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Abstract

As sensor networks become common and enable new ap-
plications, developing powerful paradigms for programming
sensor networks becomes critical to realize their full poten-
tial as collaborative data processing engines. In this article,
we propose a deductive framework for programming sensor
networks, based on the observation that the sensor network
can be viewed as a distributed database of facts gathered
from the environment. We believe that the overall collabora-
tive (distributed) functionality of a sensor network applica-
tion can be easily represented using deductive (logic) rules,
and the non-collaborative functionality can be embedded in
built-in functions. The proposed framework is declarative,
and more expressive than the previously proposed distributed
database view of sensor networks. A fully-developed frame-
work will allow the user specify with ease the high-level
functionality of an application, while hiding from user the
low-level details such as related to distributed computation,
resource constraints, energy optimizations, etc. Our system
translates a given high-level user program to energy-efficient
distributed code that runs on individual network nodes. In
this article, we motivate the deductive framework for pro-
gramming sensor network applications, and develop query
evaluation techniques for distributed evaluation of deductive
queries in sensor networks. We present certain performance
results that illustrate the robustness and efficiency of the gen-
erated distributed code.

1 Introduction

Programming a sensor network application remains a dif-
ficult task, since the programmer is burdened with low-
level details related to distributed computing, careful man-
agement of limited resources, unreliable infrastructure, and
energy optimizations. Thus, developing a powerful pro-
gramming framework for sensor network is critical to re-
alizing their full potential as collaborative monitoring sys-
tems. There has been some progress in developing oper-
ating system prototypes [14, 16] and programming abstrac-
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tions [43, 44]; however, these abstractions have provided
only minimal programming support. Prior work on view-
ing the sensor network as a distributed database provides a
declarative programming framework which is amenable to
optimizations. However, it lacks expressive power, and the
developed database engines (TinyDB [32], Cougar [7]) for
sensor networks implement only a limited functionality. On
the other hand, the recently proposed Kairos [18] frame-
work is expressive, but is based on a procedural language
and hence, difficult to translate to efficient distributed code.
Thus, the overall vision of a programming framework that
automatically translates a high-level user specification to ef-
ficient distributed code remains far from realized. In general,
a perfect programming paradigm for sensor networks must
achieve the following.

o Be sufficiently expressive.

o Be declarative, i.e., provide users with a high-level ab-
straction of the network, while hiding all the low-level
networking details.

e Be amenable to automatic optimizations (especially, re-
lated to energy consumption) without much input from
user.

In this article, we motivate use of deductive approach for
programming of sensor networks, and design and develop a
query engine for distributed evaluation of deductive queries.
In particular, our developed system facilitates automatic
translation of high-level deductive queries into optimized
nesC node that runs on individual sensor nodes.

Proposed Deductive Approach. We propose a program-
ming framework based on a deductive paradigm; our pro-
posed framework is declarative, fully expressive (Turing
complete), and most importantly, amenable to automatic
translation into efficient distributed code. Deductive ap-
proach has been recently used with success for declarative
specification of network routing protocols [27] and over-
lay architectures [26]. In addition, a dialect of Datalog
without negations has been suggested for use in sensor net-
works [10, 15], and a limited query processor designed. In
the context of programming sensor networks, our deductive
approach is motivated by the basic observation that sensor
networks essentially gather sets of “facts” by sensing the
physical world, and sensor network applications manipulate
these facts. We believe that the collaborative (involving mul-
tiple nodes) functionality of a sensor network application
can be easily represented using fact-manipulation deductive
rules. The local arithmetic computations such as signal-
processing, data fusion, etc. may be inefficient to represent



using deductive rules, and hence, are embedded in locally-
processed built-in functions written in procedural code. Em-
bedding such local computations in locally-processed proce-
dural functions does not affect the communication efficiency
of the translated code. The above approach facilitates easy
high-level specification of an application, and is amenable
to optimizations. To realize the overall vision of a pow-
erful programming framework, we develop techniques for
communication-efficient evaluation of deductive programs
in resource-constrained sensor networks over streaming data.
Based on the developed query processing techniques, our
system automatically translates a given high-level specifica-
tion of an application into efficient distributed code that runs
on individual nodes.

Avrticle Organization. The rest of the article is organized as
follows. We start with a discussion on related work, and an
overview of the proposed deductive approach in Section 2.
We discuss distributed evaluation of logic queries and the
overall system architecture in Section 3. Section 4 presents
preliminary performance results from a prototype implemen-
tation on TOSSIM [24], an application used widely for simu-
lating sensor network applications. We end with concluding
remarks in Section 5.

2 Prior Approaches, and Deductive Frame-
work for Sensor Networks

In this section, we start with an overview of prior ap-
proaches for programming sensor networks. Then, we give
an overview of deductive programming, and illustrate the
power of our approach through various illustrations. Finally,
we propose some extensions and restrictions to the deductive
framework to tailor it to programming of sensor networks.

2.1 Prior Approaches for Programming Sen-
sor Networks

NesC and Programming Abstractions. The Berkeley
motes [21] platform provides the C-like, fairly low-level
programming language called nesC [16] on top of the
TinyOS [14] operating system. However, the user is still
faced with the burden of low-level programming and opti-
mization decisions. There has been some work done on de-
veloping programming abstractions [3, 8, 34,42-44] for sen-
sor networks; however, these abstractions provide only min-
imal programming support. Finally, authors in [6] propose
an interesting novel approach of expressing computations as
“task graphs,” but the approach has limited applicability.

Sensor Network as a Distributed Database. Recently,
some works [7,17,32] proposed the powerful vision viewing
the sensor network as a distributed database. The distributed
database vision is declarative, and hence, amenable to opti-
mizations. However, the current sensor network database en-
gines (TinyDB [32], Cougar [7]) implement a limited func-
tionality of SQL, the traditional database language. In par-
ticular, they only handle single queries involving simple
aggregations [28, 30, 45] or selections [31] over single ta-
bles [29], local joins [45], or localized/centralized joins [2]
involving a small static table. These approaches are appro-
priate for periodic data gathering applications. SQL is not
expressive enough to represent general sensor network ap-
plications. Moreover, due to the lack of an existing SQL
support for sensor networks, there is no real motivation to
choose SQL. In an ongoing recent work, a dialect of Data-
log without negations has been suggested for use in sensor

networks [10, 15], and a limited query processor designed.
The focus of the works in [10, 15] is generally on declarative
representation of networking and routing protocols. Our de-
ductive framework is essentially an expansion of the above
approaches, wherein we use a more expressive language for
programming high-level applications and design an efficient
full-fledged in-network query engine for sensor networks.

Procedural Languages. Recently proposed Kairos [18] pro-
vides certain global abstractions and a mechanism to trans-
late a centralized program (written in a high-level procedural
language) to an in-network implementation. In particular, it
provides global abstractions such as get _avai | abl e_nodes,
get _nei ghbor s, and remote data access. Kairos is the first
effort towards developing an automatic translator that com-
piles a centralized procedural program into a distributed pro-
gram for sensor nodes. However, Kairos does not focus
much on communication efficiency; for instance, the ab-
straction get _avai | abl e_nodes gathers the entire network
topology, which may be infeasible in most applications.

In some sense, our approach has the same goals as that of
Kairos — to automatically translate a high-level user specifi-
cation into distributed code. However, since Kairos approach
is based on a procedural language, it is much harder to op-
timize for distributed computation. Through various exam-
ples in Section 2.3, we suggest that our proposed framework
will likely yield more compact and clean programs than the
procedural code written in Kairos. Moreover, the deductive
programs for the examples in Section 2.3 yield efficient dis-
tributed implementations involving only localized joins.

In general, we feel that procedural languages are unlikely
to be very useful in a restricted setting such as sensor net-
works, since they are not declarative and would be hard to
distribute and optimize for communication cost.

2.2 Overview of Deductive Programming

Predicate logic is a way to represent “knowledge” and can
be used as a language for manipulating tables of facts. In
logic data model, each relation (table of facts) is looked upon
as a predicate having a argument for each table attribute, and
the predicate is true for the given argument values if and only
if the corresponding fact exists in the table. For instance,
consider a table likes(drinker, beer) wherein a fact (d,b) in
the table signifies that d likes b. In the logic data model, the
table likes is looked upon as a predicate wherein likes(d,b) is
true iff d likes b (i.e., (d,b) is in the table likes).

