of nodes on the right of the pdih ), but
including the nodes on the paitiv, ) except foru. Thus, the
tree T, is partitioned into three disjoint subtrees, ViZ, ,,
Ty, and R, ,,.

Fig. 1. Subtree Notations.

Dynamic Programming Algorithm. Our dynamic program-
the ed s in th h satisfy the i lar | I_ming approach changes the write frequencies of the subtree
e edge costs in the graph satisfy the tnangular InequalF’Yodes, but keeps the read and storage frequencies unchanged.

Without the triangL!Iar ipequality assumption, either problem Fhus, for presentation of our dynamic programming solution
as hard as approximating the set cover [6], [10], and theref% need to represent nodes’ write frequencies in a given

cannot be approanated petter thé)r(n}og [V|) unlessNP C suPtree as a separate parameter.
P. Several papers in the literature circumvent the hardness o
the facility-location andP-median problems by assuming that

the network has a tree topology [9], [8], [11]. NotationI". Let us usel'(7,,W,,p) to denote the optimal

The related optimal residence set problem has been stuaﬁgqmmum) total CO.St for the subtrék, using aF r[\osp caches
extensively [3]. Wolfson and Milo [13] show that the optimafnC uding v, Whereiln the parametewv = {(wi)li € T}
residence set problem without storage cost is NP-hard ft rpresents the W”te frequer_lcles of nodegﬂnandp > 0.
general topologies. They provide efficient optimal algorithm (_)t(_a that t_he write frequenm_asi may be different from the
for complete, tree, and ring topologies. However, their writ%”g.g'nal write freguenmem given for the network grapl,
policy uses the minimum spanning tree of the distance gra Ih"le the npdes rgad frequencies anq stqrggg costs are the
of the replica nodes. In comparison, our problem formulatio me as o'r|g|nal given values and are |mpl|9|t in the no'Fatlon
considers storage cost and uses a write policy based on HeAISO’ since we have assumed that the road nece_s_sarlly
optimal Steiner tree over the writer and the set of cache nodgs(.:ache node, we can only place at mpst 1 additional

The work that is most closely related with ours is that b§a°hes
Kalpakis et al. [7]. They considered the problem of finding Below, we present a recursive dynamic programming equa-
a Steiner-optimal P-replica set in a tree topology in order t®n for computingl'(T,,, W,,p) in terms of optimal cosT’
minimize the sum of reading, writing, and storing costs. Theyer smaller subtrees containeddf. Note that the original
developed a very complicated (more than 20 pages of cameblem of determining the optimal cost due to placement
analysis) optimal dynamic programming algorithm that ruref at most P caches in the given network can be solved
in O(|V|%P?) time and finds a Steiner-optimal replica set oby evaluatingmin,cy I'(T,,, W¢, P), whereV is the set of
size exactly P in tree topologies. In our understanding, theiall nodes in the network andW¢ = {(i,w;)|i € V} is
work gives aO(|V'|®P3)-time algorithm for finding a Steiner- the complete set of original write frequencies. Our given
optimal replica set of sizat mostP in trees. In this article, recursive equation can be easily modified to compute the
we essentially address the same problem and design a mactual set of optimal cache nodes, but we present the equation
simpler dynamic programming optimal algorithm that runs ifor computing the optimal cost for sake of simplicity of
O(|V|>P?) time and finds an optimal set of caches of sizpresentation.
at mostP. In addition, we design centralized and distributed
heuristics to solve the problem in general graph topologieRecursive EquationGiven a set of selected cache nodes
and show through extensive simulations that our proposgfcluding v) in T, let v be the leftmost deepest cache node
algorithms perform well in general graph topologies. (other tharw) in T,. More formally, letu. be the cache node
in T, such that there are no cache nodesIin, or on
m(u,v) — {u,v}. Recall thatr(u,v) is the path connecting
u andwv in the given network tree. To optimally place upio

