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Abstract—Throughput optimization in wireless networks with multiple channels and multiple radio interfaces per node is a
challenging problem. For general traffic models (given a set of source-destination pairs), optimization of throughput entails
design of “efficient” routes between the given source-destination pairs, in conjunction with (i) assignment of channels to
interfaces and communication links, and (ii) scheduling of non-interfering links for simultaneous transmission. Prior work
has looked at restricted versions of the above problem. In this article, we design approximation algorithms for the joint
routing, channel assignment, and link scheduling problem in wireless networks with general interference models. The
unique contributions of our work include addressing the above joint problem in the context of physical interference model
and single-path routing (wherein, traffic between a source-destination is restricted to a single path). To the best of our
knowledge, ours is the first work to address the throughput maximization problem in such general contexts. For each
setting, we design approximation algorithms with provable performance guarantees. We demonstrate the effectiveness of
our algorithms in general contexts through simulations.

Index Terms—C.2.2 Network Protocols, F.2 Analysis of Algorithms and Problem Complexity.

F

1 Introduction
One of the central questions in communication
networks is: Given a set of source-destination
pairs, what is the maximum rate (throughput) at
which the network can transfer data from the
sources to the corresponding destinations? The
above throughput maximization problem is chal-
lenging in wireless network due to the presence of
wireless interference. In addition, one can signifi-
cantly increase the network throughput by equip-
ping each node with multiple radio interfaces that
operate on orthogonal channels. Availability of
multiple channels and interfaces poses the addi-
tional challenge of determining efficient assignment
of channels to links and interfaces. In general,
the throughput maximization problem in wire-
less networks entails jointly optimizing routing,
channel assignment (to interfaces and links), and
interference-free scheduling of links.

Prior works on the above throughput maximiza-
tion problem have only addressed restricted ver-
sions of the problem: single channel [9, 22], static
channel assignment [2], channel assignment and
scheduling for a predetermined set of possible
paths [23]. Finally, [19] derives upper bounds on the
achievable throughput, without designing approx-
imation algorithms. The main shortcomings of the
prior works are three fold. Firstly, [2] considers only
a static assignment of channels to interfaces. On
the other hand, dynamic channel assignment offers
more flexibility and improved capacity [19], and
incurs minimal overhead using improved hardware

technology [23]. The work in [23] does consider
dynamic channel assignment, but for a predeter-
mined set of paths between each source-destination
pair. Secondly, all the prior works1 on throughput
maximization are for simple (pairwise) interference
models, wherein the model is represented as a set of
pairs of links that interfere with each other. On the
other hand, the physical interference model is less
restrictive, and in general yields higher capacity
than pairwise interference model in scenarios that
do not use CSMA techniques [5]. Thirdly, all the
prior works on throughput maximization consider
multi-path routing (or predetermined single-path
routing [23]) between each source-destination pair.
Multipath internetworks are more complex to con-
figure, while single-path routing infrastructure has
simplified routing tables. Moreover, in single-path
routing, the problem of packet-reordering (needed
in multi-path routing) does not exist. Indeed, in
conventional networks (e.g., Internet), application-
level flows generally use single-path routing.

Motivated by the above considerations, in this
article, we address the joint routing, channel assign-
ment, and scheduling problem for throughput max-
imization (hereafter, refereed to as the JRCAS prob-
lem) in wireless networks in the following general
contexts: (i) multiple channels with dynamic chan-
nel assignment, (ii) physical interference model,

1. In a recent concurrent work, [9] considers throughput max-
imization in physical-interference for single-channel networks.
The approximation results in [9] are based on a certain assump-
tion, to incorporate presence of noise (see Section 2 for details).
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and (iii) single-path routing. In particular, our main
contributions are:
• For pairwise interference (Section 3), we

present a (c + 2)-approximation algorithm for
the JRCAS problem with dynamic channel as-
signment. Here, c is the network-interference
degree [10, 23], a small constant which depends
on the interference model.

• For physical interference model (Section 4),
we design two constant-factor approximation
algorithms for the JRCAS problem. Our first
algorithm is an improvement and generaliza-
tion of the result in [9]. Our more signifi-
cant contribution, the second approximation
algorithm, is based on a novel linear-equation
representation of the physical interference con-
straint, and has a constant-factor approxima-
tion bound independent of the transmission
power and noise values.

• The most significant contribution of our work
is for the JRCAS problem with single-path
routing (Section 5) for which we design ran-
domized approximation algorithms for both
pairwise and physical interference models, us-
ing the classic rounding technique [29].

Our techniques also yield the following result.
• For the TDMA link scheduling problem [14] in

multi-channel multi-radio networks with phys-
ical interference, we design two constant-factor
approximation algorithms (Section 4.3).

• For the JRCAS problem with static channel
assignment, we get constant-factor approxima-
tion algorithms for both pairwise and physical
interference models. For the pairwise interfer-
ence model, our algorithm is much simpler than
the very involved result of [2] from MobiCom
2005.

2 Models, Problem Description, and Re-
lated Work

Network Model. A wireless network is modeled
as a directed graph G(V,E), where V is the set
of network nodes and E is the set of directed com-
munication links each connecting a pair of nodes.
A directed link (u, v) denotes that u can trans-
mit to v directly (in absence of other interfering
transmissions). Link capacity κ(e) of a link e is the
maximum data rate (bits/sec) that can be carried on
e. There are K orthogonal channels available, and
each node u is equipped with I(u) (radio) interfaces.
We use the notation N(u) to denote the set of links
incident on node u. That is,

N(u) = {e|e = (u, v) or (v, u), and e ∈ E}. (1)

Interference Models. Due to the broadcast nature
of the wireless links, transmission along a link
may interfere with other link transmissions, when
transmitted on the same channel (links on different
channels do not interfere). An interference model
defines which set of links can be active simultane-
ously without interfering. We consider two types
of interference models, viz., pairwise and physical.
A pairwise interference model is represented by
a set of pairs of links that interfere with each
other. The pairwise model can be represented by
a conflict graph, wherein the vertices are the links
and the edges identify pairs of interfering links. In
the physical interference model, successful trans-
mission over a link (u, v) depends on the signal-to-
noise ratio (SINR) at v.
Time Slots. In our model, the system operates syn-
chronously in a time slotted model. In any time slot,
a set of non-interfering links are active, and each
interface is assigned a channel. In the static channel
assignment model, the assignment of channels to
interfaces is fixed across time slots, while in the
dynamic assignment model, an interface can choose
different channels in different time slots. Each ac-
tive link (u, v) uses a pair of interfaces (assigned
the same channel) at u and v. We assume unicast
transmissions; thus, an interface can be used by at
most one link. However, in a time slot, a link (u, v)
may support multiple simultaneous transmissions
using multiple pairs of interfaces. Thus, in a time
slot, a multiset of links may be active, with each
instance of a link associated with a different pair of
interfaces.

