
1

Data Caching under Number Constraint
Himanshu Gupta and Bin Tang

Abstract— Caching can significantly improve the efficiency of
information access in networks by reducing the access latency
and bandwidth usage. However, excessive caching can lead to
prohibitive system cost and performance degradation. In this
article, we consider the problem of caching a data item in a
network wherein the data item is read as well as updated by
other nodes and there is a limit on the number of cache nodes
allowed. More formally, given a network graph, the read/write
frequencies to the data item by each node, and the cost of
caching the data item at each node, the problem addressed in
this article is to select a set ofP nodes to cache the data item
such that the sum of the reading, writing (using an optimal
Steiner tree), and storage cost is minimized. For networks with
a tree topology, we design an optimal dynamic programming
algorithm that runs in O(|V |3P 2), where |V | is the size of
the network and P is the allowed number of caches. For the
general graph topology, where the problem is NP-complete, we
present a centralized heuristic and its distributed implementation.
Through extensive simulations in general graphs, we show that
the centralized heuristic performs very close to the exponential
optimal algorithm for small networks, and for larger networks,
the distributed implementation and the dynamic programming
algorithm on an appropriately extracted tree perform quite close
to the centralized heuristic.

I. Introduction

In recent years, with the advent of wireless technology and
file sharing applications, the traditional client-server model has
begun to lose its prominence. Instead, information sharing
by spontaneously connected nodes has emerged as a new
framework. In such networks, all network nodes are equal in
terms of capacity and functionality. Moreover, the ownership
of the files is not critical, and a file (data item) does not belong
to a specific node and hence, is read and written by multiple
nodes in the network. Caching an object at various network
nodes can play an important role in improving overall system
performance by drastically reducing the time to read an object.

In this article, we address the data caching problem in above
described multi-hop networks wherein the given data item may
be read and written by multiple other network nodes, and the
objective is to minimize the total reading, writing, and storage
cost by placing a limited number of caches. Here, the cost
of reading the data item by a node is defined as the distance
to the closest cache node times the read frequency, the cost
of writing is defined as the cost of the minimum Steiner tree
over the writing node and all the cache nodes times the write
frequency, and the storage cost is the given cost of caching
the data item at the node.

The rest of the paper is organized as follows. In Section II,
we present our network model, formulate the data caching
problem addressed in this article, and present an overview of

Department of Computer Science, Stony Brook University. Email:
hgupta,bintang@cs.sunysb.edu

the related work. Section III presents the optimal dynamic
programming algorithm for tree topology networks. In Sec-
tion IV, we design centralized and distributed heuristics for
general graph networks. Simulation results are presented in
Section V, and concluding remarks in Section VI.

II. Data Caching Problem Formulation

In this section, we present our model of the network, give
a formal definition of the problem, and present a discussion
on related work. We use the termcache nodeto refer to a
network node that caches the data item.

Network Model and Notations.We model the network as a
connected general graph,G(V, E), where V is the set of
nodes/vertices, andE is the set of edges. There is a single data
item in the network, which is to be cached at selected network
nodes. For each nodei ∈ V , the frequency of reading the data
item is ri, the frequency of writing the data item iswi, and
the cost of caching (i.e., storing) the data item at nodei is
si. Let dij denote the shortest distance (in number of hops)
between any two nodesi, j, and letd(i,M) = minj∈M dij

be the shortest distance fromi to some node in a set of nodes
M . Also, let S(X) be the optimal cost of a Steiner tree over
the set of nodesX. Given a set of cache nodesM where the
data item is cached, the total cost of reading the data item by
a nodei is rid(i,M), while the cost of writing by nodei is
wiS(M ∪ {i}). Note that we do not assume a server for the
data item in the network, since in our model, a server can be
looked upon as a predetermined cache node.

Data Caching Problem. The data caching problemin the
above network model can be defined as follows. Given a
network graphG(V,E) and a numberP (1 ≤ P ≤ |V |), select
at mostP cache nodes such that the total (reading, writing,
and storage) cost is minimized. For a given network graph
G and a set of cache nodesM , the total cost is denoted by
τ(G,M) and is defined as:

τ(G,M) =
∑

i∈V

rid(i,M) +
∑

i∈V

wiS({i} ∪M) +
∑

i∈M

si (1)

In the above equation, the terms on the right hand side
represent total read cost, total write cost, and total storage
cost respectively. Essentially, the data caching problem is to
select a set of cache nodesM (|M | ≤ P) such that the total
costτ(G,M) is minimized.

