
1

Data Caching in Networks with Reading,

Writing and Storage Costs
Himanshu Gupta

Computer Science Department

Stony Brook University

Stony Brook, NY 11790

Email: hgupta@cs.sunysb.edu

Bin Tang

Computer Science Department

Wichita State University

Wichita, KS 67260

Email: bintang@cs.wichita.edu

Abstract

Caching can significantly improve the efficiency of information access in networks by reducing the access

latency and bandwidth/energy usage. However, caching in too many nodes can take up too much memory, incur

extensive caching-related traffic, and hence, may even result in performance degradation. In this article, we

address the problem of caching data items in networks with the objective of minimizing the overall cost under

the constraint that the data item can be cached at only a limited number of network nodes. More formally, given

a network, the access pattern of the data item to be shared (i.e., read and write frequencies to the data item by

each node), and the storage cost (cost of caching the data item) at each node, our goal is to select at most P

cache nodes so as to minimize the sum of reading, writing, and storage costs. We first consider networks with a

tree topology and design an optimal dynamic programming algorithm which runs in O(n2P 2), where n is the

size of the network and P is the allowed number of caches. For the general graph topology, where the problem

is NP-complete, we present a centralized heuristic which is amenable to an efficient distributed implementation.

Through extensive simulations in general topology graphs, we show that the centralized heuristic performs very

close to the exponential optimal algorithm for small networks. In larger networks, we observe that the distributed

implementation as well as the dynamic programming algorithm on an appropriately extracted tree perform quite

close to the centralized heuristic.

I. Introduction

In recent years, with the advent of wireless technology and distributed file-sharing applications, the traditional

client-server model has begun to lose its prominence. Instead, information sharing by spontaneously connected

nodes has emerged as a new framework. In such networks, the ownership of the data files is usually not critical

∗Preliminary version of the paper appeared in ICC 2006; see Section II (Related Work) for more details.

2

– an object (data item) does not belong to a specific node or user and hence, and is shared (i.e., read and

written) by multiple nodes. For example, in an ad hoc network established for spontaneous meeting, several

authors can meet and coordinate to modify the same document (e.g., an article, a powerpoint slides, or a book),

in a distributed fashion. Similarly, in interconnected distributed information systems, an object (a web page,

an image, a video clip, or a file) may be read and written from multiple distributed locations (network nodes.

Maintaining multiple copies of an object across the network (at various locations) is an approach for improving

system performance by reducing time to read or write an object.

In ad hoc networks, the problem of cache placement to optimize overall cost is further motivated by the

following two characteristics of ad hoc networks. Firstly, the ad hoc networks are multihop networks without

a central base station. Thus, remote access of information typically occurs via multi-hop routing, wherein

access latency can be particularly improved by data caching. Secondly, ad hoc networks are generally resource

constrained in terms of wireless bandwidth and battery energy. Data caching can help reduce communication

cost, which will result in conserving battery energy and minimize bandwidth usage. However, excessive caching

can result in excessive usage of memory resources, may incur excessive caching-related traffic, and thus, result

in performance degradation and undesired energy consumption. Thus, in this article, we address the problem

of data caching to optimize the overall access and storage cost, under the constraint that the data item can be

cached at only a limited number of nodes.

More formally, we address the problem of cache placement in general multi-hop networks wherein the given

data item may be read and written by multiple network nodes, and the objective is to minimize the total reading,

writing, and storage cost by caching the data item at a limited number of network nodes. Here, the cost of

reading the data item by a node is defined as the distance to the closest cache node, the writing cost by a node

is defined as the cost of the minimum Steiner tree over the writing node and all the cache nodes times, and the

storage cost at a node is the given cost of caching the data item at the node.

The rest of the paper is organized as follows. In Section II, we present our network model, formulate the data

caching problem addressed in this article, and present an overview of the related work. Section III presents the

optimal dynamic programming algorithm for tree topology networks. In Section IV, we design centralized and

distributed heuristics for general graph networks. Simulation results are presented in Section V, and concluding

remarks in Section VI.

II. Data Caching Problem Formulation

In this section, we present our model of the network, give a formal definition of the problem, and present a

discussion on related work. We use the term cache node to refer to a network node that caches the data item.

Network Model and Notations. We model the network as a connected general graph, G(V,E), where V is the

set of nodes/vertices and E is the set of edges. We use n to denote the total number of nodes in the given

network, i.e., n = |V |. Each edge has a nonnegative weight associated with it. There is a single data item in the

network, which is to be cached at selected network nodes. For each node i ∈ V , the frequency of reading the

data item is ri, the frequency of writing the data item is wi, and the cost of caching (i.e., storing) the data item

3

at node i is si. Let dij denote the shortest distance (minimum total weight) between any two nodes i, j, and let

d(i,M) = minj∈M dij be the shortest distance from i to some node in a set of nodes M . Also, let S(X) be

the optimal cost of a Steiner tree over the set of nodes X . Given a set of cache nodes M where the data item

is cached, the total cost of reading the data item by a node i is rid(i,M), while the cost of writing by node i

is wiS(M ∪ {i}). The tree used by a writer i to write onto the set of caches is refered to as the write-tree for

the writer i. Note that we do not assume a server for the data item in the network, since in our model, a server

can be looked upon as a predetermined cache node.