In this section, we address the data caching problem déaches iril;,, we try to optimally place uptg caches iri’, and
the special case of a tree topology, and present an optimat ¢ caches ink, ., whereq < p—1. The recursive equation
dynamic programming algorithm. We start with some subtrémlow definesI'(T,,,W,,p) in terms of I'(T,, W,,¢) and
notations (as in [9]) that are needed to describe our dynanhi€R,, .., W, ., p—¢q) for appropriately define®v,, andW,, ,,.
programming algorithm. The equation is further explained in the following paragraph,

[1l. Data Caching in Tree Topology



and its correctness is formally proved in Theorem 1. Let Theorem 1:Equation 2 correctly represents the optimal

total costl'(T,,, W,,, p) for a givenT,,, W, andp.
W, = {(,w;)|i€T,}, and (T, Wo.p) g o Wo andp "
c, = Z(ridiv+widiv)+sv~ Time Complexity. As mentioned before, to compute the
€T, minimum total cost of placement dP caches in the original

given graphG, we need to computenin,cy I'(T;., W, P)

Then, the recursive equation for computibgr,,, W,,,p) is ) ; . .
q pUtingT’,, W, p) whereV is the set of all vertices ant¢ = {(¢,w;)|i € V'}

given by: represents the original given write frequencies. To compute
L(Ty, Wy, p) = I(T,,Wg, P) for all r, we precompute all(T,, W,,p) and
C, if p=1 I'(R; .y, Wy, p) as defined below.
) ] ] Each edgé€x, ') of the network tree divides the graph into
i (Cl’mmue(Tv—{v}) 1 <g<p—-1 two subtrees. Consider the subtr@g that containsz, and
Yicr, ., ridiv + wid;y) (2) defineW, as
T w? We={(bw)li € (T~ {2} Ul D0 w}
v,uy VVo,uy 1€(V—Ty)U{z})
+ZieTv widW)> if p>1 We precomputd’(T,,, W,,p) for all values ofp and edges
Above (z,z") in the network graph. In addition, we also precompute

I'(Ry,y, Wa,y, p) for all values ofp andy € T, where

Wu:{(ivwi)“ € (Tu - {u})} U {(u7 Z wz)} and W%y — {(Z,’LUZ)‘Z c (Rm,y7{:17})}U{(:177 Z w1)}

1€(Ty—Ty)U{u}

W ={(4,w;)[i € (Rou — {v})} U{(v, Z w;)}.

1€(Ty— Ry, )U{v}

i€(V=Rqg,y)U{z})

It can be shown that the above set Bf values can all

be computed in the order of subtree sizes in a dynamic
Note that above recursive equation is for an arbitrary subtrg;—bgramming manner using Equation 2. Once the above values
in the original graph, and hence, also applies to a subtreerzfye been computed,(T,, Wq, P) for eachr € V can

the kind R, ,,. then be computed using the same Equation 2. Thus, we need
Explanation.We now explain the above recursive equatiotp computeP|V|? values, where computation of each value
(Equation 2) in more detail. When= 1, no additional caches takesO(|V'|P) time. Here, we assume that the first and last
can be placed since is already a cache node. Thus, théerms of Equation 2 are already precomputed (ushig/|?)
optimal total cost'(T,,, W.,,, p) is C1, the total cost incurred by preprocessing time). Thus, the total time complexity of our
the nodes irf}, when the only cache nodeis For the general dynamic programming algorithm i©(P?|V|?) where|V| is

case p > 1), eitherv is still the only cache node (in whichthe size of network andP is the number of cache nodes
case the total optimal cost is still;) or there are additional allowed.