JRCAS Problem. The JRCAS (joint routing, chan-
nel assignment, and scheduling) problem to max-
imize throughput can be informally described as
follows; see next section for a more formal de-
scription. Input: A wireless network graph, the
interference model, and a set of source-destination
pairs. Output: An interference-free schedule of link
transmissions into time slots that guarantees max-
imum total data rate between the given source-
destination pairs. By default, we assume multi-path
routing. In either case, the flows must observe link-
capacity, flow conservation, and “interface” con-
straints. Notes. (i) Design of a link schedule entails
assignment of channels to link instances. (ii) The
JRCAS problem is a generalization of the classic
multicommodity flow problem [1] with additional
resources (channels and interfaces), constraints (in-
terference and interface), and outputs (link sched-
ule and channel assignment).

Related Work. One of the first works that ad-
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dressed the throughput maximization problems is
the work by Jain et al. [16], where the authors
give an LP formulation of the problem. How-
ever, their formulation requires enumeration of all
interference-free sets of links, which can be ex-
ponential in number. The above shortcoming was
first remedied in an insightful work by Kumar et
al. [22], who design an approximation algorithm for
interference-free scheduling of links for through-
put maximization in single channel networks with
transmitter interference model. Our work builds on
their key insight. Alicherry et al. [2] address the
JRCAS problem with IEEE 802.11 MAC-based inter-
ference and static channel assignment, and design a
(cK/Imin)-approximation algorithm. Here, c is the
network-interference degree, K is the number of
channels, and Imin(≤ K) is the minimum number
of interfaces per node. However, their approach is
unnecessarily involved and rather complicated. In
fact, in this article, we derive the same approxi-
mation bound with a trivial generalization of [22]’s
work. In a recent work, [7] present an improvement
of the above works ([2, 22]). However, their work
has a fundamental flaw [32]; in particular, their
claim (without proof) that the resulting flows can
be scheduled is incorrect. See Figure 1 for a counter
example.

Finally, the recent concurrent work [9] by
Chafekar et al. considers the JRCAS multi-path
problem for physical interference model in single
channel networks. In addition to the restrictions
of single channel and multi-path networks, the
approximation results in [9] are based on the as-
sumption that the optimal algorithm is restricted
to use a slightly smaller transmission power (and
hence only a subset of the links of the original
communication graph are usable by the optimal
algorithm). The assumption is used to avoid mak-
ing the assumption of zero noise (as in [14]); see
Section 4.1 for details. In contrast, in this article,
we do not make any such assumptions.

Another line of related research stems from the
seminal work by Tassiulas and Ephremides [33],
who present an optimal link scheduling policy for
arbitrary network models. However, their schedul-
ing policy needs to iteratively solve an optimization
problem (maximum-weighted interference-free set
of links) that is NP-hard even for simple inter-
ference models. Also, their scheme has not been
extended to solve the joint routing and schedul-
ing problem. Based on the above result, [10, 25,
31] design simple scheduling policies that guar-
antee near-optimal throughput for single channel.
Recently, [23, 30] extend the above ideas and con-
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Fig. 1. Counter-example for [7]’s claim. In the shown
network graph, all the links have unit capacity. Assume
secondary (802.11 based) interference model. Let the
link utilizations (the fraction of times they are active) of
the directed links (1,6), (5,4), and (3,2) be 1/2 units,
and on all other links be 0. For the given instance,
the “sufficiency” condition3 of [7] is satisfied, but no
schedule is possible since the above three links are
mutually conflicting and no schedule can have each
one of them operating 1/2 of the time.

sider the joint (dynamic) channel assignment and
scheduling problem, for a predetermined set of
possible paths. Another recent work [13] extends
the ideas of [33] to include fairness. Taking a dif-
ferent approach to extend [33]’s work, the authors
of [6] use a notion of local pooling to design efficient
channel assignment algorithms under primary in-
terference model. All the above extensions are for
pairwise interference.

Chen et al. [11] consider jointly optimizing con-
gestion control, routing, and scheduling for net-
works with single channel and pairwise interfer-
ence, and design an approximation algorithm. Their
work is based upon (and extension of) earlier works
of Lin et al. [24] and Neely et al. [28].

Other Works. The TDMA link scheduling problem
has been addressed before [5, 14, 34], but is a special
case (in terms of designing approximation schemes)
of the JRCAS problem as shown in Section 4. Re-
cently, Chafekar et al. [8] addressed the problem
of minimizing end-to-end delay for one packet per
source-destination [21] by jointly optimizing routing,
power control, and scheduling for physical inter-
ference. The objective of our JRCAS problem is
different than theirs. In other works, [27] addresses
the joint scheduling and power control problem, [4]
considers the joint routing and scheduling problem
for power optimization, and [18] considers a class
of scheduling problems without addressing the in-
terference constraint.

3. The sufficiency condition of [7] essentially states that for
every node u, the sum of fractions of time the neighboring
nodes of u (including u) are active must be bounded by 1.
More formally, if N (u) denotes the set of 1-hop neighbors
of u, and τu and τuv denote the fractions of time node u
and link (u, v) are active respectively, then

∑
v∈N (u)∪{u} τv −∑

v,w∈N (u)∪{u}, (v,w)∈E τuv ≤ 1. While the above is a neces-
sary condition, it is clearly not sufficient as the example shows.
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3 JRCAS Problem with Pairwise Inter-
ference
We start with a few definitions here.

Definition 1: (Pairwise Interference Model; Con-
flict Graph; C(e)) The pairwise interference model is
represented by a set of pairs of links that interfere
with each other, if active on the same channel.

The set of pairs of interfering links is represented
by a conflict graph G (Vc, Ec). The set of vertices
Vc of a conflict graph are the network links, and
the set of edges Ec connect the pairs of vertices
that correspond to interfering links. We use C(e) to
denote:

C(e) = {e} ∪ {e′|(e, e′) ∈ Ec} (2)

Most interference models, e.g., transmitter
model [35], protocol model [15], transmitter-
receiver model [3], etc., can be modeled as
pairwise interference. ¤

Definition 2: (Network-Interference Degree.)
Network-interference degree is the maximum
interference degree of any link, where the
interference degree of a link (u, v) is the number
of links that interfere with (u, v) but not with each
other. In other words, network interference degree is
the size of the maximum independent set in the
subgraph induced by the neighbors of any vertex
in the conflict graph.