Data Caching Problem. The data caching problem in the above network model can be defined as follows.

Given a network graph G(V, E) and a number P (1 ≤ P ≤ n), select at most P cache nodes such that the

total (reading, writing, and storage) cost is minimized. For a given network graph G and a set of cache nodes

M , the total cost is denoted by τ(G,M) and is defined as:

τ(G,M) =
∑

i∈V

rid(i,M) +
∑

i∈V

wiS({i} ∪M) +
∑

i∈M

si (1)

In the above equation, the terms on the right hand side represent total read cost, total write cost, and total

storage cost respectively. Essentially, the data caching problem is to select a set of cache nodes M (|M | ≤ P)

such that the total cost τ(G,M) is minimized.

Related Work. When there are no writers and P = n, the data caching problem is exactly the same as well-

known facility-location problem. When the number of cache nodes are constrained to be at most P and the

cost is comprised only of reading and storage costs, the data caching problem is the well-known P -median

problem. Both the problems (facility-location and P -median) are NP-hard, and a number of constant-factor

approximation algorithms have been developed for each of the problems [2, 3, 8], under the assumption that

the edge costs in the graph satisfy the triangular inequality. Without the triangular inequality assumption, either

problem is as hard as approximating the set cover [8, 13], and therefore cannot be approximated better than

O(log n) unless NP ⊆ P̃. Several papers in the literature circumvent the hardness of the facility-location and

P -median problems by assuming that the network has a tree topology [11, 12, 16]. In particular, the best known

algorithm for solving P -median in trees is by Tamir [16], who gives an O(Pn2) time dynamic programming

algorithm. In this article, we essentially generalize Tamir’s algorithm for our data caching problem in trees, and

also present centralized and distributed heuristics for general graphs.

In a recent work, Wolfson and Milo [18] consider a simpler version of our data caching problem, wherein

there are no storage costs, and the write policy uses the minimum spanning tree over the distance graph of

the cache nodes. They design optimal algorithms for trees, rings, and complete graphs. In addition, in [14], the

authors present an adaptive algorithm for replication of a data item; however, their formulation consider only

read and write costs without any constraint on the total number of cache nodes. Similarly, writing and storage

costs are not considered in the related proxy server placement problem [9, 15].

In the most related work, Kalpakis et al. [10] consider the problem of finding a Steiner-optimal P -replica

set in a tree topology in order to minimize the sum of reading, writing, and storing costs. They developed a

very complicated (more than 20 pages of case analysis) optimal dynamic programming algorithm that runs in

4

O(n6P 2) time and finds a Steiner-optimal replica set of size exactly P in tree topologies. In our understanding,

their work gives a O(n6P 3)-time algorithm for finding a Steiner-optimal replica set of size at most P in trees. In

this article, we essentially address the same problem and design a much simpler dynamic programming optimal

algorithm that runs in O(n2P 2) time and finds an optimal set of caches of size at most P . In addition, we

design centralized and distributed heuristics to solve the problem in general graph topologies, and show through

extensive simulations that our proposed heuristics perform well in practice. In the preliminary version [7] of

this work, we proposed an O(n2P 3) dynamic programming algorithm for the data caching problem in trees

with an assumption that read requests are satisfied by an “ancestor” cache node rather than the nearest cache

node.1

III. Data Caching in Tree Topology

In this section, we study the data caching problem in special case of a tree topology, and present an

optimal dynamic programming algorithm. Before we present our algorithm, we first review Tamir’s dynamic

programming (DP) algorithm for the P -median problem in a tree topology [16], since it forms the basis of our

own proposed algorithm.

Tamir’s DP Algorithm for P -Median in Trees. As mentioned before, the P -median problem is to select a set

S of at most P nodes that minimizes the sum of the storage costs of nodes in S and the access costs. As in our

data caching problem, the access cost is defined as the sum of the distances of each node v in the tree to the

node nearest to v in S. Tamir [16] presents an O(n2P) time DP algorithm for the above. The brief description

of the DP algorithm in [16] is as follows. First, [16] presents a linear algorithm to transform an arbitrary tree

(rooted at some distinguished node v1) into a full binary tree, wherein each node either has two children or is

a leaf. The transformation guarantees that solving the problem on the original tree is equivalent to solving it on

the transformed full binary tree. Let T = (V, E) be the resulting binary tree, where V = {v1, ..., vn}. For each

node vj ∈ V , the subtree rooted at vj is denoted as Tj , and the set of nodes in Tj is denoted as Vj . Then, for

each node vj in V , [16] computes and sorts the distances from vj to all nodes in V , and denotes the sequence

as L = {l1j , ..., lnj },2 where lij ≤ li+1
j and l1j = 0. The node corresponding to lij is denoted as vi

j . Based on the

above notations, [16] defines the following terms G and F , which can be computed recursively from “leaves to

root” using a dynamic programming approach.