Datalog. The simplest model of predicate logic, Datalog,
consists of a set of declarative logic rules, possibly involv-
ing recursion and negations. A Datalog rule has the form
“head :- body,” where body is a list (implicit conjunction)
of predicates over constants and variables, and the head de-
fines a set of facts derived by variable assignments satisfy-
ing the body’s predicates. For instance, consider the predi-
cates likes(drinker, beer) and sells(bar, beer). Here, sells(br,
b) is true if the beer b is sold at the bar br. The rule
happy(d) :— likes(d,b),sells(br,b) defines a new predi-
cate happy(d) such that a happy(d) is true if and only if there
is some bar that sells a beer that d likes. Datalog without re-
cursion is as expressive as the traditional database language
SQL without aggregations.

Full First-Order Logic. In our proposed programming frame-
work, we use full first-order logic which extends Datalog by
allowing function symbols in the arguments of predicates,




and thus, making the framework Turing complete [40]. We
illustrate the need for function symbols in Example 3 of Sec-
tion 2.3. Essentially, in full first-order logic, the arguments
of a predicate may be arbitrary terms, where a term is re-
cursively defined as follows. A term is either a constant,
variable, or f(ty,tp,...,t,) where each t; is a term and f is
a function symbol. In this general context, a logic rule is
written as

H :— G1,Gy,...,Ck

H is called the head, and Gy, ..., G are the body subgoals.
The head and the subgoals are of the form p(t1,ty, ..., tm)
where p is a predicate and t’s are arbitrary terms. The mean-
ing of the rule is “if Gy, ..., Gy are true, then H is true.”

Derived and Base Predicates/Tuples. We use the term de-
rived predicates to refer to predicates that are defined using
the deductive rules in the program. Predicates that are not
derived are referred to as base predicates; essentially, the
base predicates refer to tables that are already given (e.g.,
the network graph) or generated by the network (e.g., tables
corresponding to sensing readings). Corresponding tuples,
tables, or streams are referred to as derived or base tuples,
tables or streams.

Built-In Predicates, and Added Features. Certain predicates
that are given a conventional interpretation such as X <Y,
are called built-in and can appear in the body subgoals. In
our framework, a user may define additional built-in predi-
cates, in which case the user provides the procedural code to
evaluate the predicate. Note that built-in predicates can be
easily used to specify built-in functions, and hence, we use
built-in functions directly in the logic rules. For sake of ease
in programming, we allow restricted use of negated subgoals,
lists, and aggregations (as discussed in Section 3).

Specification and Maintenance of Sliding Windows. Sen-
sor network data can be modeled as streaming sets/tables
of facts corresponding to sensing readings. As in stream-
ing databases and due to limited memory resources in sensor
network, we store only a finite set of tuples (typically, most
recent) called the sliding-window [5,13] for each data stream.
Recently, [5] defined various notions of sliding-windows and
used these notions to develop well-defined semantics for
continuous queries over streaming data. Notion of sliding-
windows essentially allows us to implicitly incorporate tem-
poral correlation of data into specified queries by expiring
tuples that become “irrelevant” (i.e., not join with any fu-
ture tuples). In a deductive framework, we can use temporal
predicates to specify time-based windows. For instance, we
could use the following logic rule to define sliding-windows
R of range Ty from the given relation S(a,t), where a is an
arbitrary attribute and t is the timestamp of each tuple of S.

R(a,t,T): =S(a,t), T—tw <t <T,S(,,T)

Above, the last subgoal is used to bound the variable T, “_”
denotes an anonymous variable, and R(_,_, T) is a tuple in
the sliding-window of time T. Time-based sliding-windows
in sensor networks can be easily maintained in a distributed
manner, by expiring a tuple after sufficient amount of time
after its generation. By default, each subgoal in a logic rules
refers to an “unbounded” data stream. In this article, we re-
strict our discussions to time-based sliding windows; main-
tenance of count-based or other types of sliding-windows in

an asynchronous distributed manner is a challenge and part
of our future work.

Motivating Characteristics of The Deductive Approach.
In short, our choice of deductive approach is motivated by
its following characteristics. Firstly, a deductive program-
ming framework is declarative and hence, amenable to opti-
mizations. In our context, the optimization of logic programs
is largely embedded in the efficient data storage schemes,
in-network implementation of join, join-ordering, and query
optimization techniques. Secondly, a deductive framework
augmented with function symbols is fully expressive; in
particular, it is more expressive than the prior distributed
database approach. Extensive use of function symbols (or
lists) does make optimizations difficult, but we anticipate
that function symbols will be used in limited contexts and
hence, allow their use for full expressibility. Thirdly, a de-
ductive framework has strong theoretical foundations and
can be easily extended to include other specialized deduc-
tive frameworks. Specialized logics that could be useful in
the context of sensor networks include Probablistic LP [35]
and Annotated Predicate Logic [23] (for reasoning with un-
certain information).

and Annotated Predicate Logic [23] (for reasoning with
uncertain information).

Prior Success of Datalog in Declarative Networking.  Re-
cently, Datalog without negations has been used for
declarative specification of network routing protocols [27]
and overlay architectures [26], resulting in very compact
and clean specifications. The approach was shown to be
efficient, secure, expressive for intended purposes, and
amenable to query optimizations. This recent success of use
of deductive queries for declarative networking adds to the
promise of our deductive approach for programming sensor
networks.

2.3 lllustrating the Power of Deductive Ap-
proach

We now illustrate the power of the deductive approach
by describing how it can be used to program a few different
distributed computations that have been proposed for sen-
sor networks: vehicle tracking, trajectories, and routing tree
construction. In addition, we illustrate the use of negated
subgoals and function symbols in programming typical ap-
plications. We start with discussing the use of built-in func-
tions to embed arithmetic computations.

Embedding Signal-Processing and Other Arithmetic
Computations in Built-in Functions. Certain aspects of
sensor network applications involve local arithmetic compu-
tations such as signal processing, data fusion, synthesis of
base data, etc. Such arithmetic computations may be too in-
efficient to represent in a deductive framework, and hence,
are embedded in locally-processed built-in functions coded
in a procedural language. Such a representation does not
compromise on the communication efficiency on the trans-
lated distributed code. Distributed arithmetic computations
are embedded in built-in aggregates with specialized dis-
tributed implementations. For instance, in vehicle track-
ing [11, 37], arithmetic computations involve estimating be-
lief states, information utilities, and estimate of the future
target location; the first two computations are local, while the
last computation requires the maximum aggregate. See Ex-
ample 1 below. Finally, certain other arithmetic techniques




such as data compression may be embedded in the query en-  traj([R1,Ro]) : — report(R1), report(Rz), close(Ry, R2),
gine. NOT notStartReport(R1)

EXAMPLE 1. Vehicle Tracking. The given program rep- ~ notStartReport(Rz) : — report(Ry), report(Rz), close(R1, R2)
resents the algorithm for tracking vehicles described in [37].  traj([X|Ry,Rz]) : — traj([X[Rq]),report(Ry),close(R1, R)
The algorithm uses probabilistic and signal-processing tech- ~ completeTraj([X[R]) : — traj([X|R]),NOT notlLastReport(R)
niques to maintain posterior distribution (belief state) of the =~ notLastReport(Ry)  :— report(Ry),report(Rz),close(R1, R2)
vehicle location. parallel(L1,L>) : — completeTraj(L1), completeTraj(Lz),
Ulint+L,u) = P(i,t,v),G(i,i), Z(i,t+1,2), isParallel (L, L2)
Z(il,t+1,21),U1:|(V,Z,Zl) : P
P (i, t+1) . P(tv), 6(1.i1),G(i, ip) Uiz, t+1,u1), Here, we use R to represent the triplet (x,y,t) signifying

U(iz,t+1,u2),Ul<U2
P(il,t+1,F(V,Z)): - P(i,t,V),Z(i,t—Fl,Z),G(i,il),
NOT P/(ig,t+1)

At any time instant, only one node namely the leader node
is active. The leader applies a measurement of its obser-
vation and produces an updated belief state about the vehi-
cle location. The updated belief is then passed onto one of
the neighboring nodes with the highest “utility information,”
which becomes the new leader, and the process repeats. In
the given program, we have used the same variable symbols
as used in [37]. For a node i at time t, P(i,t,v) signifies the
belief state value v, U (i,t, u) signifies the information util-
ity value u, and Z(i,t,z) signifies the sensed value z. Also,
G(x,y) represents the network edges, F and | are locally-
processed built-in functions. The function F represents the
Equation 3 of [37] which computes the updated belief state
at the new leader node, and | computes the information util-
ity of a local node. The first logic rule in the given program
computes the information utility of a neighbor i1 of the leader
node i, and the third rule computes the new leader node
and the new belief state. The predicate P’(iz,t + 1) signi-
fies that i1 does not have the highest information utility. The
given logic program is more compact than the correspond-
ing procedural code written in Kairos (see [18]). More im-
portantly, the given program can be automatically translated
into communication-optimal distributed code, as discussed
in later sections. O