Related Work. When there are no writers andP = |V |,
the data caching problem is exactly the same as well-known
facility-location problem. When there are only read costs, the
data caching problem is the well-knownP -median problem.
Both the problems are NP-hard, and a number of constant-
factor approximation algorithms have been developed for each
of the problems [1], [6], [2], under the assumption that

2

r

Tr Tu

Rv,u

u

Lv,u

V

Fig. 1. Subtree Notations.

the edge costs in the graph satisfy the triangular inequality.
Without the triangular inequality assumption, either problem is
as hard as approximating the set cover [6], [10], and therefore
cannot be approximated better thanO(log |V |) unlessNP ⊆
P̃. Several papers in the literature circumvent the hardness of
the facility-location andP -median problems by assuming that
the network has a tree topology [9], [8], [11].

The related optimal residence set problem has been studied
extensively [3]. Wolfson and Milo [13] show that the optimal
residence set problem without storage cost is NP-hard for
general topologies. They provide efficient optimal algorithms
for complete, tree, and ring topologies. However, their write
policy uses the minimum spanning tree of the distance graph
of the replica nodes. In comparison, our problem formulation
considers storage cost and uses a write policy based on the
optimal Steiner tree over the writer and the set of cache nodes.

The work that is most closely related with ours is that by
Kalpakis et al. [7]. They considered the problem of finding
a Steiner-optimal P-replica set in a tree topology in order to
minimize the sum of reading, writing, and storing costs. They
developed a very complicated (more than 20 pages of case
analysis) optimal dynamic programming algorithm that runs
in O(|V |6P 2) time and finds a Steiner-optimal replica set of
size exactlyP in tree topologies. In our understanding, their
work gives aO(|V |6P 3)-time algorithm for finding a Steiner-
optimal replica set of sizeat mostP in trees. In this article,
we essentially address the same problem and design a much
simpler dynamic programming optimal algorithm that runs in
O(|V |3P 2) time and finds an optimal set of caches of size
at mostP . In addition, we design centralized and distributed
heuristics to solve the problem in general graph topologies,
and show through extensive simulations that our proposed
algorithms perform well in general graph topologies.

III. Data Caching in Tree Topology

In this section, we address the data caching problem in
the special case of a tree topology, and present an optimal
dynamic programming algorithm. We start with some subtree
notations (as in [9]) that are needed to describe our dynamic
programming algorithm.

Subtree Notations.Let G(V, E) be a given network tree, and
let r be a network node (i.e.,r ∈ V). Let Tr denote the entire
network tree rooted atr. In general, we useTu to denote the
subtree rooted atu in the treeTr. We useTu to also represent
the set of nodes in the subtreeTu. Now, consider two nodes
v and u in the network tree, such thatv is an ancestor of
u in Tr. Let π(v, u) denote the unique path from nodeu to
nodev in Tr. As shown in Figure 1, letLv,u be the subtree
in Tv consisting of nodes on the left of the pathπ(v, u), but
excluding the nodes on the pathπ(v, u). Also, letRv,u be the
subtree consisting of nodes on the right of the pathπ(v, u), but
including the nodes on the pathπ(v, u) except foru. Thus, the
tree Tv is partitioned into three disjoint subtrees, viz.,Lv,u,
Tu, andRv,u.

Dynamic Programming Algorithm. Our dynamic program-
ming approach changes the write frequencies of the subtree
nodes, but keeps the read and storage frequencies unchanged.
Thus, for presentation of our dynamic programming solution,
we need to represent nodes’ write frequencies in a given
subtree as a separate parameter.

NotationΓ. Let us useΓ(Tv,Wv, p) to denote the optimal
(minimum) total cost for the subtreeTv using at mostp caches
including v, wherein the parameterWv = {(i, w̄i)|i ∈ Tv}
represents the write frequencies of nodes inTv and p > 0.
Note that the write frequencies̄wi may be different from the
original write frequencieswi given for the network graphG,
while the nodes’ read frequencies and storage costs are the
same as original given values and are implicit in the notation
Tv. Also, since we have assumed that the rootv is necessarily
a cache node, we can only place at mostp − 1 additional
caches.