• G(vj , q, l
i
j). It is defined as the optimal value of the subproblem defined on the subtree Tj , given that a

total of at least 1 and at most q cache nodes can be selected in Tj , and that at least one of them has to be

in {v1
j , v2

j , ..., vi
j}∩Vj . In the above definition, it is implicitly assumed that there is no interaction between

the nodes in Tj and the rest of nodes in T .

• F (vj , q, l). It is defined as the optimal value of the subproblem defined on the subtree Tj under the following

constraints: (i) A total of at most q cache nodes can be selected in Tj , (ii) There are already some selected

cache nodes in T − Tj , and the closest amongst them to vj is at a distance of l from vj .

1The assumption is not stated in the preliminary version [7], since we failed to realize it at the time of publication. This work presents

a correct (i.e., without the assumption) and more efficient dynamic programming algorithm based on an entirely different technique.
2[16] uses the notation {r1

j , . . . , rn
j } instead.

5

Tamir’s dynamic programming (DP) algorithm starts from leaves of T , and recursively computes G and F

values at each node in T in terms of the G and F values of its children. The optimal value of the problem is

given by min(G(v1, P, ln1), G(v1, 0, ln1)), where v1 is the root of the tree and n is the total number of nodes in

the network. The algorithm can be easily modified to select the actual set of cache nodes that yields the optimal

value.

A. Generalizing Tamir’s DP to Our Data Caching Problem

Our data caching problem essentially generalizes the P -median problem by including the concept of writers

and writing costs in the overall cost. Below, we present our generalized DP algorithm for the data caching

problem in trees. First, we start with an overview of our simplified notations. Then, we generalize the definitions

of G and F from [16] for our data caching problem, and present the recursive equations for computing G and

F values at each node in the tree. Finally, we will use the values of G and F to define another function G for

each node in the network, which essentially solves our data caching problem.

Simplified Notations. Let T (V,E) be a given binary tree with nonnegative edge weights. For clarity, we drop

the subscript j from the notations used in [16]. In particular, we use v to represent a node in T (instead of vj

in [16]), and Tv to denote the subtree (or the set of nodes in the subtree) rooted at v. Without loss of generality,

we pick some node R as the root of the given tree. For each non-leaf node v ∈ T , we use v1 and v2 to denote

v’s left and right children. Finally, for each node v ∈ T , we compute and sort the distances from v to all the

nodes in T and denote the corresponding node sequence as {v1, ..., vn}, where dvvi ≤ dvvi+1 for i = 1, ..., n−1

and v1 = v.

Defining G and F using Γ. For the purposes of defining our generalized versions of G and F functions, we

first define the total cost Γ(Tv,M, Mo) in a subtree Tv due to M , a set of cache nodes inside Tv , where Mo

is the set of cache nodes outside Tv . The cost Γ(Tv,M, Mo) is defined as:

Γ(Tv,M,Mo) =
∑

k∈Tv

rkd(k, M ∪ Mo) +
∑

k∈M

sk +
∑

k/∈Tv

wkS({v} ∪M) +
∑

k∈Tv

wkS({k} ∪ {v} ∪M)

The above expression includes the storage costs of the set M of cache nodes inside Tv , the total reading costs

of all the nodes in Tv using the cache nodes M as well as Mo, and total writing cost over the edges in Tv due

to all the writers in T . For the writing cost, we assume (even if Mo is empty) that there are some cache nodes

outside Tv , i.e, v is part of each write-tree.3 Note that Mo can also be represented by the node in Mo that is

closest to v, but we use the above notation for sake of clarity in defining G and F .

Defining G(v, q, vi)(1 ≤ q ≤ |Tv|). We define G(v, q, vi) as the optimal cost Γ in the subtree Tv given that

there are exactly q cache nodes in Tv and the closest to v among them is at most dvvi distance away from v.

Also, the access costs are computed using only the caches inside Tv (i.e., Mo = {}). More formally,

G(v, q, vi) = min
|M |=q,d(v,M)≤dvvi

Γ(Tv,M, {}).

3Eventually, we will define another function G that computes the writing costs assuming no outside caches nodes. For clarity of

presentation, we defer definition of G.

6

Defining F (v, q, vi)(0 ≤ q ≤ |Tv|. We define F (v, q, vi) as the optimal cost Γ in the subtree Tv given that there

are exactly q cache nodes in Tv and the closest outside cache is vi. More formally,

F (v, q, vi) = min
|M |=q

Γ(Tv,M, {vi}).

Note that F (v, q, vi) is not defined when vi ∈ Tv , and

F (v, 0, vi) =
∑

k∈Tv

(rkdkvi + wkdkv).

Recursive Equations for Computing G and F . We now define recursive equations for computing G and F at

a node v in terms of the G and F at the children of v. The G and F values will be eventually used to compute

the solution of our data caching problem.

G and F Values at a Leaf Node. When v is a leaf node, the value G is defined only for q = 1 and F is defined

for q = 0 or 1. Also, F is not defined for vi = v, i.e., i = 1. Now, it is easy to see that:

G(v, 1, vi) = sv, i = 1, ..., n

F (v, 0, vi) = rvdvvi , i = 2, ..., n

F (v, 1, vi) = sv, i = 2, ..., n

Intuition for the Below Recursive Equations. Recall that v1 and v2 are used to denote the two children of v.