EXAMPLE 2. Need for Negated Subgoals. Negation in
deductive framework is essential (in absence of function
symbols) if we need to take a difference of two sets/tables.
Consider a sensor network deployed in a battlefield for track-
ing enemy vehicles. Here, lets assume availability of a data
stream veh(ID, type, location, time) that signifies vehicle de-
tection of a certain type ("friendly’ or enemy’) at a particular
time and location. Now, let us say we are interested in gen-
erating an alert when there is an “uncovered” enemy vehicle,
i.e., an enemy vehicle that is not within a distance of say 5
from any friendly vehicle. The corresponding query may be
simply written as follows.

cov(ly,t)  :— veh('enemy’,ly,t),veh('friendly’,Io,t),
dist(l1,12) <5
uncov(l,t) :— NOT cov(l,t),veh(‘enemy’, |,t)

O

EXAMPLE 3. Need for Function Symbols. We now il-
lustrate the need for function symbols in our programming
framework. Essentially, function symbols are required when
we want to create non-atomic values. For example, in case
of vehicle trajectories, if we need to compute and store the
actual path of the trajectory, we need to use function symbols
(or lists).

the location (x,y) and time t of vehicle detection, and com-
pute vehicle trajectory paths from the base data report(R).
For simplicity, we assume that at any instant there is only one
sensor detecting the target, so the trajectory can be directly
synthesized using a sequence of report tuples. For clarity, we
use lists instead of function symbols; the list notation [X|Y]
signifies X as the head-sublist and Y as the tail-element. We
use two locally-processed built-in functions: close checks if
two reports can be consecutive points on a trajectory (i.e.,
close enough in the spatial and temporal domains), and Is-
Parallel checks if two trajectories are parallel. O

EXAMPLE 4. Shortest-Path Tree. Here, we give a logic
program for constructing a shortest path tree (H) with a given
root node (A). in a given network graph G. This example il-
lustrates a more involved use of recursion and negation. Note
that, for general graphs with cycles, the shortest path pro-
gram cannot be written using just aggregates (without nega-
tions and/or function symbols).

logicH Program:

H(A A, 0).

H(A x,1) i— G(A)X)

H'(y,d+1) = H(,y,d),(d+1)>d H(,xd),G(x,y)
H(Xayad+1) L G(va)vH(—vxvd)v NOT H/(yad+1)

The predicate H(x,y,d) is true if there is a path of lengthd
from A to y using the edge (x,Yy); essentially, H(x,y,d) gives
the set of edges added in the breadth-first search at d" level.
The predicate H'(y,d + 1) is true if there is already a path
from A to y of length shorter than d 4+ 1. The first two logic
rules of the above program define the base cases. The third
rule defines H’; “_” is the notation for anonymous or don’t
care variable, and the last two terms in the rule serve the pur-
pose of bounding d (to ensure safety). The given logic pro-
gram is more compact than the 20 lines of procedural code
written in Kairos [18]. More importantly, it can be auto-
matically translated into communication-efficient distributed
code; we present more details in Section 4. O

Other Examples; Limitations of the Approach. In ad-
dition to the above examples, we were also able to write
compact programs for vehicle tracking algorithm based on
DARPA NEST software [43, 44] and multilateration local-
ization algorithm by Savvides et al. [38]. As with any pro-
gramming framework, deductive programming has its own
limitations. In particular, logic programs are sometimes non-
intuitive or difficult to write; e.g., the shortest tree program
of Example 4 is clean and compact, but quite non-intuitive
compared to a procedural code. As such the deductive frame-
work is targeted towards expert and trained users, for whom
the relief from worrying about low-level hardware and opti-
mization issues would far offset the burden of writing a logic
program.



3 Query Evaluation in Sensor Networks
In this section, we discuss our techniques for in-network
evaluation of deductive queries.

Prior Work on In-Network Query Evaluation. The tra-
ditional distributed query processing algorithms are not di-
rectly applicable to sensor networks due to their unique char-
acteristics. There has been a lot of work done on distributed
query processing for streaming data [1, 39]; however, they
do not consider resource-constrained networks and hence,
minimizing communication cost is not the focus of these
works. As mentioned before, the current current sensor net-
work database engines (TinyDB [32], Cougar [7]) implement
a limited functionality of SQL. All of the above works are
for distributed evaluation of SQL, which is less expressive
than our proposed deductive framework. Recently, Loo et
al. [25] presented distributed evaluation of positive (without
negations) datalog programs with localized joins in a gen-
eral network with no resource constraints. In contrast, for
our purposes, we need to evaluate logic programs with nega-
tions involving non-localized joins in networks with limited
memory and energy resources.

Our Query Evaluation Approach, and Section Organi-
zation. We use the bottom-up (instead of top-down) ap-
proach [41] of evaluating deductive queries, as in [25],
since the bottom-up approach is amenable to incremental and
asynchronous distributed evaluation, and has minimal run
time memory requirements beyond storage of intermediate
results. At a high-level, our strategy for in-network evalu-
ation of deductive queries is as follows. Firstly, evaluation
of a single deductive rule without negations is tantamount to
computing a join (cartesian product followed by a selection)
of tables. Thus, in Section 3.1, we discuss techniques for
in-network implementation of join of multiple data streams.
In Section 3.2, we generalize the implementations of join to
evaluation of general deductive programs with recursion (but
without negations). The generalization works by hashing de-
rived tuples to specific network nodes, and thus, eliminating
duplicates and creating derived data streams. In Section 3.3,
we consider evaluation of deductive programs with nega-
tions. We observe that maintenance of general (safe) non-
recursive programs with negations boils down to maintain-
ing a join-query result in response to deletions to the operand
streams. The above generalizes to XY-stratified and locally
non-recursive programs, which combine recursion and nega-
tions in an involved manner, and are useful in the context
of programming sensor networks. We discuss aggregations,
function symbols and hashing schemes in Section 3.4, and
present the system architecture in Section 3.5.

3.1 In-Network Implementation of Join

As mentioned above, the join operation is at the core of
the bottom-up evaluation of deductive queries. Thus, in this
section, we address the problem of in-network implementa-
tion of join of multiple data streams. In particular, we de-
velop the Perpendicular Approach which is communication-
efficient, load-balanced, fault-tolerant, and immune to cer-
tain topology changes. Here, we give a brief overview of our
designed join implementations; more detailed discussion and
analysis is presented in our concurrent work [47]. We start
with a formal problem description and a definition.

Problem Description. Given n data streams Ri,R»,...,Rp
(not necessarily distinct) in a sensor network, we wish to

compute Ry X Ry X ... Ry. Here, each given stream is being
generated in a distributed manner across the network, and the
symbol x represents the database binary-join operator which
essentially involves taking a cartesian product of the operand
tables followed by a selection based on the join conditions.
The join conditions may be arbitrary; however, we give spe-
cial consideration to spatial joins (formally defined below).
The join-query result tuples may be output arbitrarily across
the network, since they will anyway be hashed appropriately
for further use of the join-query result. As suggested be-
fore, the join operation is constrained to the join of sliding-
windows of operand streams.
DEFINITION 1. (Spatial Join) A join between two data
streams R; and R is said to be a spatial join of range s if
the join condition is a conjunction of (|R;.nodeLocation —
Rj.nodeLocation| < s) and other arbitrary predicates. Here,
nodeLocation is the attribute for the location of the node gen-
erating the tuple, and |x —y| is the distance between x and y.
Due to the inherent spatial correlation in sensor network
data [12], the join predicates in sensor network queries gen-
erally involve spatial constraint (see Examples 1-4). O
Naive Broadcast Approach. The simplest way to implement
a join of multiple data streams is the Naive Broadcast Ap-
proach wherein each generated tuple is broadcast to the en-
tire network, and stored at each network node. Then, the join
can be computed locally at any network node. In case of spa-
tial joins, a tuple of R; needs to be broadcast only within a
region of radius max; s;j, where s;; is the range of the spatial
join between R; and R;. Moreover, only n — 1 of the operand
streams need to be broadcast (here, n is the total number of
operand streams). The above approach can be very efficient
for joins with very small spatial ranges. Otherwise, the ap-
proach is expected to be infeasible in most other cases due to
severe memory constraints. Another simple approach is the
Local Storage Approach, wherein each tuple is stored only at
the generating node. However, the join-computation process
requires propagation of “partial results” (as discussed later
for Perpendicular Approach).