Below, we present a recursive dynamic programming equa-
tion for computingΓ(Tv,Wv, p) in terms of optimal costΓ
over smaller subtrees contained inTv. Note that the original
problem of determining the optimal cost due to placement
of at most P caches in the given network can be solved
by evaluatingminr∈V Γ(Tr,WG, P), whereV is the set of
all nodes in the network andWG = {(i, wi)|i ∈ V } is
the complete set of original write frequencies. Our given
recursive equation can be easily modified to compute the
actual set of optimal cache nodes, but we present the equation
for computing the optimal cost for sake of simplicity of
presentation.

Recursive Equation.Given a set of selected cache nodes
(including v) in Tv, let u be the leftmost deepest cache node
(other thanv) in Tv. More formally, letu be the cache node
in Tv such that there are no cache nodes inLv,u or on
π(u, v) − {u, v}. Recall thatπ(u, v) is the path connecting
u andv in the given network tree. To optimally place uptop
caches inTv, we try to optimally place uptoq caches inTu and
p−q caches inRv,u, whereq ≤ p−1. The recursive equation
below definesΓ(Tv,Wv, p) in terms of Γ(Tu,Wu, q) and
Γ(Rv,u,Wv,u, p−q) for appropriately definedWu andWv,u.
The equation is further explained in the following paragraph,

3

and its correctness is formally proved in Theorem 1. Let

Wv = {(i, w̄i)|i ∈ Tv}, and

C1 =
∑

i∈Tv

(ridiv + w̄idiv) + sv.

Then, the recursive equation for computingΓ(Tv,Wv, p) is
given by:

Γ(Tv,Wv, p) =

C1 if p = 1

min
(

C1, minu∈(Tv−{v}) min1≤q≤p−1

(

∑
i∈Lv,u

(ridiv + w̄idiv)
+Γ(Tu,Wu, q)
+Γ(Rv,u,Wv,u, p− q)

+
∑

i∈Tv
w̄idvu

))
if p > 1

(2)

Above,

Wu={(i, w̄i)|i ∈ (Tu − {u})} ∪ {(u,
∑

i∈(Tv−Tu)∪{u}
w̄i)} and

Wv,u={(i, w̄i)|i ∈ (Rv,u − {v})} ∪ {(v,
∑

i∈(Tv−Rv,u)∪{v}
w̄i)}.

Note that above recursive equation is for an arbitrary subtree
in the original graph, and hence, also applies to a subtree of
the kindRv,u.

Explanation.We now explain the above recursive equation
(Equation 2) in more detail. Whenp = 1, no additional caches
can be placed sincev is already a cache node. Thus, the
optimal total costΓ(Tv,Wv, p) is C1, the total cost incurred by
the nodes inTv when the only cache node isv. For the general
case (p > 1), eitherv is still the only cache node (in which
case the total optimal cost is stillC1) or there are additional
cache nodes inTv. In the latter case, the deepest leftmost cache
nodeu in Tv exists. Then, the optimal costΓ(Tv,Wv, p) is
computed by iterating over all values ofq (1 ≤ q ≤ p − 1)
and nodesu ∈ (Tv − {v}). The total read and storage costs
of nodes inTv are fully embedded in the first three terms for
nodes inLv,u, Tu, andRv,u respectively. Since there are no
cache nodes inLv,u, the storage cost of nodes inLv,u is zero
and the read requests are satisfied byv. The storage and read
cost of nodes inTu are subsumed inΓ(Tu,Wu, q), since the
storage cost of each node is independent of other caches and
the read requests of nodes inTu are satisfied by cache nodes
(including u) in Tu only. Similarly, the storage and read cost
of nodes inRv,u are subsumed inΓ(Rv,u,Wv,u, p− q).

The cost of the Steiner tree spanning over a writer node
i and the cache nodesM of Tv can be divided into the
cost of Steiner tree spanning over cache nodes inTu, cost
of Steiner tree spanning over cache nodes inRv,u, the cost of
the pathπ(v, u), and the cost of the shortest path connectingi
to the closest cache node. Thus, the total write cost over cache
nodes inTv is embedded in multiple terms of Equation 2, viz.,
w̄idiv, Γ(Tu,Wu, q), Γ(Rv,u,Wv,u, p−q), and

∑
i∈Tv

w̄idvu.
The above claim of write cost division forms the core of the
proof of the following theorem. See [5] for the proof of the
following theorem.

