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Abstract

A sensor network is a multi-hop wireless network of sensor nodes cooperatively solving a sensing

task. Each sensor node generates data items that are readings obtained from one or more sensors on the

node. This makes a sensor network similar to a distributed database system. While this view is somewhat

traditional, efficient execution of database (SQL) queries in sensor network remains a challenge, due to

the unique characteristics of such networks such as limited memory and battery energy on individual

nodes, multihop communication, unreliable infrastructure, and dynamic topology. Since the nodes are

battery powered, the sensor network relies on energy-efficiency (and hence, communication efficiency)

for a longer lifetime of the network.

In this article, we have addressed the problem of communication-efficient implementation of the SQL

“join” operator in sensor networks. In particular, we design an optimal algorithm for implementation of

a join operation in dense sensor networks that provably incurs minimum communication cost under

some reasonable assumptions. Based on the optimal algorithm, we design a suboptimal heuristic that

empirically delivers a near-optimal join implementation strategy and runs much faster than the optimal

algorithm. Through extensive simulations on randomly generated sensor networks, we show that our

techniques achieve significant energy savings compared to other simple approaches.

I. Introduction

A sensor network consists of sensor nodes with a short-range radio and on-board processing capability

forming a multi-hop network of an irregular topology. Each sensor node can sense certain physical

phenomena like light, temperature, or vibration. There are many exciting applications [1–3] of such sensor

networks, including monitoring and surveillance systems in both military and civilian contexts, building

smart environments and infrastructures such as intelligent transportation systems and smart homes.

Each sensor node typically generates a stream of data items that are readings obtained from one or

more sensing devices on the node. This motivates visualizing sensor networks as distributed database

systems [4–6] and the data present in a sensor network as relational data streams. Like a database, the

sensor network is queried to gather the sensed data tuples. Database queries in SQL are a very general

∗Preliminary version of the article appeared in Proceedings of the tenth International Conference on Database Systems for

Advanced Applications (DASFAA), 2005.
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representation of queries over data, and because of the enormous amount of data present in a typical

sensor network, efficient implementation of database queries is of great significance.

The main performance criterion for distributed implementations of queries in sensor network is the total

communication cost incurred, since each sensor node has limited battery power message communication

nodes is the main consumer of battery energy [7]. Thus, distributed implementation of queries must

minimize the communication cost incurred. In particular, we are interested in in-network implementation

strategies since a centralized strategy of transmitting all sensor data to a central server for further

computation would incur prohibitive communication costs.

In this article, we focus on designing efficient distributed implementations for the join operation in

sensor networks. The join operator is essentially a cartesian product of the operand tables followed

by a predicate selection. The motivation for the join operation in sensor networks comes from one of

the most prominent sensor network applications viz., event detection, wherein complex events can be

defined as joins over data streams [8, 9]. We propose a novel path-join algorithm, which computes the

join result by first distributing one of the operand tables along a predetermined path of sensors. Using

path-join algorithm as the basic step, we design an optimal algorithm for a join operation that provably

incurs minimum communication cost in dense sensor networks under some reasonable assumptions of

communication cost and computation model. We also design a much faster suboptimal heuristic that

empirically performs very close to the optimal algorithm, and results in significant savings over the naive

approaches.

Paper Organization. The rest of the paper is organized as follows. We start with modeling the sensor

network as a database and motivating implementation of the join operation in the sensor network. In

Section III, we present various algorithms for in-network implementation of the join operator for static

(non-streaming tables). In Section IV, we generalize our techniques to handle streaming tables and discuss

relaxation of other assumptions. We present our experiment results in Section V. Related work is discussed

in Section VI, and concluding remarks presented in Section VII.

II. Sensor Network Databases

A sensor network consists of a large number of sensors distributed randomly in a geographical region.

Each sensor has limited on-board processing capability and is equipped with sensing devices. We assume

that each sensor node is aware of its geographic location (obtained using GPS or other localization

techniques [10]). A sensor node also has a radio which is used to communicate directly with some of the

sensors around it. Two sensor nodes can communicate with each other if and only if the distance between

them is less than the transmission radius. We assume that each sensor node in the sensor network has a

limited storage capacity of m units. As mentioned above, each sensor node has limited battery energy,

which must be conserved for prolonged unattended operation. Thus, we have focused on minimization
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of communication cost (hence, energy cost) as the key performance criteria of the join implementation

strategies.