Perpendicular Approach (PA) in Grid Networks. We now
describe our main approach, viz., Perpendicular Approach
(PA), for in-network implementation of join. In this article,
we give only the basic idea of the approach by describing
how it works on 2D grid networks. The approach can be
generalized to arbitrary topologies as described in [47]. We
start with describing it for a join of two data streams.

PA for Two Streams in Grid Networks. Consider a 2D grid
network of size m x m, which is formed by placing a node of
unit transmission radius at each location (p,q) (1 <p<m
and 1 < g < m) in a 2D coordinate system. Two nodes can
directly communicate with each other iff they are within a
unit distance of each other. Now, consider two data streams
R; and Rz in the above network, and a tuple t (of either data
stream) generated at coordinates (p,q). PA consists of two
phases, viz., storage and join-computation.

e Storage Phase: In the storage phase, the tuplet is stored
(replicated) along the gt" horizontal line, i.e., at all
nodes whose y-coordinate is q. This ensures that set
of nodes on each vertical line collectively contain the
entire sliding-windows for R1 and Ry.

e Join-computation Phase: In the join-computation
phase, we route t along the pt" vertical line to compute
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Figure 1. One-Pass Join Computation. Here, ti, € R, and we assume
the join conditions to be such that tjo matches only with ty;,to3,t3, tas.
Also, there isno join condition between R, and Rs.

the result tuples due tot (i.e., t @ Ry ort x Ry depend-
ing of whether t is in Ry or Rp). The result tuples are
computed by locally joining t with matching tuples of
R1 or R, stored at nodes on the pth vertical line.

Maintenance of sliding-windows and handling of simultane-
ous updates is discussed below, in the more generalized con-
text of multiple data streams.

PA for Multiple Streams in Grid Networks. We now gener-
alize PA to handle more than two data streams as follows.
First, the storage strategy remains the same as before, i. e
each tuple t generated at (p q) is still stored along the gt
horizontal line. However, in the join-computation phase, we
need to traverse the vertical line in a more involved manner,
as described below. We start with a definition.

DEFINITION 2. (Partial Result.) LetR1,R2, ..., Ry be given
data streams and let t be a tuple of Rj. A tuple T is called a
partial result for t if T is formed by joining t with less than
n— 1 given data streams (other than Rj). More formally, T
is a partial result for t if T € (t » Ri; X Ri,... Rj,) where
k<n—1andi, # jforanyl. The tuplet is also considered
a partial result (for the case when k =0). If k =n—1, then
T is called a complete result. O

Join-computation Phase. Consider a tuple t (of some data
stream) generated at a node (p,q). In the one-pass scheme,
the tuple t is first unicast to one end (i.e., (p,0)), and then, is
propagated through all the nodes on the pt" vertical line by
routing it to the other end. At each intermediate node (p,q’),
certain partial and complete results (as defined above) are
created by joining the incoming partial results from (p,q' —
1) with the operand tuples stored at (p,q’). The computed
partial results along with the incoming partial results are all
forwarded to the next node (p,q’ +1). See Figure 1. Certain
incoming tuples may join with the operand tuples stored at
(p,q’) to yield complete results, which are then output and
not forwarded. The partial results generated at the last node
(other end) are discarded.

Simultaneous Insertions and Sliding Windows. To cor-
rectly handle simultaneously generated tuples across the net-
work, we should start the join-computation phase for a tuple
only after the completion of a storage phase. Thus, we intro-
duce a delay of 15 between the start of two phases, where Tg
is the upper bound on the time to complete a storage phase.
To maintain sliding-windows, tuples can be expired after a
storage time of (Ts+ Tj + Tw), Where T; is the upper bound
on the completion time of a join-computation phase and Tty is

the sliding-window range.> We omit the proof of the below
theorem; we prove a more general claim in Theorem 3.

THEOREM 1. Given data streams R1,R2,...,Ry in a 2D
grid sensor network, the Perpendicular Approach (PA) cor-
rectly maintains the join-query result Ry ® Rz x ... Rp,
in response to distributed (and possibly, simultaneous) in-
sertion of tuples into the data streams. We assume bounded
message delays, so as to be able to bound the completion
times of storage and join-computation phases. =

PA in General Networks. Generalization of PA to networks
with arbitrary topology requires developing an appropriate
notion of vertical and horizontal paths such that each vertical
path intersects with every horizontal path. Such a scheme is
described in [47]. We state the below without proof.
THEOREM 2. Given data streams R1,R»,...,R, in a sen-
sor network with arbitrary topology, the Perpendicular Ap-
proach (PA) correctly maintains the join-query result Ry x
R2 X ... Ry, in response to distributed (and possibly, simul-
taneous) insertion of tuples into the data streams. We assume
bounded message delays.

To incorporate spatial constraints, we can store each tuple
over only an appropriate part of the horizontal path, and sim-
ilarly, traverse only an appropriate part of the vertical path.
The above results in storage and communication cost sav-
ings. Finally, PA easily generalizes to attributes with arbi-
trary terms involving function symbols, since the join condi-
tions are evaluated only locally at each node.

3.2 DeductiveQueries without Negation

In this section, we discuss in-network evaluation of de-
ductive queries without negations. We start with discussing
storage of derived tuples, which is key to uniform treatment
of derived and base streams.

Hashing Derived Tuples; Derived Data Streams. The join
implementations (in particular, the Perpendicular Approach)
discussed in the previous subsection generate the result tu-
ples across the network in some arbitrary manner. How-
ever, for efficient elimination of duplicates (we store derived
tables as sets), we need to hash and store the derived tu-
ples across the network such that identical derived tuples are
stored at same (or close-by) nodes. We can use well-known
geographic hashing schemes for above (see Section 3.4). The
above hashing and storage scheme facilitates transformation
of each derived table into a data stream for evaluation of
higher-level predicates. Essentially, a derived tuple t is con-
sidered to be generated (just like a base fact) at the hashed
location at its first instance; later duplicates of t are not in-
sertions to the derived table, and hence, not considered as
generations.

Evaluation of Deductive Queries without Negations. Con-
sider a predicate Q represented by multiple deductive rules
(without recursion and negations) over base predicates and
with common head predicate Q. Evaluating the predicate
Q is tantamount to independent maintenance of each rule of
Q and then, taking a union of the derived results (for each
rule). Here, the union of the derived results is facilitated by
the storage scheme described in the previous paragraph. The
above is easy to generalize to include recursion, since a re-
cursive subgoal can be treated just like a subgoal of another

LFor simplicity, we assume the range of the sliding-window to
be in terms of a global clock, or that all nodes have a synchronized
clock. We relax the assumption in Section 3.3.



predicate. Finally, the above also generalizes to evaluation of
multiple predicates in an arbitrary recursive deductive pro-
gram without negations, due to generation of each derived
result as a data stream as described in the previous para-
graph. Above, we have assumed that the base data streams
are insert-only (i.e., a previous generated base tuple is never
deleted), as is typically the case since a base data stream gen-
erally represents a stream of sensing readings.

3.3 Deductive QueriesWith Negations

In this subsection, we generalize the Perpendicular Ap-
proach of Section 3.1 to evaluate deductive queries with
negations. The generalizations and techniques developed
here will apply to any in-network implementation of join that
has independent storage and join-computation phases; e.g.,
the developed techniques will apply to Naive Broadcast and
Local Storage Approaches.

High-Level Plan. Theorem 2 states that Perpendicular Ap-
proach (PA) correctly computes a join-query result in re-
sponse to simultaneous insertions. Here, we first generalize
PA to maintenance of a join-query result in response to dele-
tions to the operand streams. Even though the base operand
streams may only be insert-only streams, generalizing PA to
handle deletions is fundamental to generalizing it for eval-
uation of deductive programs with negations. As a second
step, we generalize PA to evaluate a predicate represented
by a single deductive rule involving negated subgoals. As
a third step, we generalize PA to general non-recursive de-
ductive programs. We then generalize our scheme to eval-
uation of XY -stratified and locally non-recursive deductive
programs, which incorporate a restricted form of combined
recursion and negation and are useful in the context of sensor
networks. Finally, we briefly discuss evaluation of general
stratified deductive programs.

Generalizing PA to Handle Deletions. Consider data
streams R1,Ro, ..., Rp inasensor network. LetR1,R2,...,Rp
also denote the current sliding windows of respective data
streams, and let the join-query result Ry x Ra... x R, be
stored (as a set, without duplicates) in a distributed manner
across the network based on some hashing scheme (as dis-
cussed in the previous subsection).