cache nodes iffi,,. In the latter case, the deepest leftmost cache

nodew in T, exists. Then, the optimal co(7,, W,,p) is IV. General Graph Topology

computed by iterating over all values 9f(1 < ¢ < p—1) | this section, we address the data caching problem in a
and nodes: & (7, — {v}). The total read and storage CoSt§anera| graph topology. In a general graph, the data caching
of node; inT,, are fully embedded In the f|rst three terms fo roblem is NP-hard, since it reduces to the facility-location

nodes inLyy, T, and R, ., respectively. Since there aré ng, piam when the write frequencies are zero. Here, we first

cache nodes itt, ., the storage cost of nodes In, ,, i 2810 yagjgn a centralized greedy algorithm, and then present a
and the read requests are satisfiedubyhe storage and read gigyipted implementation of the centralized algorithm. We

cost of nodes irl’, are subsumed ilf (7, Wy, ), since the 5,0 sed similar techniques in our recent work [12] on a

sr:orage cost of eacrf\ node is indepen.def:.nt of otherhcaches Pé]gted problem of data caching under update cost constraint.
the read requests of nodes’li) are satisfied by cache nodesue i show through simulations that the centralized heuristic

(Tcluglng_u) in Ty only.bS|m|Iz2rIy, the storage and read COSfg,e|0ped in this section perform close to the optimal solution
of nodes inR, ., are subsumed il'(Ry,u, Wo,u,p = q). (T small general graph networks.
The cost of the Steiner tree spanning over a writer node

¢ and the cache node&/ of T, can be divided into the ) .

cost of Steiner tree spanning over cache nodedncost A Centralized Greedy Algorithm

of Steiner tree spanning over cache node®in,, the cost of  We now present a polynomial-time Centralized Greedy
the pathr(v,u), and the cost of the shortest path connectingAlgorithm for the data caching problem. We start with defining

to the closest cache node. Thus, the total write cost over cathe concept of a benefit of a set of nodes.

nodes inT;, is embedded in multiple terms of Equation 2, viz., Definition 1: (Benefit of Node) LetM be the set of nodes
Widi, (T, W, @), T( Ry i, Wo s D—4)5 andZieTv w;d,,. that have been already selected as cache nodes by the Cen-
The above claim of write cost division forms the core of thralized Greedy Algorithm at some stage. Thenefitof an

proof of the following theorem. See [5] for the proof of thearbitrary node A, denoted & A, M), is the reduction in total
following theorem. cost due to selection off as a cache node. More formally,



BAM) = 7(G,M) — 7(G,M U {A}), whereT(G, M) is of A. Let C € M be the cache node ifi, that is closest to
the total cost of selecting a set of cache nodésn graphG, A. In the above Distributed Greedy Algorithm, we estimédte
as defined in Equation 1. O to bed(A,(C), the distance fromA to C. The valued(A, C)

Note that since the minimum-cost Steiner tree problem ¢&n be computed in a distributed manner at the start of
NP-hard, we adopt the 2-approximation Steiner tree algeach round as follows. As mentioned before, the coordinator
rithm [4] to compute writing costs. initiates a new round by broadcasting a packet containing

Based on the above definition of benefit, our proposede remaining number constraint to the entire network. If
Greedy Algorithm can be described as follows. liétbe the we append to this packet all the cache nodes encountered
set of cache nodes selected at any given stage. Initiafllys on the way, then each node should get the set of cache
empty. At each stage of the Greedy Algorithm, we addifo nodes on the shortest path from the server to itself. Now,
the nodeA that has the highest benefit with respectMbat to computed(A, C), each node only needs to exchange the
that stage. The process continues uiticaches nodes haveabove information with all its immediate neighbors.
been selected or there is no node with positive benefit. The
running time of the above described algorithmQ$P|V|?),

since the time to compute a 2-approximation Steiner tree over V. Performance Results

a set ofs nodes isO(s|V[?). In this section, we evaluate the relative performances of the
various cache placement algorithms proposed in our article.
B. Distributed Greedy Algorithm Experiment Setup. We use a network of 50 to 400 nodes
In this subsection, we present a distributed localized implpltaced randomly in a square region of si2eé x 30. We
mentation of the Centralized Greedy Algorithm. consider unit-disk graphs wherein two nodes can communi-