Network-interference degree is generally depen-
dent only on the interference model (independent
of the network topology). For example, the sim-
ple node-exclusive (primary) interference model
has a network-interference degree of 2, while the
uniform-range secondary interference model which
approximates IEEE 802.11 DCF has a network-
interference degree of 8 [10]. ¤

Definition 3: (Link Schedule.) A link schedule is a
specification of a certain number of time slots. For
each time slot, we specify a multiset of active links
with a channel assigned to each link instance. A
valid link schedule must satisfy two constraints:
(a) The link instances active in the same time slot
do not interfere, and (b) the number of different
channels incident on any node u in a time slot is
less than I(u). ¤

Definition 4: (Link Utilizations, α(e, k) and α(e).)
Link utilization α(e, k) of a link e for channel k in
a given link schedule is the ratio of the (i) total
number of instances (across all time slots) of link
e active on channel k, and (ii) the total number of
slots of the link schedule. Note that the first term is
cumulative across all source-destination pairs. Also,
we use α(e) to denote

∑
k α(e, k). ¤

Definition 5: (Link Flows, f(e, k), f(e), fi(e, k),
fi(e).) Link flow f(e, k) for a link e and channel
k is the data rate carried by link e on channel
k, i.e., f(e, k) = κ(e)α(e, k). We use f(e) to de-
note

∑
k f(e, k), and fi(e, k) or fi(e) to denote the

portion of the link flow for a particular source-
destination pair {si, di}. Thus, f(e, k) =

∑
i fi(e, k)

and f(e) =
∑

i fi(e). ¤
Based on the above definitions, we now give a

formal description of our JRCAS problem.

JRCAS Problem with Pairwise Interference. Given
a network graph, its conflict graph, and a set
of source-destination pairs, the JRCAS problem is
to design a link schedule that maximizes the to-
tal data rate between the given source-destination
pairs. The resulting link flows must satisfy the
flow conservation constraints (formally given by
Equations 6-8 later) at each node. Note that a
link schedule by definition includes assignment
of channels to active link instances, and satisfies
interference and interface constraints. The above
JRCAS problem is NP-hard, since the special case
TDMA link scheduling problem [34] is NP-hard.

Overview of General Approach. Using [22]’s ap-
proach, we start with a linear programming (LP)
formulation of the JRCAS problem that incorpo-
rates interface and interference constraints, and
constraints relating link flows, link capacities, and
link utilizations. LP is solved optimally in polyno-
mial time. However, the LP solution only gives the
link flows, and not a link schedule that realizes the
obtained link flows. But, we can design a near-
optimal link schedule as follows. First, we scale
down the link utilizations obtained from the LP
solution by a certain factor, to satisfy a certain
“sufficiency” condition which allows us to design a
link schedule for the scaled-down link utilizations.
Since, the total data rate of the LP solution is an
upper bound on the optimal, the above yields an
approximate link schedule.

We start with describing the single-channel so-
lution, which is a slight generalization (without
predetermined routes) of [22]’s result. Then, we
generalize the technique to multiple channels.

JRCAS Problem for Single Channel. We start with
our LP formulation. We use i to vary over given
source-destination pairs {si, di}, Fi to denote the
data rate between si and di, and Vi to denote V −
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{si, di}. N(u) is as defined before (Equation 1).

∀ i, Fi ≥ 0 (3)
∀ i 6= j, Fi ≥ ψFj (4)

∀ i, e ∈ E, fi(e) ≥ 0 (5)

∀ i, u ∈ Vi,
∑

(v,u)∈E

fi((v, u)) =
∑

(u,w)∈E

fi((u,w)) (6)

∀ i,
∑

(w,si)∈E

fi((w, si)) + Fi =
∑

(si,v)∈E

fi((si, v)) (7)

∀ i,
∑

(v,di)∈E

fi((v, di)) =
∑

(di,w)∈E

fi((di, w)) + Fi (8)

∀ e ∈ E, α(e) =
∑

i

fi(e)/κ(e) (9)

∀ u ∈ V,
∑

e∈N(u)

α(e) ≤ 1 (10)

Maximize
∑

i

Fi (11)

Above, Equation 4 represents the fairness con-
straint [22], ensuring that the ratio between the
minimum and maximum data rates does not go
below a given constant ψ. Equations 6-8 represent
flow conservation constraints, and Equation 10 rep-
resents the interface constraint.
Interference Constraint. We need to incorporate in-
terference constraint in the above LP. Consider a
time slot t, and let Xe represent the binary variable
which is 1 if the e is scheduled in t and is 0
otherwise. Then, for any link e,

∑
e′∈C(e) Xe′ ≤ c,

where c is the network-interference degree and
C(e) is as defined before (Equation 2). Averaging
the above over all time slots, we get:

∑

e′∈C(e)

α(e′) ≤ c, ∀ e ∈ E. (12)

We add the above equation to the LP.
Near-Optimal Link Schedule. As mentioned be-
fore, the LP solution does not give a link schedule.
In fact, there may not exist any link schedule that
guarantees the link utilizations of the LP solution
(see Figure 1).4 Let the link utilizations obtained
from the LP solution be {α̂(e)}, and let α(e) =
α̂(e)/c for each e. Now, for each e,

∑
e′∈C(e) α(e′) ≤

1. Based on this inequality, a link schedule S that
realizes the α link utilizations can be easily de-
signed [22]. Also, the total data rate due to S is at
least 1/c of the optimal possible, since the optimal
data rate is at most that of the LP solution. We

4. Even if we add an interference constraint in the LP for each
clique in the conflict graph, the link utilization returned by LP
solution may still not be realizable by a link schedule (“extend”
Figure 1 to ten network nodes [16]).

prove the above in a more general context (see
Theorem 2).

Multiple Channels with Static Channel As-
signment. The above single-channel solution also
yields a (cK/Imin)-approximate solution for multi-
ple channels with static channel assignment. Here,
K is the number of channels and Imin(≤ K) is
the minimum number of interface per node. First,
note that any single-channel link schedule S can be
transformed into a multi-channel link schedule S′

with a total data rate of Imin times that of S, by
using Imin interfaces per node.5 Second, note that
the optimal data rate with K channels is at most K
times the optimal data rate with one channel. Based
on the above two observations, the c-approximate
single-channel solution can be transformed into a
(cK/Imin)-approximate solution for multiple chan-
nels with static channel assignment. The above is a
much simpler result than that of [2].

Theorem 1: The above algorithm gives a
(cK/Imin)-approximate solution to the JRCAS
problem with multiple channels and static
assignment of channels. Here, c is the network-
interference degree, K is the number of channels,
and Imin is the minimum number of interfaces per
node.

Multiple Channels with Dynamic Channel As-
signment. The LP formulation for the case of dy-
namic channel assignment is shown below. We use
k to vary over available channels.