Theorem 1:Equation 2 correctly represents the optimal
total costΓ(Tv,Wv, p) for a givenTv, Wv andp.

Time Complexity. As mentioned before, to compute the
minimum total cost of placement ofP caches in the original
given graphG, we need to computeminr∈V Γ(Tr,WG, P)
whereV is the set of all vertices andWG = {(i, wi)|i ∈ V }
represents the original given write frequencies. To compute
Γ(Tr,WG, P) for all r, we precompute allΓ(Tx,Wx, p) and
Γ(Rx,y,Wx,y, p) as defined below.

Each edge(x, x′) of the network tree divides the graph into
two subtrees. Consider the subtreeTx that containsx, and
defineWx as

Wx = {(i, wi)|i ∈ (Tx − {x})} ∪ {(x,
∑

i∈(V−Tx)∪{x})
wi)}.

We precomputeΓ(Tx,Wx, p) for all values ofp and edges
(x, x′) in the network graph. In addition, we also precompute
Γ(Rx,y,Wx,y, p) for all values ofp andy ∈ Tx, where

Wx,y = {(i, wi)|i ∈ (Rx,y−{x})}∪{(x,
∑

i∈(V−Rx,y)∪{x})
wi)}.

It can be shown that the above set ofΓ values can all
be computed in the order of subtree sizes in a dynamic
programming manner using Equation 2. Once the above values
have been computed,Γ(Tr,WG, P) for each r ∈ V can
then be computed using the same Equation 2. Thus, we need
to computeP |V |2 values, where computation of each value
takesO(|V |P) time. Here, we assume that the first and last
terms of Equation 2 are already precomputed (usingO(|V |2)
preprocessing time). Thus, the total time complexity of our
dynamic programming algorithm isO(P 2|V |3) where |V | is
the size of network andP is the number of cache nodes
allowed.

IV. General Graph Topology

In this section, we address the data caching problem in a
general graph topology. In a general graph, the data caching
problem is NP-hard, since it reduces to the facility-location
problem when the write frequencies are zero. Here, we first
design a centralized greedy algorithm, and then present a
distributed implementation of the centralized algorithm. We
have used similar techniques in our recent work [12] on a
related problem of data caching under update cost constraint.
We will show through simulations that the centralized heuristic
developed in this section perform close to the optimal solution
in small general graph networks.

A. Centralized Greedy Algorithm

We now present a polynomial-time Centralized Greedy
Algorithm for the data caching problem. We start with defining
the concept of a benefit of a set of nodes.

Definition 1: (Benefit of Node) LetM be the set of nodes
that have been already selected as cache nodes by the Cen-
tralized Greedy Algorithm at some stage. Thebenefitof an
arbitrary node A, denoted asβ(A,M), is the reduction in total
cost due to selection ofA as a cache node. More formally,

4

β(A,M) = τ(G, M) − τ(G,M ∪ {A}), whereτ(G,M) is
the total cost of selecting a set of cache nodesM in graphG,
as defined in Equation 1. ¤

Note that since the minimum-cost Steiner tree problem is
NP-hard, we adopt the 2-approximation Steiner tree algo-
rithm [4] to compute writing costs.

Based on the above definition of benefit, our proposed
Greedy Algorithm can be described as follows. LetM be the
set of cache nodes selected at any given stage. Initially,M is
empty. At each stage of the Greedy Algorithm, we add toM
the nodeA that has the highest benefit with respect toM at
that stage. The process continues untilP caches nodes have
been selected or there is no node with positive benefit. The
running time of the above described algorithm isO(P |V |5),
since the time to compute a 2-approximation Steiner tree over
a set ofs nodes isO(s|V |2).

B. Distributed Greedy Algorithm

In this subsection, we present a distributed localized imple-
mentation of the Centralized Greedy Algorithm.