Various Possible Techniques. Let us consider deletion of a
tuple t; from the stream Ri1. For now, lets assume that
there are no other insertions or deletions. To maintain the
join-query result, we need to compute t; x Rz2... x R, and
“delete” it from the maintained join-query result. However,
due to set semantics, (R;1 —t1) X Rz... X Ry may not be
equal to (Ry @ Ra... x Rp) — (t1 X Ra... x Ry). We can
attempt to solve the above problem using one of the follow-
ing techniques: (i) Store the query result as a bag, or keep a
count of multiplicity of each result tuple as suggested in [19],
(ii) Keep the actual set of derivations (as described later)
for each result tuple, or (iii) Use the rederivation technique
of [19]. The counting technique (or bag semantics) is dif-
ficult to implement accurately for a fault-tolerant technique
such as Perpendicular Approach, since fault-tolerance yields
non-deterministic duplication of result tuples. The rederiva-
tion technique of [19] will require distributed computation of
maintenance queries, and hence, will result in a lot of com-
munication overhead. However, the technique of keeping the
actual set of derivations (as described below) incurs no addi-
tional communication overhead and guarantees correctness.

Storage of set of derivations does incur a space overhead,
which may be minimal if most tuples have only a small num-
ber of derivations.

DEFINITION 3. (Source Node; Tuple ID; Derivation of a
Tuple) The source node of a tuple is the node in the network
where the tuple is generated. Note that a derived tuple is
considered to be generated at its hashed location. We use
I(t) to denote the source node of a tuple t.

The tuple-1D is an identifier that uniquely identifies each
tuple in a (base or derived) data stream. For our purposes,
we use (I(t),1) as the ID of a tuple t, where T is at local
timestamp at 1 (t) when the tuple t was inserted.

A derivation of a derived tuple t is the list of tuple IDs,
one from each of the operand streams, that match/join to
yield t. Note that a tuple may have multiple different deriva-
tions. In a general deductive program, a derivation of t in-
cludes the rule-1D used to derive the tuple, but does not in-
clude the tuple IDs corresponding to negated subgoals. In
case of recursive rules, a derivation may include a tuple-1D
from the same table as t. O

Set-of-Derivations Approach. Now, to accurately maintain
T =R1x Ra... X Ry In response to deletions from an
operand stream, we store (and maintain) set of all derivations
with each tuple in T. When a tuple t; is deleted from Ry,
we compute Tp =13 X Ry... x Ry) along with the deriva-
tion of each tuple in T1. Then, for each derived tuple t in
T, we subtract the set of derivations of t in Ty from the set
of derivations of t in T. Set of derivations are similarly
maintained in response to insertions into operand streams.
The tuple t is deleted from (inserted into) from T if the re-
sulting set of derivations of t becomes empty (non-empty
from empty). The computation of T1 constitutes the join-
computation phase for deletion of t;. In the storage phase,
the tuple t1 is removed from all the nodes where it was stored
in the storage phase of its insertion (i.e., from all the nodes
on the horizontal path from its source node, in case of PA).
We use the term removal of a tuple to signify removing the
replications of a tuples (stored in the storage phase of a join
implementation); in contrast, deletion of a tuple refers to an
actual deletion of the tuple from its table. Note that deletion
of a derived tuple occurs only at its source node (due to the
hashing scheme).

Simultaneous Updates. It is easy to see that the above tech-
nique correctly maintains the join-query result T in response
to updates (insertions or deletions) to operand streams, if the
updates occur one at a time. To incorporate simultaneous
updates, we start the join-computation phase after a delay
of 15+ Tc where Ts is the upper bound on the completion of
a storage phase and T is the maximum difference between
local clocks of two nodes. The above delay allows us to es-
sentially process the updates in the order of their local times-
tamps. We prove the correctness of the above strategy in a
more general context in Theorem 3.

Deductive Rule with Negated Subgoals. We now general-
ize our approach to maintain a query result T represented by
a safe? deductive rule with negated subgoals. Let

T:- Ra,...,Rn, NOT Sy,...,NOT Sn

2In a safe rule, each variable in the rule must appear in a non-
negated relational subgoal of the body.



Above, each R; or Sj (not necessarily distinct) is a data
stream in the sensor network. As mentioned in Definition 3,
a derivation of a tuple contains tuple 1Ds from only the non-
negated subgoals; in a safe rule, such a derivation uniquely
determines the derived tuple. Now, to maintain T, in re-
sponse to an isolated insertion or deletion t,1 into the stream
R1, we first compute

Tl'l - trlaR23R37"'aRna NOT Sla"'asma

along with the derivation of each tuple in T,; as fol-
lows. Essentially, in the join-computation phase, we com-
pute and propagate partial results of t;1 ¥ Ra x ... X Ry
(join of only the non-negated subgoals), and delete par-
tial or complete results that match with a tuple from any
Sj. Then, we set-union (for insertion t;1) or set-minus (for
deletion t;;) the set of derivations in T,1 from the origi-
nal set of derivations in T. Similarly, to process an iso-
lated insertion or deletion tg; from S;, we first compute
Ts1:- Ri,...,Rn,tg,NOT So,...,NOT Sy, and then union
(for deletion tg;) or minus (for insertion ts) the set of deriva-
tions in Ty, from the original set of derivations in T. It is
easy to see that the above correctly maintains T in response
to isolated insertions or deletions from the operand streams.
To maintain T in face of simultaneous updates across the
network, we use the following strategy.

o \We start the join-computation phase of any tuple after a
delay of 15+ t¢ from its time of generation, where T is
the upper bound on the storage-phase time and 1. is the
maximum difference between the local clocks of any
two nodes.

e During the join-computation phase of a tuple t gener-
ated at local time T, we match/join t with only those tu-
ples that have a local timestamp between t and (T — Tw)
and have not been deleted before the local timestamp T.
Here, 1y is the given range of the time-based sliding-
window. The above strategy is to process the updates
in the order of their local timestamps. To facilitate the
above, during the storage-phase of a tuple deletion, we
do not remove the replicated copies of the tuple from
the nodes, but instead store the local timestamp of its
deletion.

In conjunction with the above strategy, we can maintain
sliding-windows by expiring a tuple after a storage time of
(Ts+T¢) + Tj + (Tw+Tc). Here, the first term of (Ts+ T¢)
is due to the delay in starting a join-computation phase, the
second term T; is the upper bound on the completion time
of a join-computation phase, and the last term (tw + T¢) is
the absolute (in terms of a global clock) range of the sliding-
window.

We now prove the correctness of the above outlined strat-
egy.

THEOREM 3. The above described strategy correctly main-
tains the query result

T:- Ra,...,Rn, NOT Sy,...,NOT Sm,

in face of simultaneous updates (insertions or deletions) to
the given operand streams, under the assumption that ts, Tj,
and 1. (as defined above) are bounded and there are no mes-
sage losses.

Proof: Consider a tuple t;1 that is inserted into or deleted
from Ry with a local timestamp of 1. Let R; (1 <i<n)orS;

(1 <i<m) refer to the sliding-window of the respective data
stream consisting of all (and only those) tuples with a local
timestamp of less than T and more than (T — tw), and not
deleted locally before 1. To prove the theorem, we essen-
tially need to show that during the join-computation phase
of t;1, the set of nodes encountered by t;; during the join-
computation phase collectively contain the sliding-windows
Ri (2<i<n)andS; (1 <i<m). The above will show that
Tr1:- tr1,...,Rn, NOT Sp,...,NOT Sy, is correctly com-
puted for the update of tuple t;1 into R;. Updates into other
streams occur in a similar manner. By the definition of the
sliding-windowsR; (1 <i<n)andS; (1 <i<m), the above
claims will prove that simultaneous updates across the net-
work are correctly handled in the order of their local times-
tamps, which proves the theorem.

To show that the set of nodes encountered by t;1 during
the join-computation phase collectively contain the defined
sliding windows, observe the following. Firstly, the delay
of 15+ 1¢ before the join-computation of t,1, guarantees that
before the join-computation of t1 starts, storage phase of all
tuples with a local timestamp of less than t has been com-
pleted. Secondly, the storage time of (Ts+Tc) + Tj+ (Tw +
Tc) ensures that the replications of matching tuples do not
expire before the completion of the join-computation phase
Of trl. ]

Multiple Rules with Same Head Predicate. In the above
paragraphs, we have outlined a generalized Perpendicular
Approach that maintains a query result represented by a sin-
gle non-recursive deductive rule with negated subgoals, in
response to simultaneous insertions or deletions to operand
tables. Such a scheme can be easily generalized to maintain a
query result represented by multiple non-recursive deductive
rules (with negated subgoals) with the same head predicate.
Essentially, we assign a unique ID to each deductive rule,
and include the rule-ID in the derivation of each result tuple
(as suggested in Definition 3). Then, maintenance of multi-
ple deductive rules becomes equivalent to maintaining each
rule independently.