Now, for a non-leaf node v, the cost Γ(Tv,M,Mo) can be expressed in terms of the function Γ over Tv1 and

Tv2 , the access and storage cost for node v, and the write cost over the edges (v, v1) and (v, v2). The exact

expression for the above depends on the composition of M , i.e., whether M includes v, a node in Tv1 , and/or

a node in Tv2 . Based on the above observation, the values G and F at a node v can be appropriately defined

in terms of G and F values at its children v1 and v2, as shown in the following paragraphs.

Computing G(v, q, v1) (i.e., for i = 1). Here, since i = 1, the node v is also a cache node. First, when q = 1,

we have

G(v, 1, v1) = F (v1, 0, v) + F (v2, 0, v) + dvv1

∑

k∈Tv1

wk + dvv2

∑

k∈Tv2

wk.

Note that v is an outside cache node for the subtrees Tv1 and Tv2 . For q > 1, the total cost on Tv includes the

storage cost on node v, the cost on the subtrees Tv1 and Tv2 , and the write cost on the edges of (v, v1) and

(v, v2). In particular, there are three cases:

(a) There are no cache nodes in Tv1 , but there is at least one cache node in Tv2 . In this case, the edge (v, v1)

is included in the write-trees of only the writer nodes in Tv1 . However, the edge (v, v2) is included in the

write-trees of all writers in the network.

(b) There are no caches nodes in Tv2 , but there is at least one cache node in Tv1 . This case is similar to the

above case (a).

(c) There is at least one cache node in Tv1 as well as Tv2 ; this case is only possible if q > 2. In this case,

the path (v1, v, v1) is included in the write-trees of each writer node in the network.

7

Based on the above three cases, the value G(v, q, v1) for q > 1 can be defined as below.

G(v, q, v1) = sv + min




F (v1, 0, v) + F (v2, q − 1, v) + dvv1

∑
k∈Tv1

wk + dvv2

∑
k∈T wk,

F (v1, q − 1, v) + F (v2, 0, v) + dvv2

∑
k∈Tv2

wk + dvv1

∑
k∈T wk,

min1≤q1<q−1

(
F (v1, q1, v) + F (v2, q − 1− q1, v) + dv1v2

∑
k∈T wk

)




Computing G(v, q, vi) for 1 < i ≤ n. Here, there are two cases:

1. In the first case, at least one of the nodes in {v1, v2, . . . , vi−1} is selected as a cache node. In this case,

G(v, q, vi) is equal to G(v, q, vi−1). Note that this case includes the scenario when vi /∈ Tv .

2. In the second case, vi must be selected as a cache node. Here, there are two subcases, viz., (2-a): vi ∈ Tv1 ,

(2-b): vi ∈ Tv2 .

Let us analyze the subcase (2-a); the subcase (2-b) is similar. We denote the total cost for the subcase (2-a) as

Q1, and compute it as a minimum of two values: (i) When there are no cache nodes in Tv2 , (ii) when there is

at least one cache node in Tv2 . The above case analysis yields the following expression for G(v, q, vi).

G(v, q, vi) = min
(
G(v, q, vi−1), Q1

)
if vi ∈ Tv1

G(v, q, vi) = min
(
G(v, q, vi−1), Q2

)
if vi ∈ Tv2

where

Q1 = rvdvvi + min


 G(v1, q, v

i) + F (v2, 0, vi) + dvv1

∑
k∈T wk + dvv2

∑
k∈Tv2

wk,

min1≤q1<q

(
G(v1, q1, v

i) + F (v2, q − q1, v
i) + dv1v2

∑
k∈T wk

)



Q2 = rvdvvi + min


 G(v2, q, v

i) + F (v1, 0, vi) + dvv2

∑
k∈T wk + dvv1

∑
k∈Tv1

wk,

min1≤q1<q

(
G(v2, q1, v

i) + F (v1, q − q1, v
i) + dv1v2

∑
k∈T wk

)



As shown in the above equation for Q1, when there are no caches nodes in Tv2 , the edge (v, v1) is part of the

write-tree for all the writers in the network, and the edge (v, v2) is part of the write-tree for all the writers in

Tv2 . On the other hand, when there is at least one cache node in Tv2 , the path (v1, v, v2) is part of the write-tree

of all writer nodes in the network. The cost Q2 is similarly defined.

Computing F (v, q, vi). Recall that F (v, q, vi) is the optimal value of Γ(Tv,M, {vi}) where M is a set of q

cache nodes in Tv , and vi is not in Tv . If M includes a cache node u ∈ Tv such that duv < dvvi , then the

optimal value of Γ(Tv, M, {vi}) is G(v, q, vi−1). Else, vi is the closest cache to v (in particular, v is not a

cache node), and there are the following three cases. (i) There are no caches nodes in Tv2 , (ii) There are no

cache nodes in Tv1 , and (iii) There is at least one cache node in Tv1 as well as Tv2 . For the last case, note that

the cache node closest to v1 (v2) outside of Tv1 (Tv2) is still vi, since M does not include any node u such

that duv < dvvi . Also, since q > 1, there must be a cache node in either Tv1 or Tv2 . The above case analysis

and observations yield the following equation for computing F .