∀ i, Fi ≥ 0 (13)
∀ i 6= j, Fi ≥ ψFj (14)

∀ i, k, e ∈ E, fi(e, k) ≥ 0 (15)

∀ i, e ∈ E, fi(e) =
∑

k

fi(e, k) (16)

Flow conservation Equations 6 to 8 (17)

∀ k, e ∈ E, α(e, k) =
∑

i

fi(e, k)/κ(e) (18)

∀ u ∈ V,
∑

e∈N(u)

∑

k

α(e, k) ≤ I(u) (19)

∀ k, e ∈ E,
∑

e′∈C(e)

α(e′, k) ≤ c (20)

Maximize
∑

i

Fi (21)

Above, Equations 19 and 20 represent the interface
and interference constraint respectively.
Near-Optimal Link Schedule. As before, we first
solve the above LP optimally. Let {α̂(e, k)} be

5. Essentially, any Imin time slots of S can be combined into
one time slot.
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the link utilizations of the LP solution, and let
α(e, k) = α̂(e, k)/(c + 2) be the new scaled-down
link utilizations. For any link e = (u, v), let

η(α, e) =
1

I(u)

∑

e′∈N(u)

α(e′) +
1

I(v)

∑

e′∈N(v)

α(e′), (22)

where α(e′) =
∑

k α(e′, k). Then, it is easy to see
that the α values satisfy the following sufficiency
condition:

∀ e, k, η(α, e) +
∑

e′∈C(e)

α(e′, k) ≤ 1 (23)

Based on the above, we can now design a link
schedule for the α link utilizations as follows.
• Pick a large enough integer W such that

Wα(e, k) is a positive integer for each e and
k.

• Consider a link schedule S of W time slots.
• Iterate through all pairs (e, k) in an arbitrary

order, and place the link e with channel k in the
first α(e, k)W time slots of S, wherein such a
placement does not cause any interference with
or violate interface constraint due to previously
placed link instances. We refer to the above
as the greedy placement algorithm. The below
theorem shows that such a placement of links
into S is always possible.

Theorem 2: The above algorithm returns a (c+2)-
approximate link schedule for the JRCAS problem
with dynamic channel assignment.
Proof: In the above described algorithm, for
any pair (e, k), the maximum number of time
slots wherein (e, k) can not be placed due
to interference with previously placed links is
W

∑
e′∈C(e)\{e} α(e′, k) and due to interface con-

straint violation is Wη(α, e). Thus, by Equation 23,
the pair (e, k) can be placed in at least Wα(e, k)
time slots of S. Thus, the above described algo-
rithm delivers a link schedule S of W time slots
with link utilizations α(e, k) for each link e and k.
Since α(e, k) = α̂(e, k)/(c + 2), the link schedule S
delivered by the above algorithm has a total data
rate of 1/(c + 2) times the total data rate of the LP
solution. Since the optimal data rate is bounded by
the data rate of the LP solution, the designed link
schedule S is a (c + 2)-approximate solution. Note
that scaling down of the link utilizations does not
violate any LP constraint.

Improved Bounds by Ordering Links. In our
above algorithm to place links in a schedule, we
considered links in arbitrary order. However, con-
sidering links in a certain order (depending on the
network model) can sometimes result in improved

approximation bounds. For instance, for networks
with non-uniform interference range, the network-
interference degree may be unbounded. But, con-
sidering links in the order of their ranges as sug-
gested in [22] results in a constant-factor approxi-
mation scheme. Also, for networks with the IEEE
802.11 based secondary interference model with
uniform transmission range, the best-known ap-
proximation bound for single-channel JRCAS prob-
lem is 8 [2, 22], since the network-interference de-
gree c is 8 [10]. This can be improved to 6 if special
link ordering is used [17].

Generalizations. Techniques of this section easily
generalize to (i) directional antenna, (ii) multiple
transmission powers, and (iii) more constraints and
objective functions. Directional antenna can be han-
dled by defining “flavors” of each link (u, v) — each
flavor corresponds to a “feasible” pair of directions
of antennas at u and v. A conflict graph is then
constructed over (link, flavor) as vertices, and our
techniques can then be applied. Multiple transmis-
sion powers can be handled similarly; however, as
suggested in the previous paragraph, we may need
to consider links in a certain order. Finally, we can
add any constraint to the JRCAS problem that is
preserved by scaling down of the link utilization
by a constant factor. For instance, for given traffic
demands Ti for each source-destination pair, we
can consider the objective of minimizing the scaling
factor λ such that Ti/λ data rates can be satisfied.
For above, we can just replace Equation 14 by
Fi = Tiλ and use the same techniques. Similarly,
our techniques (and approximation proofs) will
work for any objective function that is a linear
combination of link flows.

4 JRCAS Problem with Physical Inter-
ference
In this section, we address the JRCAS problem
with physical interference. As mentioned before,
physical interference is less restrictive, and in gen-
eral entails more capacity than pairwise model in
scenarios that do not use CSMA techniques [5]. In
the physical interference model, if Pv(x) denotes
the received power at v of the signal transmitted by
node x, then a packet along link (u, v) is correctly
received if and only if:

Pv(u)
N +

∑
w∈V∗ Pv(w)

≥ β,

where N is the background noise, V∗ is the set
of nodes that are transmitting simultaneously, and
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β is a SINR constant.6 Below, we present two
approximation algorithms for the JRCAS problem
with physical interference.

4.1 Approximation Algorithm Based on Length
Classes

Our first approximation algorithm for the JRCAS
problem with physical interference, is based on
techniques from [14].7

We start with making the following assumptions.
• For now, we assume that zero background

noise (N = 0); we will remove this assumption
later.

• We assume that the radio signal propagation
obeys the log-distance path model with path
loss exponent γ, commonly assumed in the
literature to be greater than 2 [15]. In other
words, the signal strength at a distance d from
a node transmitting with a power of P is
assumed to be equal to P/dγ .

• We assume fixed and uniform transmission
power P at each node. Transmission power
control can be achieved on top of our tech-
niques using techniques similar to [9]; we omit
the details in this article.

Length Classes and Grid Cells. Using the notations
of [14], let length class Lj denote the set of links
whose length lie in [2j , 2j+1); thus, the entire set
of links is partitioned into disjoint length classes
L0, L1, . . . , Lblog(dmax)c, where dmax is the maximum
link length.8 For each non-empty length class j, the
plane is divided into square grid cells of side µ2j

each, where

µ = 4
(

8β(γ − 1)
(γ − 2)

)1/γ

. (24)

Interference “Constraint”. For a cell Aj in Lj , let
∆(Aj) be the set of links in Lj whose receivers
lie inside Aj . Now, consider a time slot t, and let
Xe,k be 1 iff e is active on channel k in t. In the
proof of Theorem 5.2 of [14], it was shown that
in such a setting, an optimal algorithm can only
schedule a constant number (q) of links from any

6. For simplicity, we assume β to be a constant, i.e., the
full link capacity can be used as long as the given physical
interference constraint is satisfied.