Non-Recursive Single-Stratum Deductive Programs.
Above, we have described that our query evaluation scheme
can maintain a query represented by (a union of) multiple
deductive rules with negations. Generalization of our evalu-
ation scheme and the argument of its correctness is straight-
forward for non-recursive single-stratum deductive program.
In a single-stratum deductive program, negation is only over
the base (not derived) data streams. Essentially, each de-
rived predicate is generated as a derived data stream, as sug-
gested in the previous subsection, which allows each derived
predicate to be handled in a similar manner as a base pred-
icate. The correctness of the approach follows from Theo-
rem 3, and the following two observations. First, the num-
ber of derivations of any derived tuple always remain finite
(for programs without function symbols, or programs with
finite number of derived tuples). Second, each derivation of
a result tuple yields a valid “proof tree” with leaves as base
tuples.® The second observation holds because the program
is non-recursive, and hence, the proof tree constructed (by

3A proof tree[41] of a derived tuple t describes how the tuple t
is constructed from the base tuple; an interior node in the tree cor-
responds to an intermediate derived tuple, and a node r’s children
are the tuples used to derive r using a single rule in the program.



iteratively “unfolding” the derivations) will have no directed
cycles.

General Non-Recursive Logic Programs. It is interesting
to note that the above scheme also works for general non-
recursive programs due to the following observation. Con-
sider the set of derived predicates P, in the nt" stratum.?
By the definition of strata, each negated subgoal in (a rule
defining) Py, is over a predicate from a lower stratum. More-
over, the lower-strata predicates can be essentially looked
upon as base predicates for a higher-stratum. In other words,
higher-strata predicates are essentially recursive programs
with negation over only lower-strata predicates which can
be considered as base predicates for higher-strata predicates.
Thus, higher-strata predicates can be maintained due to up-
dates (insertions or deletions) in the lower-strata predicates
exactly as outlined in previous paragraphs. Note that the
change in the set of derivations for each tuple in a lower-
stratum predicate is not required to be propagated to the
higher-strata predicates; we only need to propagate actual in-
sertions (when the set of derivations changes from empty to
non-empty) and actual deletions (when the set of derivations
becomes empty) to the higher-strata predicates.

The above facilitates asynchronous computation of fix-
point, i.e., we don’t need to wait for the fixpoint of lower-
strata predicates to be reached (which never happens, due
to the streaming base data) before evaluating higher-strata
predicates. However, a deduced fact in a higher-strata pred-
icate may have to be later retracted/deleted due to updates
in the lower-strata; or, we could wait for certain time before
“finalizing” a fact. The latter is acceptable/reasonable due
to bounded size sliding-windows and implicit temporal cor-
relation in the sensor data. Our correctness arguments and
claims essentially guarantee that the fixpoint will eventually
be reached if and when the insertions to the base data streams
cease.

Combining Recursion and Negation — Evaluating XY -
stratified Programs. Evaluation of logic programs with un-
restricted negation and recursion is infeasible in sensor net-
works, since it will require a series of distributed fixpoint
checks for evaluation of well-founded semantics [4]. How-
ever, the strategy outlined in previous paragraphs for evalua-
tion of general non-recursive programs easily generalizes to
evaluation of XY -stratified programs [46], wherein the de-
rived tables can be partitioned into “sub-tables” such that the
dependency graph® on the sub-tables is acyclic. The par-
titioning of tables into sub-tables is generally based on the
ordering imposed by built-in arithmetic functions on the ar-
gument values of the derived tuples. For instance, consider
the logicH program of Example 4. Let the predicate/table
H be partitioned into sub-tables Hq, Ho, . . ., based on the the
value of the third argument, i.e., let Hq represent the sub-
table consisting of all the facts H(_,_,d). Similarly, let H
denote the sub-table consisting of all the facts H'(_, d). Now,
the dependency graph of the sub-tables is acyclic, since there

4gtratum of a derived predicate Q is defined recursively as one
plus the maximum stratum of any predicate R such that there is a
rule with Q as the head and R as a negated subgoal. Base predicates
are defined to have a stratum of zero.

5In the dependency graph, an edge exists from a predicate P to
a predicate Q if there exists a rule in the program whose head is P
and body contains Q.

exists a topological order (Ho, H1, H1, H5, Hs, . . .,) of the sub-
tables. Thus, the logicH program is XY -stratified.® Simi-
larly, it is easy to see that the program of Example 1 is also
XY -stratified; the program of Example 3 can be considered
XY -stratified if the traj table is partitioned based on the path
length. The concept of XY -stratification is particularly use-
ful in the context of sensor network because of the order-
ing imposed sometimes by timestamp attribute. In-network
evaluation of XY -stratified programs is done using the same
strategy as outlined in previous paragraphs for evaluation of
general non-recursive programs. Note that the concept of
sub-tables and the acyclicity of their dependency graph is
only to prove correctness of the evaluation scheme; the eval-
uation scheme is oblivious of the sub-tables and their strata.

Evaluating General Recursive Programs. Recall that
the correctness of set-of-derivations approach (for mainte-
nance of query results in response to deletions into operand
streams) hinges on the fact that each remaining derivation
of a derived tuple indeed yields a valid proof tree. A deriva-
tion of a tuple is guaranteed to yield a valid proof tree only if
there are no directed cycles in the tree constructed by unfold-
ing the derivations. Thus, general recursive programs (even
with stratified negations) cannot be evaluated using our set-
of-derivations approach, since a non-empty set of derivations
of a tuple may not necessarily mean that there exists a valid
proof tree for the tuple. However, our evaluation scheme
outlined in the previous paragraphs will correctly evaluate
programs as long as there are no cycles in the “derivation
graph” of the derived tuples, i.e., for locally non-recursive
programs [9].

For evaluation of general recursive programs (with strat-
ified negation), we really need to employ some variant of
the rederivation approach [19]. The rederivation approach
in our context will essentially consists of two steps: First,
temporarily delete a tuple if the set of derivations reduces,
and then, check if the temporarily-deleted tuple can be de-
rived from the existing base tuples (i.e., whether it has a
proof tree). Execution of the second step requires evalua-
tion of a maintenance query over the network, and hence,
may incur additional communication overhead. In our fu-
ture research, we plan to address the above challenge of ef-
ficient in-network evaluation of general stratified deductive
programs.

34 Generalization and Hashing Schemes

Built-in Functions, Function Symbols, and Aggregations.
Our query evaluation scheme can be easily generalized
to handle built-in functions, since the evaluation of join-
conditions and execution of built-in functions is done only
locally. For the same reason, incorporating function symbols
in deductive rules only requires extending the evaluation of
join-condition using the term-matching operator [41]. How-
ever, introduction of function symbols in deductive programs
may result in non-termination of programs and may make
optimizations difficult; but we anticipate that function sym-
bols will be used in limited contexts, and hence, their use can
be allowed in the programming framework for full express-
ibility.

Aggregates are typically represented in logic rules by us-
ing the Prolog’s all-solutions predicate to construct a list of

60ur defined notion of XY-stratified programs is slightly more
general than the original notion defined in [46].



values to be aggregated, then, computing the desired aggre-
gate. However, an efficient implementation should aggregate
the elements iteratively (for incremental aggregates) without
actually constructing the list. Thus, we can use TAG [28]
or fault-tolerant synopsis diffusion [33] techniques for in-
cremental aggregates (without actually constructing the list).
For non-incremental aggregates, we need to first construct
the list.

Hashing Schemes. In the previous subsections, we sug-
gested that each derived table is hashed across the network
using a geographic hashing scheme. However, choice of a
hashing scheme can have a substantial effect on the incurred
communication cost during the join implementation. For in-
stance, if the derived table is involved in a join query wherein
the join-predicate involves a range predicate, then we can use
the join-attribute values to hash the tuples, for efficient com-
putation of the range-join. If a derived table is part of mul-
tiple join-queries involving different join-attributes, then the
table tuples may need to be hashed to multiple locations (one
for each join-attribute), which may result in prohibitive us-
age of main-memory. In general, if a join-attribute refers to a
node or its location, then it is natural to map/hash a tuplet to
the corresponding node. For simplified decisions on hashing
schemes, we let the user dictate the hashing scheme (i.e., the
join-attribute used for hashing) of each derived predicate, as
is suggested in prior works [15, 25, 27] using a concept of
host-id attribute. Choice of hashing scheme (i.e., choice of
attribute used for hashing a derived result) to minimize the
overall communication cost is a challenging problem, and
would be addressed in our future works.