F (v, q, vi) = min{G(v, q, vi−1), Q3}

8

where

Q3 = rvdvvi + min




F (v1, q, v
i) + F (v2, 0, vi) + dvv1

∑
k∈T wk + dvv2

∑
k∈Tv2

wk,

F (v2, q, v
i) + F (v1, 0, vi) + dvv2

∑
k∈T wk + dvv1

∑
k∈Tv1

wk,

min1≤q1<q

(
F (v1, q1, v

i) + F (v2, q − q1, vi) + dv1v2

∑
k∈T wk

)




Solving the Data Caching Problem. The computation of the above defined G and F values does not solve the

data caching problem, since definition of Γ (and hence, G) assumes (for the purposes of write cost) that there

is an ouside cache node. Thus, we now define another function G, which is similar to the definition of G but

assumes (even for writing costs) that there are no outside cache nodes. More formally, for a given node v and

1 ≤ i ≤ n and 1 ≤ q ≤ |Tv|, we define G(v, q, vi) as

G(v, q, vi) = min
|M |=q,d(v,M)≤dvvi

(∑

k∈Tv

rkd(k, M) +
∑

k∈M

sk +
∑

k/∈Tv

wkS({v} ∪M) +
∑

k∈Tv

wkS({k} ∪M
)
.

The function G at a node v can be computed in terms of G, F , and G values at v1 and v2, as shown below.

The below equations are similar to the recursive equations for G, except that when all the cache nodes are in

Tv1 (Tv2), the edge (v, v1) ((v, v2)) is only used by the write-trees for writers outside Tv1 (Tv2).

G(v, q, v1) = G(v, q, v1)

G(v, q, vi) = min
(G(v, q, vi−1), Q4

)
if vi ∈ Tv1

G(v, q, vi) = min
(G(v, q, vi−1), Q5

)
if vi ∈ Tv2

where

Q4 = rvdvvi + min


 G(v1, q, v

i) + F (v2, 0, vi) + dvv1

∑
k/∈Tv1

wk + dvv2

∑
k∈Tv2

wk,

min1≤q1<q

(
G(v1, q1, v

i) + F (v2, q − q1, v
i) + dv1v2

∑
k∈T wk

)



Q5 = rvdvvi + min


 G(v2, q, v

i) + F (v1, 0, vi) + dvv2

∑
k/∈Tv2

wk + dvv1

∑
k∈Tv1

wk,

min1≤q1<q

(
G(v2, q1, v

i) + F (v1, q − q1, v
i) + dv1v2

∑
k∈T wk

)



Data Caching Problem Solution. The solution of the data caching problem can now be computed as min1≤q≤P G(R, q,Rn),

where R is the root and Rn is the farthest node in the network from R. Starting from the leaves towards the

root, for each node v, we compute G, F , and G values for each q and i. Thus, there are total 3n2P values

to be computed. If we precompute (
∑

k∈Tv
wk) and (

∑
k/∈Tv

wk) terms for all v in total O(n2) time, then

computation of each G or F or G value can be done in O(P) time. Thus, the overall time complexity of our

proposed dynamic programming algorithm is O(n2P 2).

IV. General Graph Topology

In this section, we address the data caching problem in a general graph topology. In a general graph, the data

caching problem is NP-hard, since it reduces to the facility-location problem when the write frequencies are

zero. Here, we first design a centralized greedy algorithm, and then present a distributed implementation of the

centralized algorithm. We have used similar techniques in our recent work [17] on a related problem of data

caching under update cost constraint. We will show through simulations that the centralized heuristic developed

in this section perform close to the optimal solution in small general graph networks.

9

A. Centralized Greedy Algorithm

We now present a polynomial-time Centralized Greedy Algorithm for the data caching problem. We start

with defining the concept of benefit of a set of nodes.

Definition 1: (Benefit of Node) Let M be the set of nodes that have been already selected as cache nodes

by the Centralized Greedy Algorithm at some stage. The benefit of an arbitrary node A, denoted as β(A,M),

is the reduction in total cost due to selection of A as a cache node. More formally, β(A,M) = τ(G,M) −
τ(G,M ∪ {A}), where τ(G,M) is the total cost of selecting a set of cache nodes M in graph G, as defined

in Equation 1. ¤
Note that since the minimum-cost Steiner tree problem is NP-hard, we adopt the 2-approximation Steiner

tree algorithm [6] to compute writing costs.

Based on the above definition of benefit, our proposed Greedy Algorithm can be described as follows. Let

M be the set of cache nodes selected at any given stage. Initially, M is empty. At each stage of the Greedy

Algorithm, we add to M the node A that has the highest benefit with respect to M at that stage. The process

continues until P caches nodes have been selected or there is no node with positive benefit. The running time

of the above described algorithm is O(Pn5), since the time to compute a 2-approximation Steiner tree over a

set of s nodes is O(sn2).