7. Barring references to two specific results of [14]’s work, the
following discussion is self-contained.

8. For ease of presentation, we assume that the minimum
distance between any pair of nodes is at least 1. To meet such an
assumption, link lengths are normalized and N is appropriately
scaled.

cell simultaneously. Thus, we have
∑

e∈∆(Aj)

Xe,k ≤ q ∀ j, Aj , (25)

where q =
(2
√

2µ + 2)γ

β
. (26)

Averaging Equation 25 over all time slots, we get:
∑

e∈∆(Aj)

α(e, k) ≤ q, ∀j, Aj . (27)

LP Formulation, and Scaling. We formulate the LP
again using Equations 13 to 21, but use Equation 27
instead of Equation 20. As before, we first solve
the LP, and then scale down the resulting link
utilizations by a factor of (q + 2). Let {α(e, k)} be
the scaled-down link utilizations. It is easy to see
that α values satisfy the following.

∀ e, j, Aj η(α, e) +
∑

e′∈∆(Aj)

α(e′, k) ≤ 1 (28)

Near-Optimal Link Schedule. Using techniques
of [14], we can design a near-optimal link schedule
for our JRCAS problem as follows.
• Pick a large enough integer W such that

Wα(e, k) is a positive integer for each e and
k.

• For each non-empty length class Lj , partition
the plane into square grid cells of side µ2j each.
Now, color the cells using 4 colors such that
adjacent cells have different colors. Let Ljh be
the set of links in Lj whose receiver lie in a
h-colored cell.

• For each length class j and color h, we use a
link schedule Sjh of length W and place links
from Ljh into Sjh as follows. For each (e, k),
such that e ∈ Ljh, we place the link e with
channel k in the first α(e, k)W time slots of
Sjh, such that the interface constraint is not
violated and no two links (e, k) and (e′, k) are
placed in the same time slot if e, e′ ∈ ∆(Aj).
From Theorem 5.1 of [14], such a placement
ensures an interference-free link schedule. The
feasibility of the above placement algorithm is
shown in the below theorem.

• Now, concatenate the link schedules Sjh to get
the full link schedule solution S.

Theorem 3: The above algorithm returns an 4(q +
2)g(L)-approximate solution for the JRCAS prob-
lem with physical interference and dynamic chan-
nel assignment. For the case of static chan-
nel assignment, the above gives a 4qg(L)K/Imin-
approximation algorithm. Here, q is as defined in
Equation 26 and g(L) is the number of non-empty
length classes.
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Proof: First, we show the feasibility of the above
described placement algorithm. For any pair (e, k),
where e ∈ ∆(Aj), the maximum number of time
slots wherein (e, k) can not be placed due to in-
terference “constraint” is W

∑
e′∈∆(Aj)\{e} α(e′, k).

Now, by Equation 28 and similar arguments as
in Theorem 2, the above placement algorithm is
feasible.

The total length of S is 4g(L)W time slots, and
hence, the link utilization of each pair (e, k) in S is
α(e, k)/4g(L) = α̂(e, k)/(4(q +2)g(L)) where α̂(e, k)
is the link utilization of the LP solution. Thus, S
is a ((q + 2)4g(L))-approximate solution. The claim
for static channel assignment follows from similar
arguments as before.

Removing the N = 0 Assumption. We now show
how to incorporate background noise N into the
above technique. We categorize links based on their
lengths d with respect to the quantity (P/Nβ)1/γ ,
where P is the uniform transmission power.

1) Links with length greater than (P/Nβ)1/γ :
According to the SINR equation, such links
are infeasible and can be safely ignored.

2) Links with length equal to (P/Nβ)1/γ : Such
links tolerate zero interference and hence,
must be placed in a separate time slot of their
own (even by the optimal algorithm).

3) Links with a length d such that

1 ≤ d < 2dlog(P/Nβ)1/γe−1.

Such links lie in a length-class j, where
j < dlog(P/Nβ)1/γe − 1 and thus, 1 −
(Nβ2(j+1)γ/P ) > 0.9 For each such length-
class j, we redefine µ as:

µ′j = 4
(

8β(γ − 1)
(1− (Nβ2(j+1)γ/P ))(γ − 2)

)1/γ

,

and use the same scheduling strategy as be-
fore with square grid cells of side 2jµ′j each.

4) The remaining links have a length d such that

2dlog(P/Nβ)1/γe−1 ≤ d < (P/Nβ)1/γ ,

and thus, are in the rth length-class where r =
dlog(P/Nβ)1/γe − 1. For such links, we use µ
as:

µ′r = 21+ε

(
8β(γ − 1)

(1− (Nβdγ
max/P ))(γ − 2)

)1/γ

,

where ε = log2 dmax − blog2 dmaxc and dmax

is the maximum length of a link less than
(P/Nβ)1/γ .

9. Since j < dlog(P/Nβ)1/γe − 1 and j + 1 ≤
dlog(P/Nβ)1/γe − 1, then, 2j+1 < (PN/β)1/γ .

For the last two cases above, we can easily extend
the proofs of Theorem 5.1 and 5.2 of [14]. Now, us-
ing similar arguments as before in this subsection,
we get the following result.

Theorem 4: The above modified algorithm re-
turns an 4(q′ + 2)g(L)-approximate solution for
the JRCAS problem with physical interference and
dynamic channel assignment with non-zero noise.
Here, q′ = (2

√
2µ′+2)γ

β , where µ′ = maxj≤r µ′j with
r = dlog(P/Nβ)1/γe − 1 and µ′j as defined above.
For the case of static channel assignment, the above
gives a 4q′g(L)K/Imin-approximation algorithm.

The main shortcoming of the above result is that
the approximation ratio depends on the P and
N values. In the next subsection, we design an
approximation scheme that does not suffer from
this shortcoming. For the above length-class based
scheme of this subsection, one way to remove the
dependence of the approximation ratio on P and N
is as follows. First, observe10 that for each length-
class j ≤ r − 2, µ′j ≤ 4 (16β(γ − 1)/(γ − 2))1/γ .
Second, we restrict the optimal solution from using
links in the length-classes r and r − 1, by allowing
the optimal solution to use slightly less transmis-
sion power (as in [9]). Then, the approximation-
ratio of the above approach can be bounded by
4(q′′ + 2)g(L), where q′′ is defined in terms of the
aforementioned bound on µ′j .

4.2 Approximation Algorithm Based on Weights
In this subsection, we present an approximation
algorithm for JRCAS with physical interference
model, whose approximation ratio is independent
of the transmission power and noise values. Our
second approximation algorithm is based on the
concept of weights which lets us represent the
physical interference constraint as a linear equation.
For a pair of distinct links (u, v) and (r, s), let

w
(r,s)
(u,v) =

βPv(r)
Pv(u)

.

A similar concept of weights has been used in [16]
to develop network throughput bounds and in [20]
to develop scheduling heuristics without any per-
formance bounds. Now, it is easy to see from the
SINR equation that transmission along a link e is
successful in presence of a set E′ of other links if
and only if

∑

e′∈E′
we′

e ≤ 1− (Nβ/Pe),

10. For any length class j less than r − 1, note that 2j+1 ≤
(1/2)(P/Nβ)1/γ .
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where Pe=(u,v) = Pv(u) is the received power at v
of the signal transmitted by node u

Let C be an upper bound on
∑

e′∈E′ w
e′
e for any

E′ and e ∈ E. That is, let C be such that
∑

e′∈E′
we′

e ≤ C ∀ e ∈ E, E′ ⊆ E \ {e}. (29)

We will later bound C’s value under certain as-
sumptions.