To facilitate communication between nodes, we assume
presence of acoordinator in the network. Our Distributed
Greedy Algorithm consists of rounds. During each round, each
non-cache nodeA estimates the benefit (as described in the
next paragraph) of caching the data item atA. If the benefit
estimate at a nodeA is positive and is the maximum among
all its non-cache neighbors, thenA decides to cache the data
item. At the end of a round, the coordinator node gathers in-
formation about the cache nodes newly added. The number of
cache nodes that can be further added is then broadcast by the
coordinator to the entire network. The algorithm terminates,
when either more thanP cache nodes have already been added
or no more cache nodes were added in a round.

Estimation ofβ(A,M). A non-cache nodeA considers only
its “local” traffic and estimation of distance to the nearest
cache node, to estimateβ(A,M), the benefit with respect to
an already selected set of cache nodesM . In particular, a node
A observes its local traffic, i.e., the data access requests thatA
forwards to other cache nodes. Of course, the local traffic of
a node includes its own data requests. We estimate the benefit
of caching the data item atA as

β(A, M) = fd− sa − d
∑

i∈V

wi,

where f is the frequency of the local data access traffic
observed atA, d is the distance to the nearest cache from
A (which is computed as shown in the next paragraph),sa

is the storage cost atA, and wi is the write frequency at
a node i in the network. In the above equation, we have
estimated the increase in total writing cost due to caching at
A as d

∑
i∈V wi. The local trafficf can be computed if we

let the normal network traffic (using only the already selected
cache nodes in previous rounds) run for some time between
successive rounds.

Estimation ofd – the distance to the nearest cache from A.
Let A be a non-cache node, andTA be the shortest path tree
from the coordinator to the set of communication neighbors

of A. Let C ∈ M be the cache node inTA that is closest to
A. In the above Distributed Greedy Algorithm, we estimated
to bed(A,C), the distance fromA to C. The valued(A, C)
can be computed in a distributed manner at the start of
each round as follows. As mentioned before, the coordinator
initiates a new round by broadcasting a packet containing
the remaining number constraint to the entire network. If
we append to this packet all the cache nodes encountered
on the way, then each node should get the set of cache
nodes on the shortest path from the server to itself. Now,
to computed(A,C), each node only needs to exchange the
above information with all its immediate neighbors.

V. Performance Results

In this section, we evaluate the relative performances of the
various cache placement algorithms proposed in our article.

Experiment Setup. We use a network of 50 to 400 nodes
placed randomly in a square region of size30 × 30. We
consider unit-disk graphs wherein two nodes can communi-
cate with each other if the distance between them is less
than a given number (called thetransmission radius). For
our simulations, we use a transmission radius of 9, which
is the minimum to keep even small networks of size50
connected. We vary various parameters such as network size,
the maximum number of cache nodesP , percentage of readers
and writers in the network, and theratio R of average write
frequency to average read frequency. Note that in practical
settings we expectR to be low. The read frequency of a reader
node is chosen to be a random number between 0 and 100,
the write frequency of a writer node is chosen to be a random
number between 0 and100R, and the storage cost at a node
is chosen to be a random number between 0 and 100.

In our simulations, we compare the performance of various
data caching placement algorithms, viz., Centralized Greedy
Algorithm, Distributed Greedy Algorithm, and Dynamic Pro-
gramming Algorithm (DP) on the shortest path tree rooted at
v that results in the minimum total costτ(G, {v}). Each data
point in the graph plots is an average over five different random
graph topologies. We start with comparing our Centralized
Greedy Algorithm with the optimal algorithm in small size
networks.

Comparison with Optimal Algorithm in Small Networks.
An optimal solution for the data caching problem can be
computed by looking at allO(|V |P) subsets of nodes of size
at most P , and picking the subset of nodes that gives the
minimum total cost as the solution. Due to the high time
complexity of the above algorithm, we choose the network size
|V | = 50 and varyP from 1 to upto6. We pickR (the ratio of
average write frequency to the average read frequency) as 0.1,
since it was just small enough to result in maximum number
of cache nodes being selected. We observe in Figure 2 that
the Centralized Greedy Algorithm performs very close to the
optimal cost. Thus, in the following experiments, we use the
Centralized Greedy Algorithm as a benchmark of comparison.
We also observe that the DP algorithm performs only about
15% worse than the optimal algorithm.