B. Distributed Greedy Algorithm

In this subsection, we present a distributed localized implementation of the Centralized Greedy Algorithm. To

facilitate communication between nodes, we assume presence of a coordinator in the network. Our Distributed

Greedy Algorithm consists of rounds. During each round, each non-cache node A estimates the benefit (as

described in the next paragraph) of caching the data item at A. If the benefit estimate at a node A is positive

and is the maximum among all its non-cache neighbors, then A decides to cache the data item. At the end of a

round, the coordinator node gathers information about the cache nodes newly added. The number of cache nodes

that can be further added is then broadcast by the coordinator to the entire network. The algorithm terminates,

when either more than P cache nodes have already been added or no more cache nodes were added in a round.

Estimation of β(A,M). A non-cache node A considers only its “local” traffic and estimation of distance to the

nearest cache node, to estimate β(A,M), the benefit with respect to an already selected set of cache nodes M .

In particular, a node A observes its local traffic, i.e., the data access requests that A forwards to other cache

nodes. Of course, the local traffic of a node includes its own data requests. We estimate the benefit of caching

the data item at A as

β(A,M) = fd− sa − d
∑

i∈V

wi,

where f is the frequency of the local data access traffic observed at A, d is the distance to the nearest cache

from A (which is computed as shown in the next paragraph), sa is the storage cost at A, and wi is the write

frequency at a node i in the network. In the above equation, we have estimated the increase in total writing cost

due to caching at A as d
∑

i∈V wi. The local traffic f can be computed if we let the normal network traffic

(using only the already selected cache nodes in previous rounds) run for some time between successive rounds.

10

Estimation of d – the distance to the nearest cache from A. Let A be a non-cache node, and TA be the shortest

path tree from the coordinator to the set of communication neighbors of A. Let C ∈ M be the cache node in

TA that is closest to A. In the above Distributed Greedy Algorithm, we estimate d to be d(A,C), the distance

from A to C. The value d(A,C) can be computed in a distributed manner at the start of each round as follows.

As mentioned before, the coordinator initiates a new round by broadcasting a packet containing the remaining

number constraint to the entire network. If we append to this packet all the cache nodes encountered on the

way, then each node should get the set of cache nodes on the shortest path from the server to itself. Now, to

compute d(A,C), each node only needs to exchange the above information with all its immediate neighbors.

V. Performance Results

In this section, we evaluate the relative performances of the various cache placement algorithms proposed in

our article.

Experiment Setup. We use a network of 50 to 400 nodes placed randomly in a square region of size 30× 30.

We consider unit-disk graphs wherein two nodes can communicate with each other if the distance between them

is less than a given number (called the transmission radius). For our simulations, we use a transmission radius

of 9, which is the minimum to keep even small networks of size 50 connected. We vary various parameters such

as network size, the maximum number of cache nodes P , percentage of readers and writers in the network, and

the ratio R of average write frequency to average read frequency. Note that in practical settings we expect R

to be low. The read frequency of a reader node is chosen to be a random number between 0 and 100, the write

frequency of a writer node is chosen to be a random number between 0 and 100R, and the storage cost at a

node is chosen to be a random number between 0 and 100. Each data point in the graph plots is an average

over five different random graph topologies. In our simulations, we compare the performance of various data

caching placement algorithms, viz., Centralized Greedy Algorithm, Distributed Greedy Algorithm, and Dynamic

Programming Algorithm (DP) on the spanning tree with near-minimum stretch factor (as described below).

Computing a Spanning Tree with Near-Minimum Stretch Factor. Before presenting the algorithm from [1] for

constructing a spanning tree with near-optimal stretch factor, let us first define stretch factor. Consider a graph

G = (V,E); the stretch factor of an edge (u, v) ∈ E in a subgraph G′(V, E′ ⊂ E) is defined as the shortest

distance between u and v in G′. The stretch factor of the subgraph G′ is defined as the maximum stretch factor

over all edges in G. The minimum stretch-factor spanning tree problem is to find a spanning tree with minimum

stretch factor in the given graph. The problem is known to be NP-hard [1].

We now describe the approximation algorithm due to Boksberger et al. [1] for the above problem in unit-disk

graphs. We will use this algorithm to construct a near-minimum stretch-factor spanning tree, which will be input

to our dynamic programming algorithm (since it runs only on tree topologies). The approximation algorithm

consists of the following steps.

1) Construct a dominating set of the given unit-disk graph.

2) Connect the nodes in the dominating set that are at most three hops away. This results in a connected

dominating graph.

11

3) Extract the Gabriel Graph (which is planar) from the above connected dominating graph.

4) Compute the dual graph of the Gabriel Graph. The dual graph contains a vertex for every face of the

Gabriel Graph, and an edge between any two adjacent faces. The weight of the edge in the dual graph is

the number of common edges of the corresponding faces in the Gabriel Graph.

5) We now associate an appropriate defined weight with each vertex in the above dual graph, and then,

construct a “shortest path tree” in the above dual graph.

6) Finally, in the Gabriel Graph, we delete a common edge between any two adjacent faces that are connected

in the above constructed shortest-path tree in the dual graph.