Physical Interference Constraint using Weights.
Based on the above definition of we′

e and C, we
can represent the physical interference constraint
as follows. Consider a time slot t, and let Xe,k be
1 if e is active on channel k in the time slot t and
0 otherwise. Now, for each e and k, the following
holds.

Xe,k +
1
C

∑

e′∈E\{e}
we′

e Xe′,k ≤ 1 +
1− (Nβ/Pe)

C .

To see the above, consider two cases: (i) When Xe,k

is 1,
∑

e′∈E\{e} we′
e Xe′,k ≤ 1 − (Nβ/Pe), and (ii)

When Xe,k is 0, use Equation 29. Now, averaging
the above equation over all time slots, we get:

α(e, k) +
1
C

∑

e′∈E\{e}
we′

e α(e′, k) ≤
(

1 +
1− (Nβ/Pe)

C
)

, ∀ e, k. (30)

We use the above equation as the interference con-
straint in the LP formulation.

LP Formulation, and Near-Optimal Link Sched-
ule. The LP formulation for the JRCAS problem
with physical interference and multiple channels
is the same as that for pairwise interference (i.e.,
Equations 13 to 21) except that we replace Equa-
tion 20 by Equation 30. As before, we first solve
the LP optimally. Then, we scale down the LP
solution’s link utilizations by a factor of (C+3). Let
the scaled-down link utilizations be {α(e, k)}. It is
easy to see that the scaled-down link utilizations α
satisfy the following for all e, k.

η(α, e) + α(e, k) +
∑

e′∈E\{e}
we′

e α(e′, k) ≤ 1 (31)

Now, as before, consider a link schedule S of
appropriately chosen W time slots, and greedily
place α(e, k)W instances of (e, k) in S without
causing any physical interference with or interface
constraint violations with previously placed link
instances.

Theorem 5: The above algorithm returns a (C+3)-
approximate solution for the JRCAS problem with

physical interference and dynamic channel assign-
ment. For the case of static channel assignment,
there is a ((C+1)K/Imin)-approximation algorithm.
Here, C is as defined in Equation 29.
Proof: Note that in a link schedule of W time
slots, the number of time slots wherein a partic-
ular pair (e, k) can not be placed due to physical
interference with previously placed links is at most
W

∑
e′∈E\{e} we′

e α(e′, k). Rest of the proof for dy-
namic channel assignment is same as that for The-
orem 2. For static channel assignment, transform a
(C+1)-approximate single-channel solution as done
for the pairwise interference case.

Bounding C. We now bound the value of C, as
defined by Equation 29. Let the minimum distance
between any pair of nodes be dmin. Then, the den-
sity ρ of nodes in the network is bounded by

ρ ≤ 4/(πd2
min),

since disks of radii dmin/2 placed at each node do
not intersect. Now, assuming uniform transmission
power P and log-distance path loss mode, we can
bound the total signal strength at a node u due to all
other nodes by integrating over the signal strength
due to nodes in an annular disk of width dx at a
distance of x from u as:∫ ∞

dmin

P

xγ
(2πρx) dx =

2Pπρ

(γ − 2)dγ−2
min

≤ 8P

(γ − 2)dγ
min

Note that the lower limit of the above integration
is dmin, since there are no nodes within a distance
of dmin from u. Based on the above, the value of C
can be bounded by:

C ≤ 8β

(γ − 2)

(
dmax

dmin

)γ

,

where dmax is the maximum length of a link.

Comparing the Approximation Bounds. We note
that the approximation bounds for both the above
approximation algorithms for physical interference
model can be quite large, depending on the exact
parameter values. In fact, for non-zero background
noise, the approximation bound of the length-based
scheme of previous subsection can be arbitrarily
bad due to its dependence on transmission power
and noise values. With zero background noise, the
value of q (Equation 26) for typical values of β
(=10dB) and γ (=3) is around 25000 (independent
of network topology). In contrast, the value of C
depends much on network density and dmax/dmin

ratio. For the above typical values of β and γ, C
is 80(dmax/dmin)3, which may be much less than
4qg(L) for low values of dmax/dmin but can also
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be much larger. We note that the proven approx-
imation bounds are provable worst-case performance
guarantees with respect to the intractable optimal so-
lution. In fact, since both the algorithms do greedy
scheduling at the lowest-level, they must certainly
perform better than the best-known (naive) ap-
proach (interference-oblivious routing, followed by
greedy channel-assignment and scheduling).

In our simulations (Section 6), we observed
that weight-based approximation algorithm outper-
formed the length-class based approximation algo-
rithm by a noticeable margin for a dense network
of 100 nodes for varying number of channels and
interfaces.
4.3 Physical Interference TDMA Link Schedul-
ing Problem
We now use our techniques to design approxi-
mation algorithms for the TDMA link scheduling
problem. Given a network graph with weighted
links, the TDMA link scheduling problem is to
design a link schedule S with minimum number of
time slots such that S has we instances of each link
e, where we ≥ 0 is the given (integer) weight of e. To
solve the above problem, we start with solving the
following LP. Below, W ′ = 1/W , where W denotes
the length of the desired link schedule.

∀ e, k, α(e, k) ≥ 0

∀ e,
∑

k

α(e, k) = weW
′ (32)

∀ u ∈ V,
∑

e∈N(u)

∑

k

α(e, k) ≤ I(u)

∀e, k, α(e, k) +
1
C

∑

e′∈E\{e}
we′

e α(e′, k) ≤
(

1 +
1− (Nβ/Pe)

C
)

Maximize W ′

The second equation ensures that we instances of
link e appear in the desired link schedule.
(C + 3)-approximate Solution. Let Ŵ and {α̂} be
the values of W (= 1/W ′) and α obtained from
the LP solution. We now greedily place α̂(e, k)Ŵ
copies of each pair (e, k) into a link schedule of
length

⌈
Ŵ (C+3)

⌉
to derive a solution to the given

TDMA link scheduling problem. The feasibility and
approximation of the algorithm follows from the
below theorem.

Theorem 6: The above algorithm returns a (C+3)-
approximate solution to the TDMA link scheduling
problem with physical interference and dynamic
channel assignment. For static channel assignment,
a (C+1)-approximation algorithm can be designed.