5

 2000

 2500

 3000

 1 2 3 4 5 6

T
ot

al
 c

os
t (

nu
m

be
r

of
 h

op
s)

Maximum number of cache nodes allowed (P)

DP
Centralized Greedy

Optimal

Fig. 2. Comparison of Centralized Greedy Algorithms with the optimal
algorithm. Here, the network size is 50,R (the ratio of average write to
average read frequency) as 0.1, and percentage of readers and writers is 50%.

Varying R. In this experiment, we varyR (the ratio of average
read frequency to the average write frequency) from 0.001 to
0.1 in a network of size 200 withP (the maximum number of
cache nodes allowed) as 25. We keep the percentage of readers
and writers in the network at50%. Figure 3 plots the total cost
τ(G,M) corresponding to the setM of cache nodes delivered
by various algorithms for given parameters. We see that
the Centralized Greedy outperforms the Distributed Greedy
Algorithm only by about 15%. However, whenR is small,
the centralized and distributed greedy algorithms perform
very closely, but their relative performance becomes almost
constant afterR = 0.02. This implies that the estimation of
writing costs done by the Distributed Greedy Algorithm is not
as accurate as the estimation of reading costs. In contrast, we
see that the DP algorithm actually outperforms the Centralized
Greedy for very low values ofR. For higher values ofR,
the DP algorithm performs close to the Distributed Greedy.
Thus, the strategy of extracting the shortest path tree rooted
at an appropriate node seems very effective when the writing
cost is relatively very low. ForR = 0.1, we observed that
the number of cache nodes selected by any algorithm was
very low (1 or 2). Thus, we did not increase the value of
R beyond 0.1. Based on Figure 3, we fixR as 0.02 for all
the remaining experiments, since forR = 0.02 the number
of cache nodes is large enough (around 10) and the relative
performance observed atR = 0.02 is representative of the
general trend.

Varying Network Size. In Figure 4, we vary the network
size from 100 to 400 and plotτ(G, M) corresponding to
the solutionM delivered by various algorithms. As suggested
before, we fixP = 25 andR = 0.02. Also, the percentage of
readers and writers in the network is kept as50%. In Figure 4,
we can see that the Centralized Greedy Algorithm outperforms
the Distributed Greedy Algorithm and DP algorithms only
by a narrow margin. More importantly, we observe that
the relative performance of the various algorithms remains
relatively stable, and hence, in all other simulations, we fix
the network size to be 200.

Varying Percentage of Readers and Writers.In Figure 5 and
Figure 6, we vary the percentage of reader and writer nodes
respectively in the network and plot the values ofτ(G,M)

 3000

 5000

 7000

 9000

 0.02 0.04 0.06 0.08 0.1

T
ot

al
 c

os
t (

nu
m

be
r

of
 h

op
s)

Ratio of write to read frequency (w/r)

DP
Centralized Greedy
Distributed Greedy

Fig. 3. Varying R, the ratio of average write to average read frequency.
Here, the network size is 200,P = 25, percentage of readers and writers is
50.

 2000

 4000

 6000

 8000

 10000

 12000

 100 150 200 250 300 350 400

T
ot

al
 c

os
t (

nu
m

be
r

of
 h

op
s)

Network size (|V|)

DP
Centralized Greedy
Distributed Greedy

Fig. 4. Varying network size. Here,P = 25, R (the ratio of average write
to average read frequency) is 0.02, and percentage of readers and writers is
50.

for the solution delivered by various algorithms. As suggested
in previous paragraphs, we fixR as 0.02 and the network size
as 200. In addition, we useP as 25. In Figure 5, we vary the
percentage of reader nodes from 10 to 100%, while keeping the
percentage of writer nodes fixed at 50%. Similarly, in Figure 6,
we vary the percentage of writer nodes from 0 to 100%, while
keeping the percentage of reader nodes fixed at 50%. We
observe that the relative performance of the various algorithms
remains largely unchanged with the change in percentages of
readers or writers. In generally, we see the performance gap
between various algorithm to be limited by 10-15%.

Varying P . In Figure 7, we varyP , the maximum number of
cache nodes allowed, and plotτ(G,M) for various algorithms.
We see that with the increase inP , the relative performance
gap between the Centralized and Distributed Greedy Algo-
rithms reduces. AfterP = 10, the performance of the various
algorithms remains unchanged since for the given parameter
values all algorithms place at most 10 caches. Again, we see
the performance gap between various algorithm to be limited
by 10-15%.