3.5 System Architecture and Resource Re-
quirements
In this subsection, we give an overall architecture of our
system for in-network processing of logic queries, and ad-
dress memory requirements of our system.

Overall Architecture. Figure 2 depicts our overall system
architecture and high-level plan of in-network evaluation of
logic queries. Basically, the user specified logic-program is
first optimized using magic-set transformations [41] (used
to optimize the bottom-up evaluation strategy), and then
translated into appropriate code which represents distributed
bottom-up incremental evaluation of the given user program.
The compiled code is downloaded into each sensor node.
Within each sensor node, there is a layer of in-network im-
plementations of relational operators (such as join), aggre-
gates, and built-in predicates/functions. The above layer is
in addition to the usual layers of routing and networking lay-
ers.

Memory Requirements. Currently available sensor nodes
(motes) have 4 to 10 KB of RAM and 128 KB or more of
on-chip flash memory. The memory capacities have evolved
over years [36], and latest Intel mote is being designed with
64 KB RAM [22]. In our system, the user program essen-
tially consists of the generic join interface (as described in
Section 4), the list of join-conditions for the deductive rules,
and the (procedural) code for the system/user built-in func-
tions. This is in addition to the other networking layers. A
typical on-chip flash memory is ample to easily contain the
native code of a user program and various system layers.

Overall Main Memory Usage. The strain on sensor nodes’
main memory is due to (i) run-time control structures used by
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Figure 2. System Architecture.

various system layers and the bottom-up approach, and (ii)
derived results, (i.e., storage of derived tuples and the corre-
sponding set of derivations, and their replication to facilitate
efficient join computation) during execution of user program.
The bottom-up query evaluation approach requires minimal
run-time control structures beyond those needed for setting
up indexes and joins. Note that the list of join-conditions,
being read-only part of the user program, can reside on the
on-chip flash memory.

Derived Results. The derived/intermediate tables are stored
in a distributed manner across the network. So, the total
main memory available for storing derived tables is the cu-
mulative main memory of the entire network. Thus, we ex-
pect the available main memory resources to be sufficient for
most user programs. For instance, for the shortest-path tree
program of Example 4, the derived results are H (or J, for
the improved logicJ program given in Section 4) and H’, and
based on the storage scheme discussed in Section 4, each
node y stores only tuples of the form H(_,y, _) (or J(x, ) or
H’(y,-) where x is a neighbor of y. Thus, the total number of
tuples stored at any node is at most 2 to 3 times its degree.
In a stable state, each node contains a single tuple of H.

In general the storage and replication of intermediate re-
sults (materialized views) is required for communication ef-
ficiency and is inherent to the user program, rather than the
programming framework. Since tables are maintained as
sliding-windows, the space required for intermediate results
can be adjusted depending on the available memory and de-
sired accuracy of results. In addition, the techniques for se-
lecting which of the intermediate results to store (i.e., selec-
tion of views to materialize) can be used to further satisfy the
given memory constraints while maintaining sufficient accu-
racy of results. In our future research, we plan to investigate
to above space optimization techniques to further optimize
the main memory usage based on given performance objec-
tives and resource constraints.

Computation Load. Most of the processing in our system
is in the form of distributed evaluation of logic rules or local
built-in functions. The bottom-up evaluation of logic rules
requires simple local operations such as term-matching [41],
join-predicate evaluations, arithmetic comparisons, etc., and
hence, result in minimal processing load. The processing
load due to arithmetic-intensive local built-in functions is
inherent to a user program, i.e., largely independent of the
programming framework. Thus, our overall framework and
approach is not expected to increase the processing load on



the network.

4 System Implementation and Performance
Evaluation

In this section, we present details of our current system

implementation, and present performance results that illus-

trate the feasibility of our proposed approach and query eval-
uation techniques.

Current System Implementation. The main focus of our
system is to automatically translate high-level user program
written in form of deductive rules to nesC code that runs
on individual sensor nodes. The generated code must rep-
resent our outlined query evaluation strategy. In particular,
we translate a given user program into distributed nesC code
as follows. First, we developed nesC interface components
for various in-network join implementations corresponding
to the Naive Broadcast, Local Storage, and Perpendicular
Approaches as described in Section 3.1. These components
reside on each node, and are very generic, i.e., do not need to
be generated for a specific user program. Any given user (de-
ductive) program is now translated into the database schema
(list of predicates and attributes) and the list of deductive
rules (i.e., the list of subgoals and join conditions for each
rule). The list of rules and join-conditions are used by the
generic join component to evaluate the predicates in the pro-
gram. See Figure 3. Our current version of the system can
handle general deductive programs without function sym-
bols. In addition, the current implementation handles simple
arithmetic built-in functions and predicates such as addition,
subtraction, equality, less than, etc. In the current imple-
mentation, the hashing scheme of the derived results (i.e.,
the choice of join-attribute to use for geographic hashing) is
given by the user.

The current implementation has been tested on
TOSSIM [24], and the Perpendicular Approach join
implementation is based on a 2D grid topology. In the
immediate future implementations, we plan to (i) incor-
porate the generalized version of Perpendicular Approach
join-implementation for arbitrary topologies as developed
in [47], and (ii) incorporate use of arbitrary user-defined
built-in functions (written in procedural code), aggregations,
and function symbols.

Comparison of Program Sizes. In general, the deductive
programs are expected to be much shorter and compact (few
logic rules) compared to the corresponding nesC code. How-
ever, logic programs are sometimes non-intuitive to write.
As such deductive framework is targeted towards expert and
trained users, for whom the relief from worrying about low-
level hardware and optimization issues would far offset the
burden of writing a logic program. The size of the gener-
ated/translated nesC code is of not much relevance to the
performance comparison — since the translation is done au-
tomatically and a typical flash memory of a sensor node is
ample to easily store the executable of resulting program
code. In our framework, the generated code essentially in-
cludes the set of join conditions and the procedural code for
user-defined built-in functions; the code for the join imple-
mentation is common to all user programs.
4.1 Performance Evaluation

In this subsection, we present our simulation results for
implementation of the shortest path tree program of Exam-
ple 4. The shortest path tree program of Example 4 incor-
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Figure 3. The join component at a sensor node. Newly generated
(base or derived) tuples are fed into the join component, which gener-
ates partial and/or complete results by joining with local tables. The
complete results are sent to the hashing component for hashing, and
then, forwar ded to the routing component for storage at the hashed lo-
cation. The partial results arealso forwarded to the routing component
to route to the next node on the join-computation path. Partial results
received from other nodes aretreated similarly. In addition, newly gen-
erated tuples are also routed for replication in the storage phase (not
shown).
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porates quite a non-trivial combination of negation and re-
cursion, and the resulting query evaluation algorithm is quite
different from the native implementation. In contrast, as dis-
cussed below, the translated code for other examples natu-
rally yields communication-optimal translations (essentially,
the same algorithm as the algorithm of procedural code).
Thus, to gain more insight into our proposed approach, we
choose the challenging shortest path tree example, and study
the performance comparison.

Performance of Other Example Programs. It is easy to see
that other examples of deductive programs from Section 2.3
naturally yield communication-optimal translations, with ap-
propriate hashing schemes. For instance, for the program of
Example 1, if we use a hashing scheme such that P(i, -, ),
U(i,-,-) and Z(i,_,-) are stored at node i, then each tuple
needs to be broadcast to only its neighbors, which results in
essentially the same algorithm and performance as the dis-
tributed code in a procedural language. Similar argument
and analysis holds for the other programs shown in Sec-
tion 2.3, and also for the programs of vehicle tracking based
on DARPA NEST software and multilateration (hot shown
in the article).

Below, we start with discussing details of the distributed
evaluation of logicH program, and then, present simulation
results comparing the performance of the translated code
with the procedural (nesC) program.

Distributed Evaluation of logicH Program. For conve-
nience, we repeat the logicH program here; recall that logicH
can handle general graphs with cycles.

logicH Program:

H(AA0).

H(Ax,1) i — G(AX)

H'(y,d+1) :— H(,yd),(d+1)>d" H(.xd),G(xy)
H(X»Y»d+1) L G(va)7H(—7X7d)7 NOT H/(yd+1)

Hashing Schemes, and Join Strategy. The above logicH pro-
gram produces a shortest-path tree rooted at node A. We
assume that the fact G(x,y) is available (stored) at both the




nodes x and y, which essentially means that each node is
aware of its immediate neighbors. Since y is the only join-
attribute in H(x,y,d), a tuple H(x,y,d) is hashed to the node
y. Similarly, a tuple H’(y,d) is hashed to the node y. Based
on the above hashing scheme, all pairs of joining tuples re-
side in neighboring nodes.