Proof: Note that
∑

k α̂(e, k)Ŵ = we by Equation 32.
Thus, the above algorithm actually places we copies
of each link in the derived solution. Moreover, the
link utilizations in the designed link schedule are
at most 1/(C+3) fraction of that of the LP solution,
and thus, they satisfy Equation 31. Thus, using
similar arguments as before, the above placement
algorithm is feasible, and the designed schedule S
is (C + 3)-approximate.
4(q + 2)g(L)-approximate Solution. Similarly, if we
use Equation 27 for the physical interference con-
straint, we will get a 4(q + 2)g(L)-approximate
solution using techniques described before.

Theorem 7: Algorithm 1 of [14] can be generalized
to deliver a 4(q + 2)g(L)-approximate solution for
the TDMA link scheduling problem with physi-
cal interference model in multi-channel multi-radio
networks with arbitrary link weights.

5 JRCAS Problem with Single-Path
Routing
In this section, we design approximation algo-
rithms for the JRCAS problem with single-path
routing, wherein traffic for each source-destination
pair is restricted to a single path. We use random-
ized rounding technique by Raghavan and Thomp-
son [29] and Chernoff’s bounds [12] to solve the
above problem. We assume uniform link capacity
to obtain a closed-form expression for the approx-
imation bound.

5.1 Single-Path Routing with Pairwise Interfer-
ence
In this subsection, we assume pairwise interference.
We consider physical interference in the next sub-
section.
Randomized Approximation Algorithm. Our algo-
rithm consists of the following steps.

1) First, we solve the LP given by Equations 13
to 21. Let F̂i be the LP solution’s data rate
value of the ith flow, i.e., the multi-path flow
for (si, di) source-destination pair.

2) Using path-striping [29], we divide the ith

flow (of data rate F̂i) into a sum/combination
of single-path flows, each of value F̂ixij where∑

j xij = 1. Here, xij is the fraction of the ith

flow that flows into the jth single-path.
3) Next, we randomly round-off the fractional

xij values to 0 or 1 as follows. For each i,
exactly one xij is set to one (with a probability
of xij each) and the rest are set to zero. The
total flow of data rate F̂i is now routed unsplit
through the single-path represented by xij

that was set to 1. Note that the interface and
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interference constraints may be violated in
this step, but this is rectified by the following
step.

4) Then, we scale down the link utilizations re-
sulting from the above rounding-off process
by a factor of (c + 2)βmax, where βmax (com-
puted later) is a probabilistic upper-bound
on the “inflation” (due to the randomized
rounding) of the LHS (left hand side) expres-
sions of interface and interference constraints
(Equations 19 and 20).

5) Finally, we construct a link schedule for the
scaled-down link utilizations using the greedy
placement approach as in Section 3. We show
below that the constructed link schedule is
(c+2)βmax-approximate with high probability.

Approximation Proof. We now prove the approxi-
mation ratio of the above algorithm. As suggested
before, we first try to bound the inflation of the LHS
expressions of interference and interface constraints
due to the rounding-off process. To do so, we
need to express the LHS expressions as a weighted
summation of random variables, so that we can use
generalization of well-known Chernoff’s bounds to
bound the summation. We start with some nota-
tions.

Notations. We use the following notations.

• Pr[.] to denote probability of an event, and
E[.] to denote the expected value of a random
variable.

• ◦
α to denote the link utilizations after the
rounding-off process.

• Xij to denote the binary random variables corre-
sponding to the xij values, i.e., Pr[Xij = 1] =
xij and Pr[Xij = 0] = 1− xij .

• δij(e, k) to denote the binary function, where
δij(e, k) is 1 iff the jth single-path flow of ith

source-destination pair uses the link e with
channel k, and is 0 otherwise.

• κ to denote the uniform link capacity.

Defining
∑ ◦

α (e′, k) as Weighted Sum of Xij ’s. We
express

∑
e′∈C(e)

◦
α (e′, k) as a weighted sum of

Xij ’s as follows. Recall that, after the rounding-
off process, for each i, the total flow of data rate
F̂i is routed unsplit through the jth single-path
represented by Xij that was set to 1. Thus, the link
utilization ◦

α (e′, k) after the rounding-off process
can be represented by:

◦
α (e′, k) = 1/κ

∑

i


F̂i

∑

j

δij(e′, k)Xij


 ,

since δij(e′, k) (as defined above) determines
whether the jth single-path of ith flow uses the link
e′ with channel k. Thus,
∑

e′∈C(e)

◦
α (e′, k) =

∑

e′∈C(e)

∑

ij

(F̂i/κ)δij(e′, k)Xij

=
∑

ij


 ∑

e′∈C(e)

(F̂i/κ)δij(e′, k)


 Xij

=
∑

ij

aij(e, k)Xij , (33)

where

aij(e, k) = (F̂i/κ)
∑

e′∈ C(e)

δij(e′, k).

We will bound the above summation using gen-
eralized Chernoff’s bound. First, we make the fol-
lowing two observations.

1) Bounds on aij(e, k).

0 ≤ aij(e, k) ≤ F̂iD/κ, (34)

where D is the maximum number of links in
C(e) used by a single-path.

2) E[
∑

e′∈C(e)
◦
α (e′, k)] ≤ c, since

E[
∑

e′∈C(e)

◦
α (e′, k)] =

∑

e′∈C(e)

∑

ij

(F̂i/κ)δij(e′, k)xij

=
∑

e′∈C(e)

α̂(e′, k)

≤ c (By Eqn. 20) (35)

Above, α̂ are the link utilization values of the
LP solution (before the rounding-off process).

Generalized Chernoff’s Bounds. We now state a
slight generalization of the Chernoff’s bounds for
relative error (see Theorem 1 of [12]).

Theorem 8: Let Xij be the above defined binary
random variables, aij be non-negative real num-
bers, X =

∑
ij aijXij , and µ = E[X]. Then, the

following bound holds for any δ > 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ/amax

,

where amax = maxij aij .

Proof: (Brief Sketch) The above follows from Exer-
cise 4.14 of [26], and the following two facts:

1) It can be shown that E[
∏

ij etaijXij ] ≤∏
ij E[etaijXij ]. This follows from indepen-

dence of Xij and Xi′j′ for any i 6= i′, and the
fact that for any particular i, only one Xij is
1 and the rest are zero.
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2) Pr(X ≥ (1 + δ)µ) = Pr(X/amax ≥ (1 +
δ)µ/amax), which allows application of Exer-
cise 4.14 of [26] result since aij/amax ∈ [0, 1]
for all i, j.

Bounding Inflation of
∑ ◦

α (e′, k) Expressions. The
below lemma follows from Equations 33 to 35, and
application of Theorem 8 to

∑
ij aij(e, k)Xij .

Lemma 1: For any link e, channel k, and β1 ≥
2e− 1,

Pr[
∑

e′∈C(e)

◦
α (e′, k) ≥ (1 + β1)c] < 2−cκβ1/DF̂max ,

where F̂max = maxi F̂i ¤

Similarly, if we define bij(u) (for each u, i, j) as

bij(u) =
∑

k

∑

e∈N(u)

(F̂i/κ)δij(e, k)

and apply Theorem 8 to
∑

i,j bij(u)Xij , we can
show the following. Note that

∑
j bij(u)Xij ≤

2F̂i/κ.