To facilitate communication between nodes, we assumate with each other if the distance between them is less
presence of acoordinator in the network. Our Distributed than a given number (called thiansmission radius For
Greedy Algorithm consists of rounds. During each round, eaohr simulations, we use a transmission radius of 9, which
non-cache nodel estimates the benefit (as described in the the minimum to keep even small networks of siz@
next paragraph) of caching the data itemAatlf the benefit connected. We vary various parameters such as network size,
estimate at a nodd is positive and is the maximum amongthe maximum number of cache nodespercentage of readers
all its non-cache neighbors, thehdecides to cache the dataand writers in the network, and thratio R of average write
item. At the end of a round, the coordinator node gathers ifrequency to average read frequency. Note that in practical
formation about the cache nodes newly added. The numberseftings we exped® to be low. The read frequency of a reader
cache nodes that can be further added is then broadcast byrtbée is chosen to be a random number between 0 and 100,
coordinator to the entire network. The algorithm terminatetf)e write frequency of a writer node is chosen to be a random
when either more tha® cache nodes have already been addedimber between 0 anthOR, and the storage cost at a node
or no more cache nodes were added in a round. is chosen to be a random number between 0 and 100.

Estimation of3(A, M). A non-cache noded considers only N our simulations, we compare the performance of various
its “local” traffic and estimation of distance to the nearestata caching placement algorithms, viz., Centralized Greedy
cache node, to estimaté(A4, M), the benefit with respect to Algorithm, Distributed Greedy Algorithm, and Dynamic Pro-
an already selected set of cache noi&sin particular, a node 9ramming Algorithm (DP) on the shortest path tree rooted at
A observes its local traffic, i.e., the data access requestsithat that results in the minimum total cost{G, {v}). Each data
forwards to other cache nodes. Of course, the local traffic BPintin the graph plots is an average over five different random

a node includes its own data requests. We estimate the berffPh topologies. We start with comparing our Centralized
of caching the data item at as Greedy Algorithm with the optimal algorithm in small size

networks.
BAM) = fd—s,—d Y w;,

eV

Comparison with Optimal Algorithm in Small Networks.

An optimal solution for the data caching problem can be
where f is the frequency of the local data access traﬁi&omputed by looking at alD(|V'|) subsets of nodes of size
observed atA, d is the distance to the nearest cache frong most P, and picking the subset of nodes that gives the
A (which is computed as shown in the next paragraph), minimum total cost as the solution. Due to the high time
is the storage cost adl, and w; is the write frequency at complexity of the above algorithm, we choose the network size
a nodei in the network. In the above equation, we havg/| = 50 and varyP from 1 to upto6. We pick R (the ratio of
estimated the increase in totallwriting cost due to caching &erage write frequency to the average read frequency) as 0.1,
Aasd) ., w;. The local trafficf can be computed if we gjnce it was just small enough to result in maximum number
let the normal_networ_k traffic (using only the already selecteg cache nodes being selected. We observe in Figure 2 that
cache nodes in previous rounds) run for some time betwegg Centralized Greedy Algorithm performs very close to the
successive rounds. optimal cost. Thus, in the following experiments, we use the
Estimation ofd — the distance to the nearest cache from A.Centralized Greedy Algorithm as a benchmark of comparison.
Let A be a non-cache node, afith be the shortest path treeWe also observe that the DP algorithm performs only about
from the coordinator to the set of communication neighbof% worse than the optimal algorithm.
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Fig. 2. Comparison of Centralized Greedy Algorithms with the optimdfig. 3. Varying R, the ratio of average write to average read frequency.
algorithm. Here, the network size is 5@ (the ratio of average write to Here, the network size is 20@? = 25, percentage of readers and writers is
average read frequency) as 0.1, and percentage of readers and writers is 50%.