The resulting graph can be shown [1] to be a spanning tree with a stretch factor of (OPT)4, where OPT is

the optimal (minimum) stretch factor.4

Comparison with Optimal Algorithm in Small Networks. An optimal solution for the data caching problem

can be computed by looking at all O(nP) subsets of nodes of size at most P , and picking the subset of nodes

that gives the minimum total cost as the solution. Due to the high time complexity of the above algorithm, we

choose the network size n = 50 and vary P from 1 to upto 6. We pick R (the ratio of average write frequency

to the average read frequency) as 0.1, since it was just small enough to result in maximum number of cache

nodes being selected. We observe in Figure 1 that the Centralized Greedy Algorithm performs very close to the

optimal cost. Thus, in the following experiments, we use the Centralized Greedy Algorithm as a benchmark of

comparison. We also observe that the DP algorithm performs only about 15% worse than the optimal algorithm.

 2000

 2500

 3000

 1 2 3 4 5 6

T
o

ta
l c

o
st

 (
n

u
m

b
e

r
o

f
h

o
p

s)

Maximum number of cache nodes allowed (P)

DP
Centralized Greedy

Optimal

Fig. 1. Comparison of Centralized Greedy Algorithms with

the optimal algorithm. Here, the network size is 50, R (the

ratio of average write to average read frequency) as 0.1, and

percentage of readers and writers is 50%.

 3000

 5000

 7000

 9000

 11000

 13000

 0.02 0.04 0.06 0.08 0.1

T
o

ta
l c

o
st

 (
n

u
m

b
e

r
o

f
h

o
p

s)

Ratio of write to read frequency (w/r)

DP
Centralized Greedy
Distributed Greedy

Fig. 2. Varying R, the ratio of average write to average read

frequency. Here, the network size is 200, P = 25, percentage

of readers and writers is 50.

Varying R. In this experiment, we vary R (the ratio of average read frequency to the average write frequency)

from 0.001 to 0.1 in a network of size 200 with P (the maximum number of cache nodes allowed) as 25.

We keep the percentage of readers and writers in the network at 50%. Figure 2 plots the total cost τ(G, M)

4We note that the best known approximation for the minimum stretch-factor spanning tree problem is log n [4, 5]; however, we choose

the technique from [1] for the sake of its relative simplicity.

12

corresponding to the set M of cache nodes delivered by various algorithms for given parameters. We see that

the Centralized Greedy outperforms the Distributed Greedy Algorithm only by about 15%. However, when R

is small, the centralized and distributed greedy algorithms perform very closely, but their relative performance

becomes almost constant after R = 0.02. This implies that the estimation of writing costs done by the Distributed

Greedy Algorithm is not as accurate as the estimation of reading costs. In contrast, we see that the DP algorithm

actually performs close to the Centralized Greedy for very low values of R. For higher values of R, the DP

algorithm performs worse than the Distributed Greedy. Thus, the strategy of extracting the shortest path tree

rooted at an appropriate node seems effective when the writing cost is relatively very low. For R = 0.1, we

observed that the number of cache nodes selected by any algorithm was very low (1 or 2). Thus, we did not

increase the value of R beyond 0.1. Based on Figure 2, we fix R as 0.02 for all the remaining experiments, since

for R = 0.02 the number of cache nodes is large enough (around 10) and the relative performance observed at

R = 0.02 is representative of the general trend.

Varying Network Size. In Figure 3, we vary the network size from 100 to 400 and plot τ(G,M) corresponding

to the solution M delivered by various algorithms. As suggested before, we fix P = 25 and R = 0.02. Also, the

percentage of readers and writers in the network is kept as 50%. In Figure 3, we can see that the Centralized

Greedy Algorithm and the Distributed Greedy Algorithm perform quite closely; both perform better than the

DP algorithm. More importantly, we observe that the relative performance of the various algorithms remains

relatively stable, and hence, in all other simulations, we fix the network size to be 200.

 2000

 4000

 6000

 8000

 10000

 12000
 14000
 16000

 100 150 200 250 300 350 400

T
o

ta
l c

o
st

 (
n

u
m

b
e

r
o

f
h

o
p

s)

Network size (|V|)

DP
Centralized Greedy
Distributed Greedy

Fig. 3. Varying network size. Here, P = 25, R (the ratio of

average write to average read frequency) is 0.02, and percentage

of readers and writers is 50.

 2000

 4000

 6000

 8000

 10000
 12000
 14000

 10 30 50 70 90 100

T
o

ta
l c

o
st

 (
n

u
m

b
e

r
o

f
h

o
p

s)

Percentage of nodes that are readers (%)

DP
Centralized Greedy
Distributed Greedy

Fig. 4. Varying percentage of reader nodes in the network.

Here, the network size is 200, P = 25, R = 0.02, and the

percentage of writer nodes is 50%.

Varying Percentage of Readers and Writers. In Figure 4 and Figure 5, we vary the percentage of reader and

writer nodes respectively in the network and plot the values of τ(G,M) for the solution delivered by various

algorithms. As suggested in previous paragraphs, we fix R as 0.02 and the network size as 200. In addition,

we use P as 25. In Figure 4, we vary the percentage of reader nodes from 10 to 100%, while keeping the

percentage of writer nodes fixed at 50%. Similarly, in Figure 5, we vary the percentage of writer nodes from 0

to 100%, while keeping the percentage of reader nodes fixed at 50%. We observe that the relative performance

13

of the various algorithms remains largely unchanged with the change in percentages of readers or writers. In

generally, we see the performance gap between various algorithm to be limited by 10-15%.