VI. Conclusions

In this paper, we addressed the problem of selection on
nodes to cache a data item in a network, wherein multiple
nodes can read or update the data items, individual nodes have

6

 2000

 4000

 6000

 8000

 10000

 10 30 50 70 90 100

T
ot

al
 c

os
t (

nu
m

be
r

of
 h

op
s)

Percentage of nodes that are readers (%)

DP
Centralized Greedy
Distributed Greedy

Fig. 5. Varying percentage of reader nodes in the network. Here, the network
size is 200,P = 25, R = 0.02, and the percentage of writer nodes is 50%.

 3000

 5000

 7000

 0 10 30 50 70 90 100

T
ot

al
 c

os
t (

nu
m

be
r

of
 h

op
s)

Percentage of nodes that are writers (%)

DP
Centralized Greedy
Distributed Greedy

Fig. 6. Varying percentage of writer nodes in the network. Here, the network
size is 200,P = 25, R = 0.02, and percentage of reader nodes is 50%.

storage limitations, and there is a limit on the number of nodes
that can be selected to cache the data item. The objective of
our problem was to minimize the sum of appropriately defined
total reading cost, writing cost, and storage cost. For the
above data caching problem, we designed an optimal dynamic
programming algorithm for tree networks. In addition, for
general network graphs, we proposed Centralized Greedy and
Distributed Greedy heuristics, and evaluated the performance
of our proposed algorithms through extensive simulations. We
observe that the Centralized Greedy performs very close to the
optimal algorithm for small networks, and for larger networks,
the Distributed Greedy and the dynamic programming algo-
rithm on an appropriately extracted tree perform very close to
the Centralized Greedy.

REFERENCES

[1] M. Charikar and S. Guha. Improved combinatorial algorithms for the
facility location and k-median problems. InProc. of IEEE Conference
on Foundations of Computer Sciences, pages 378–388, 1999.

[2] F. A. Chudak and D. Shmoys. Improved approximation algorithms
for a capacitated facility location problem.Lecture Notes in Computer
Science, 1610:99–131, 1999.

[3] L. W. Dowdy and D. V. Foster. Comparative models of the file
assignment problem.ACM Computing Survey, 14(2):287–313, 1982.

[4] E. N. Gilbert and H. O. Pollak. Steiner minimal trees.SIAM J. Appl.
Math, 16:1–29, 1968.

[5] H. Gupta and B. Tang. Data caching under number constraint.Tech-
nical Report, Wings Lab, Computer Science Department, Stony Brook
University, 2006.

 5000

 7500

 10000

 12500

 0 2 4 6 8 10 12 14

T
ot

al
 c

os
t (

nu
m

be
r

of
 h

op
s)

Maximum number of cache nodes allowed (P)

DP
Centralized Greedy
Distributed Greedy

Fig. 7. VaryingP . Here, the network size is 200,R = 0.02, and percentage
of readers and writers is 50%.

[6] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility
location andk-median problems using the primal-dual schema and
lagrangian relaxation.Journal of the ACM, 48(2):274–296, 2001.

[7] K. Kalpakis, K. Dasgupta, and O. Wolfson. Steiner-optimal data
replication in tree networks with storage costs. InProc. of IDEAS,
pages 285–293, 2001.

[8] P. Krishnan, D. Raz, and Y. Shavitt. The cache location problem.
IEEE/ACM Trans.on Networking, 8:568–582, 2000.

[9] B. Li, M. J. Golin, G. F. Italiano, and X. Deng. On the optimal placement
of web proxies in the internet. InProc. of INFOCOM, volume 3, pages
1282–1290, 1999.

[10] J.-H. Lin and J. Vitter. Approximation algorithms for geometric median
problems.Information Processing Letters, 44(5), 1992.

[11] Arie Tamir. An o(pn2) algorithm for p-median and related problems
on tree graphs.Operations Research Letters, 19, 1996.

[12] B. Tang, S. Das, and H. Gupta. Cache placement in sensor networks
under update cost constraint. InProc. of AdHoc-Now, 2005.

[13] O. Wolfson and A. Milo. The multicast policy and its relationship to
replictated data placement.ACM Transactions on Data Base Systems,
16(1):181–205, 1991.