Varying R. In this experiment, we vary (the ratio of average 12000
read frequency to the average write frequency) from 0.001 t‘g 10000
0.1 in a network of size 200 witl® (the maximum number of £ 8000
cache nodes allowed) as 25. We keep the percentage of readgrs
and writers in the network a@0%. Figure 3 plots the total cost
7(G, M) corresponding to the sét/ of cache nodes delivered 3
by various algorithms for given parameters. We see théef

of

6000

st (num

4000

the Centralized Greedy outperforms the Distributed Greedy . DP ——
Algorithm only by about 15%. However, wheR is small, e ety
the centralized and distributed greedy algorithms perform  2°%;; 50 200 250 300 350 400
very closely, but their relative performance becomes almost Network size (|V[)

constant aftetR = 0.02. This implies that the estimation of _ _ _ _ _

writing costs done by the Distributed Greedy Algorithm is ncfggév‘gra Varying network size. Here? = 25, R (the ratio of average write
. . A ge read frequency) is 0.02, and percentage of readers and writers is

as accurate as the estimation of reading costs. In contrast,sye

see that the DP algorithm actually outperforms the Centralized

Greedy for very low values ofR. For higher values ofR,

the DP algorithm performs close to the Distributed Greedf@r the solution delivered by various algorithms. As suggested

Thus, the strategy of extracting the shortest path tree rootBdPrevious paragraphs, we fik as 0.02 and the network size

at an appropriate node seems very effective when the writig 200. In addition, we usE as 25. In Figure 5, we vary the

cost is relatively very low. FolR = 0.1, we observed that Percentage of reader nodes from 10 to 100%, while keeping the

the number of cache nodes selected by any a|gorithm V@g’centage of writer nodes fixed at 50%. Slmllarly, in Figure 6,

very low (1 or 2). Thus, we did not increase the value dFe vary the percentage of writer nodes from 0 to 100%, while

R beyond 0.1. Based on Figure 3, we ffx as 0.02 for all keeping the percentage of reader nodes fixed at 50%. We

the remaining experiments, since f& = 0.02 the number Observe that the relative performance of the various algorithms

of cache nodes is large enough (around 10) and the relatiggnains largely unchanged with the change in percentages of

performance observed d@ = 0.02 is representative of the readers or writers. In generally, we see the performance gap
general trend. between various algorithm to be limited by 10-15%.

Varying Network Size. In Figure 4, we vary the network Varying P. In Figure 7, we varyP, the maximum number of
size from 100 to 400 and plot(G, M) corresponding to cache nodes allowed, and ptott, M) for various algorithms.
the solutionM delivered by various algorithms. As suggestedVe see that with the increase in, the relative performance
before, we fixP = 25 and R = 0.02. Also, the percentage of gap between the Centralized and Distributed Greedy Algo-
readers and writers in the network is kepts86. In Figure 4, rithms reduces. AfteP” = 10, the performance of the various
we can see that the Centralized Greedy Algorithm outperforr@lgorithms remains unchanged since for the given parameter
the Distributed Greedy Algorithm and DP algorithms onlyalues all algorithms place at most 10 caches. Again, we see
by a narrow margin. More importantly, we observe thdhe performance gap between various algorithm to be limited
the relative performance of the various algorithms remaify 10-15%.

relatively stable, and hence, in all other simulations, we fix

the network size to be 200. V1. Conclusions

Varying Percentage of Readers and Writersin Figure 5and  In this paper, we addressed the problem of selection on
Figure 6, we vary the percentage of reader and writer nodesdes to cache a data item in a network, wherein multiple
respectively in the network and plot the values7dfs, M) nodes can read or update the data items, individual nodes have
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Fig. 6. Varying percentage of writer nodes in the network. Here, the network
size is 200,P = 25, R = 0.02, and percentage of reader nodes is 50%. [13]

storage limitations, and there is a limit on the number of nodes
that can be selected to cache the data item. The objective of
our problem was to minimize the sum of appropriately defined
total reading cost, writing cost, and storage cost. For the
above data caching problem, we designed an optimal dynamic
programming algorithm for tree networks. In addition, for
general network graphs, we proposed Centralized Greedy and
Distributed Greedy heuristics, and evaluated the performance
of our proposed algorithms through extensive simulations. We
observe that the Centralized Greedy performs very close to the
optimal algorithm for small networks, and for larger networks,
the Distributed Greedy and the dynamic programming algo-
rithm on an appropriately extracted tree perform very close to
the Centralized Greedy.
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