 3000

 5000

 7000

 0 10 30 50 70 90 100

T
o

ta
l c

o
st

 (
n

u
m

b
e

r
o

f
h

o
p

s)

Percentage of nodes that are writers (%)

DP
Centralized Greedy
Distributed Greedy

Fig. 5. Varying percentage of writer nodes in the network.

Here, the network size is 200, P = 25, R = 0.02, and

percentage of reader nodes is 50%.

 5000

 10000

 15000

 20000

 0 2 4 6 8 10 12 14

T
o

ta
l c

o
st

 (
n

u
m

b
e

r
o

f
h

o
p

s)

Maximum number of cache nodes allowed (P)

DP
Centralized Greedy
Distributed Greedy

Fig. 6. Varying P . Here, the network size is 200, R = 0.02,

and percentage of readers and writers is 50%.

Varying P . In Figure 6, we vary P , the maximum number of cache nodes allowed, and plot τ(G,M) for

various algorithms. We see that with the increase in P , the relative performance gap between the Centralized

and Distributed Greedy Algorithms reduces. After P = 10, the performance of the various algorithms remains

unchanged since for the given parameter values all algorithms place at most 10 caches. Again, we see the

performance gap between various algorithm to be limited by 10-15%.

VI. Conclusions

In this paper, we addressed the problem of selection on nodes to cache a data item in ad hoc networks,

wherein multiple nodes can read or update the data items, individual nodes have storage limitations, and there is

a limit on the number of nodes that can be selected to cache the data item. The objective of our problem was to

minimize the sum of appropriately defined total reading cost, writing cost, and storage cost. For the above data

caching problem, we designed an optimal dynamic programming algorithm for tree networks. In addition, for

general network graphs, we proposed Centralized Greedy and Distributed Greedy heuristics, and evaluated the

performance of our proposed algorithms through extensive simulations. We observe that the Centralized Greedy

performs very close to the optimal algorithm for small networks, and for larger networks, the Distributed Greedy

and the dynamic programming algorithm on an appropriately extracted tree perform very close to the Centralized

Greedy.

REFERENCES

[1] P. Boksberger. Minimum stretch spanning trees. http://dcg.ethz.ch/theses/ss03/minimumStretchSpanningTrees\ report.pdf.

[2] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median problems. In Proc. of IEEE

Conference on Foundations of Computer Sciences, pages 378–388, 1999.

14

[3] F. A. Chudak and D. Shmoys. Improved approximation algorithms for a capacitated facility location problem. Lecture Notes in

Computer Science, 1610:99–131, 1999.

[4] M. Elkin, Y. Emek, D. A. Spielman, and S. Teng. Lower-stretch spanning trees. In Proc. of the 37th ACM Symposium on Theory of

Computing (STOC 2005).

[5] Y. Emek and D. Peleg. Approximating minimum max-stretch spanning trees on unweighted graphs. In Proc. of the 15th ACM-SIAM

Symposium on Discrete Algorithms (SODA 2004).

[6] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM J. Appl. Math, 16:1–29, 1968.

[7] H. Gupta and B. Tang. Data caching under number constraint. In Proc. of ICC, 2006.

[8] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema

and lagrangian relaxation. Journal of the ACM, 48(2):274–296, 2001.

[9] S. Jamin, C. Kurc, A. R. Raz, and Y. Shavitt. Constrained mirror placement on the internet. In Proc. of InfoCom’01, pages 285–293,

2001.

[10] K. Kalpakis, K. Dasgupta, and O. Wolfson. Steiner-optimal data replication in tree networks with storage costs. In Proc. of IDEAS,

pages 285–293, 2001.

[11] P. Krishnan, D. Raz, and Y. Shavitt. The cache location problem. IEEE/ACM Trans.on Networking, 8:568–582, 2000.

[12] B. Li, M. J. Golin, G. F. Italiano, and X. Deng. On the optimal placement of web proxies in the internet. In Proc. of INFOCOM,

volume 3, pages 1282–1290, 1999.

[13] J.-H. Lin and J. Vitter. Approximation algorithms for geometric median problems. Information Processing Letters, 44(5), 1992.

[14] S. Jajodia O. Wolfson and Y. Huang. An adaptive data replication algorithm. ACM Transactions on Database Systems, 22(2):255–314,

1997.

[15] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of web server replicas. In Proc. of INFOCOM, volume 3, pages

1587–1596, 2001.

[16] A. Tamir. An o(pn2) algorithm for p-median and related problems on tree graphs. Operations Research Letters, 19, 1996.

[17] B. Tang, S. Das, and H. Gupta. Cache placement in sensor networks under update cost constraint. In Proc. of AdHoc-Now, 2005.

[18] O. Wolfson and A. Milo. The multicast policy and its relationship to replictated data placement. ACM Transactions on Data Base

Systems, 16(1):181–205, 1991.