Lemma 2: Let ◦
α (e) =

∑
k
◦
α (e, k). ∀ u ∈ V, β2 ≥

2e− 1,

Pr[
∑

e∈N(u)

◦
α (e) ≥ (1 + β2)I(u)] < 2−I(u)κβ2/2F̂max ,

where F̂max = maxi F̂i ¤

Approximation Result. Consider the link utiliza-
tions

α(e, k) =
◦
α (e, k)

(c + 2)βmax
, where

βmax = max((1 + β1), (1 + β2), 2e− 1), with

β1 =
DF̂max log(Q

ε )
cκ

, β2 =
2F̂max log(Q

ε )
Imaxκ

.

Above, Q = K|E| + |V | is the total number of
interface and interference equations, Imax is the
maximum number of interfaces at a node, and ε
is such that 0 ≤ ε ≤ 1. From the above two lemmas
and union of probabilities, it is easy to see that
the scaled-down link utilizations α satisfy the suf-
ficiency condition (Equation 23) with a probability
of at least (1 − ε). Also, note that Q = O(Kn2)
where n is the network size, and F̂i ≤ κImax. Thus,
cβmax = O(DImax log(n)). Based on above, we have
the following theorem.

Theorem 9: The above randomized algorithm de-
livers a (c+2)βmax = O(DImax log(n))-approximate
solution with a probability of at least (1− ε) for the

JRCAS problem with single-path routing and pair-
wise interference. Here, βmax, n, Imax are as defined
above, and D is as defined for Equation 34.

Above techniques extend to the generalizations
(diversity, constraints, and objectives) outlined in
Section 3.

5.2 Single-Path Routing with Physical Interfer-
ence
For the single-path JRCAS problem with physical
interference, we essentially follow the same ap-
proach as in the previous subsection, except for the
following changes.

Length-Class Based Approach. For the approach
based on length-classes, we make the following
changes with respect to the previous subsection.
Below, we assume zero background noise.
• In the LP, replace Equation 20 by Equation 27.
• Replace c by q in the expression for β1.
• Define α(e, k) = ◦

α (e, k)/((q + 2)βmax).
• Design the link schedule for the link utiliza-

tions α(e, k) as described in Section 4.
Using similar arguments as before, we get the
following.

Theorem 10: The above randomized algorithm
delivers a 4(q + 2)g(L)βmax-approximate solution
with a probability of at least (1− ε) for the JRCAS
problem with single-path routing and physical in-
terference.
Non-zero background noise N can also be incorpo-
rated in the above result, as discussed in Section 4.1.

Weight-Based Approach. To show a similar ap-
proximation result for the randomized scheme
based on weights and C, we make the following
changes with respect to the previous subsection.
• In the LP, replace Equation 20 by Equation 30.
• Define δij(e, e′, k) as follows.

δij(e, e′, k) =




C, if (e, k) ∈ Pij and e = e′

we′
e , if (e, k) ∈ Pij and e 6= e′

0, otherwise

where Pij is the set of links used by the jth

single-path of the ith source-destination flow.
• aij(e, k) is redefined accordingly.
• Replace c by (C + 1) in the expression for β1.
• Define α(e, k) = ◦

α (e, k)/((C + 3)βmax).
• Design the link schedule for the link utiliza-

tions α(e, k) as described in Section 4.
Now, based on above definition of δ and aij , one
can show that:
• For the new aij(e, k), it is to see that

0 ≤ aij(e, k) ≤ 2F̂iC/κ (36)
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• E[
∑

ij aij(e, k)Xij ] ≤ C + 1, since

E[
∑

ij

aij(e, k)Xij ] = Cα̂(e, k) +
∑

e′∈E\{e}
we′

e α̂(e′, k)

= C

α̂(e, k) +

1
C

∑

e′∈E\{e}
we′

e α̂(e′, k)




≤ C + 1 (By Eqn. 30) (37)

Above, α̂ are the link utilization values of the
LP solution (before the rounding-off process).

Finally, we use similar arguments as in Sec-
tion 5.1, to get the following theorem.

Theorem 11: The above randomized algorithm
delivers a (C + 3)βmax-approximate solution with a
probability of at least (1−ε) for the JRCAS problem
with single-path routing and physical interference.

6 Simulations Results
Our simulations have two objectives. First, for
the JRCAS problem with physical interference
(for both multi-path and single-path routing), we
compare the performance of weight-based (based
on Equation 30) and length-class based (based on
Equation 27) algorithms. Second, for pairwise in-
terference and single-path routing, we compare
our randomized algorithm with a Naive approach
(shortest-path routing followed by greedy assign-
ment and scheduling).
Network Setup. Our simulations are conducted on
a network of 100 nodes placed randomly in a region
of 100 × 100 units. Each node has a transmission
radius of 20 units, and two nodes are connected if
they are within each other’s transmission radius.
Capacity of each link is one unit. We randomly
select a set of 35 source-destination pairs and as-
sign a traffic demand of 5 units to each pair. For
pairwise interference, we use the secondary inter-
ference model.
Simulations. We consider three settings: pairwise
interference with single-path routing (Figure 2),
and physical interference with multi-path (Figure 3)
and single-path routing (Figure 4). In each of the
settings, we vary number of channels (with 10
interfaces/node) or number of interfaces per nodes
(with 15 channels). We make the following obser-
vations.
• Increase in number of channels results in al-

most a proportional increase in the total data
rate for all approaches and settings, except for
the Naive algorithm in pairwise interference
model.

• An almost similar trend is observed for in-
crease in number of interfaces. However, as ex-
pected, increasing number of interfaces beyond
a certain point does not increase the total data
rate.

• For pairwise interference with single-path
routing, our randomized algorithm outper-
forms the Naive approach especially for
large number of channels where interference-
awareness becomes more important.

• For physical interference model, the weight-
based approach (based on Equation 30) outper-
forms the length-class based approach (based
on Equation 27) for both multi-path and single-
path routing.

• For the given network setup, the degradation
of performance from multi-path to single-path
routing is minimal.

7 Conclusions
In this article, we considered the joint routing
(multi-path and single-path), channel assignment,
and scheduling problem to maximize throughput
in a network. Our unique contributions are design
of approximation algorithms for the above joint
problem in the context of dynamic channel assign-
ment, physical interference model, and single-path
routing. Our results extend the insightful technique
of [22] to above general contexts. In future direc-
tions, we plan to extend of our techniques to handle
non-orthogonal channels. Moreover, for the case of
physical interference, we would like to design algo-
rithms with better approximation bounds, by pos-
sibly considering restricted (but realistic) physical
interference models. Design of distributed approxi-
mation algorithms for the above joint optimization
problem remains a challenging open question.
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