Naive-Broadcast Approach. The Naive-Broadcast Ap-
proach of evaluating the joins in the third and four rules on
logicH entail that one of the tables be broadcast to neigh-
boring nodes, while the other table be stored locally at each
node. Thus, we broadcast and store each tuple H(_,y, ) at all
the neighbors of y. Thus, the above approach requires only
one message transmission for each update (insertion/deletion
of tuple) into H tables. The above hashing scheme and
broadcast strategy means that H'(y,_) and H(_,y,-) can de-
rived at their hashed locations itself. Thus, the only com-
munication cost incurred in the entire evaluation of the logic
program is the replication of each H to the neighbors of the
generating node.

Perpendicular Approach. In the Perpendicular Approach,
tuples are stored and propagated for join-computation along
horizontal/vertical paths as discussed in Section 3.1. During
the join-computation phase of a rule involving a negated sub-
goal, we first compute the complete result corresponding to
the positive subgoals, and then, check for existence of tuples
corresponding to the negated subgoals at the hashed location.
For instance, in the case of the logicH program, H(_,y,d) is
inserted after checking if there isa H'(y,d) at y.

Distributed Evaluation. For the logicH program, initially, the
node A generates the fact H(A, A, 0) using the first logic rule,
and each neighbor x of A then generates a fact H(A, x, 1) us-
ing the second rule. Recall that derivation of a new fact is
looked upon as generated at its hashed node. Thus, based
on our hashing strategy, the fact H(A,A,0) is considered to
be generated at node A, and H(A,x,1) is considered to be
generated at node x. In the Naive-Broadcast approach sug-
gested in previous paragraph, each insertion or deletion of
an H tuple is broadcast to the neighbors of the generating
node. Such a broadcast of an H(_,_, 1) tuple may result in
new derivations of some H'(_,1+ p) tuple (p > 0; due to the
third logic rule) and/or some H(_, _,1+ 1) tuple (due to the
fourth logic rule). If the set of derivations of a tuple t be-
comes non-empty from empty in the above process, then the
tuple t is considered to be an insertion to the corresponding
table. Insertion of a H'(_, 1) tuple may result in deletions of
atuple H(_, _, 1) due to the fourth logic rule. Since the given
program is XY -stratified with finite strata (bounded by the
diameter of the network), the above process is guaranteed to
terminate to a fixed point.

Optimization. The logicH program for shortest path tree
can be optimized by a simple aggregation or “pushing down
projection.” Note that the evaluation of the third and fourth
logic rules in logicH is independent of the value of the first
argument of the subgoal predicates H. Thus, we do not need
to process an insertion H(z,x,d), if there already exists a
tuple H(z',x,d). Thus, we need to only process insertions
or deletions of J(y,d) where J(y,d) : — H(x,y,d). We can
thus rewrite the logicH program as follows.

Simulation Results. We now compare the performance of
our translated/generated code for the logicH and logicJ pro-
grams with the optimized distributed code written in nesC.

logicJd Program:

H(A,A,0)

H(Ax,1) i— G(AX)

‘](yd) L H(vavd)

H'(y,d+1) t= J(y.d), (d+1) > d', 3(x,d), G(x,y)
Hixyd+1) 1~ G(xY),d(xd), NOT H'(y,d+1)

Simulation Setup, Programs, and Performance Metrics. We
run our simulations using the TOSSIM simulator on a sensor
network with a grid topology. Unless being varied, the total
number of nodes is chosen to be 49 (ina 7 x 7 grid network).
In certain simulations, we vary the message loss probability
to compare the robustness of various approaches. We simu-
late a message loss probability of P by ignoring a message at
the receiver with a probability of P.

We compare the performance of various programs using
two performance metrics, viz., the result inaccuracy and to-
tal communication cost. Here, we define the result inaccu-
racy as the ratio of the number of missed shortest paths over
the total number of shortest paths computed by a centralized
program.

In our simulations, we compare the performance of three
programs: the procedural code (optimized distributed nesC
code), logicH (generated code for the logicH program, and
logicJ (generated code for the logicJ program). In the gen-
erated codes, we use the Naive Broadcast Approach for join
computation, because of the join involved involve only a 1-
hop spatial constraint. Later, we will show the effectiveness
of the Perpendicular Approach of computing join by simu-
lating the programs for larger “transitivity factor” (as defined
later).

Varying Message Loss Probability. In this first set of exper-
iments, we vary the message loss probability and compare
the result inaccuracy of various programs in networks with
different size. First, we confirmed that when there are no
message losses, the accuracy of the result is 100% for all the
programs. See Figure 4. Also, we observe that the generated
code for the logicH and logicJ programs compute about 80%
correct shortest paths for message loss probability up to 10%.
The result inaccuracy continues to increase with increase in
message loss probability. However, we observe that the ro-
bustness of the translated code is close to that of the proce-
dural code, and logicH code is sometimes even more robust
(i.e., has a lower result inaccuracy value) than the procedural
code for small values of message loss probability.

Varying Network Size. In Figure 5, we plot the total com-
munication cost incurred by various programs for varying
network size. We observe that the total communication cost
incurred by all programs is largely proportional to the total
number of nodes in the network. As expected, the communi-
cation cost incurred by logicJ is about twice as that of proce-
dural code, due to the insertions and deletions of each tuple
J(y,d). Moreover, logicJ code performs much better than the
logicH code. The total communication cost of all approaches
decreases with the increase in the message loss probability.

Varying Transitive Factor. In this set of experiments, we
modify the various programs to compute shortest-path tree
in GX (for various k), where G is the network graph and GK is
defined as the graph wherein there is an edge between any
two nodes x and y that are within k-hops in the network
graph G. We refer to k as the transitive factor. Note that
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Figure 6. Average communication cost per node incurred by the
gener ated code using Naive Broadcast and Per pendicular Approach for
varying transitive factor.

here we are only changing the definition of what a shortest-
path tree is, while keeping the network graph (transmission
radii and neighborhoods of each node) the same. Our logic
programs can be easily changed to reflect the above. In Fig-
ure 6, we show the effect of k on the total communication
cost incurred for computing the shortest-path tree in G for
varying k. We compare the performance of the generated
codes for the logicJ program with two different join com-
putation strategies: Naive Broadcast and Perpendicular Ap-
proach (PA). We notice that the communication cost of both
approaches increases with increase in k. This is because with
the increase in k, the number of paths with shortest length
increases which results in more number of J(y,d) tuples for
the same y and d. However, PA increases at a lower rate than
Naive Broadcast, and eventually outperforms Naive Broad-
cast when k becomes greater than 4, which suggests that PA
is more suitable for implementation of join that involves dis-
tant tuple matching. Also, note that the memory require-
ments for PA is much less that of the Naive Broadcast Ap-
proach. We present more extensive simulations and perfor-
mance comparison of various join implementation strategies
in [47], with varying memory constraints.

Summary of Simulation Results. The above simulations il-
lustrate the robustness and communication efficiency of the
translated codes. We see that Naive Broadcast is a better
choice for low-range spatial constraints, while PA is ex-
pected to outperform other approaches for joins involving
matching of tuple generated/stored far away. Also, the main-
memory usage at each node for the logicH and logicJ pro-
grams were minimal (8-10 tuples per node, with at most two
derivations per tuple).

5 Conclusions

In this article, we have addressed the need for a high-level
programming abstraction for sensor network applications. In
particular, we proposed and motivated the deductive frame-
work, and designed a full-fledge query engine for in-network
evaluation of deductive queries in a sensor network. We pre-
sented implementation details of our system that compiles
a given user deductive program into distributed code that
runs on individual nodes. There are many challenges that
need to be addressed for an optimized (in terms of main-
memory usage and communication efficiency) implementa-
tion of an in-network deductive query engine. As outlined
in the article, some of the challenges include: (i) Efficient
(perhaps, approximate) implementation of the counting ap-
proach for incremental maintenance of join queries; such an
implementation is unlikely to be fully accurate but will have
minimal space overhead, (ii) Automatic determination of at-
tributes to use for hashing derived results to minimize over-
all communication cost, (iii) Efficient implementation of the
Rederivation approach of [19] which will pave the way of
in-network evaluation of general deductive programs, with
locally-stratified [9] negation, and (iv) The problem of se-
lection of views to materialize [20] in the context of sensor
networks. The above challenging issues are of great interest
to us, and will be addressed in our future works.
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