A. Modeling the Sensor Network as a Database

In a sensor network, the data generated by the sensor nodes is simply the readings obtained from

the sensing devices on the node. The data records produced by a group of sensor nodes with similar

capabilities and responsibility will have similar format and semantics, and thus, can be modeled as

rows of the same relational table. More specifically, due to the continuous generation of data tuples in

the sensor network, the sensor network data is best modeled as data streams [11]. The above motivates

visualizing sensor networks as distributed database systems [4–6] of streaming tables. In a sensor network,

a data stream may be partitioned horizontally across (or generated by) a set of sensors in the network.

Each data stream has a corresponding generating region which could very well be the entire network

region. Due to the spatial and real-time nature of the data generated, a tuple usually has timeStamp

and nodeLocation as attributes, and the sensor node that generates a particular tuple is referred as

its source node. Like traditional database systems, the sensor network database can also be queried to

access and manipulate the data tables, and SQL with some extensions can be used as a query language

for sensor networks.

Database Queries. A database query is composed of one or more database operators. The core database

operators are viz. selection (selecting tuples based on a predicate), projection (selecting given attributes

of a table), join (cartesian product followed by selection), grouping (partitioning a table based on a set of

attribute values), aggregation (aggregating attributes for each group), outerjoins (join plus the unmatched

tuples padded with NULLs), duplicate elimination, union, difference, and intersection. Union, difference,

and intersection have same semantics as the corresponding set operators.

The focus of this article is communication-efficient in-network implementation of the join operator.

The join operator is used to correlate data from multiple tables and is essentially a cartesian product of

the operand tables followed by a selection. As selection and projection are unary operators and operate

on each tuple independently, they could be implemented by computing the operation locally followed

by efficiently routing to the query source. Union operation can be reduced to duplicate elimination, and

the difference and intersection operations can be reduced to the join operation. Implementation of other

database operators (aggregation, duplicate elimination, and outerjoins) is challenging and is part of our

future work.

In-Network Implementation of SQL Queries. A plausible implementation of a sensor network database

query engine could be to have an external database system handle all the queries over the network. In such

a realization, all the data from each sensor node in the network is sent to the external system that handles

the execution of queries completely. Such an implementation would incur very high communication

costs and congestion-related bottlenecks. Thus, prior research has proposed query engines that would
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execute the queries within the network with little external help. In particular, [12] shows that in-network

implementation of database queries is fundamental to achieving energy-efficient communication in sensor

networks. Moreover, due to the very limited processing memory available (e.g., Mica mote has only about

4K Bytes of SRAM [13, 14]) on a sensor nodes, it will be impossible to compute the join locally on any

particular node, especially for large tables.

Querying and Cost Model in Sensor Networks. A query in a sensor network is initiated at a node called

query source and the result of the query is required to be routed back to the query source for storage and/or

consumption. A stream database table may be generated by a set of sensor nodes in a closed geographical

region. The optimization algorithms, proposed in this article, to determine how to implement the join

operation efficiently, are run at the query source. As typical sensor network queries are long running,

the query source can gather all the catalogue information needed (estimated sizes and locations of the

operand relations, join selectivity factor to estimate the size of the join result, density of the network)

by initially sampling the operand tables. As mentioned before, we concentrate on implementations that

minimize communication cost. We define the total communication cost incurred as the total data transfer

between neighboring sensor nodes.

Our algorithms target the general long-running queries in the sensor network. Given a query source

Q and regions R and S where a join has to be taken. Initially all the tuples of the participating tables

are routed to the query source Q, which collects catalog information and estimates parameters such as

locations of the region R and S, sizes of R, S and R on S, and join selectivity factor f . Using the

optimal algorithm, the query source Q calculates the optimal region P where the join should be executed

in the sensor network.

B. Motivation for Join in Sensor Networks

The SQL join operator is used to correlate data from multiple tables, and can be defined as a selection

(join) predicate over the cross-product of a pair of tables; a join of R and S tables is denoted as R on S.

One of the most popular applications of sensor networks is event detection, which motivates the body of

our work. An event indicates a point in time of interest based on certain conditions over the generated

sensor data. For certain applications, events may simply depend on the local value of a particular sensor

reading. Higher-level events or complex events may be specified using composition operators over the

primitive events. In particular, the complex events may be represented as a join of multiple data streams,

involving spatial and temporal constraints and correlations. Below, we present an example of a complex

event [8].

EXAMPLE 1: Consider a sensor network deployed in an underground mine to detect explosions. Let

us assume that the event of an explosion is characterized by interaction between three phenomena/events

viz., sound, light, and temperature, and each phenomenon is detected by respective sensors. A temperature

event is said to occur when the temperature value sensed at any sensor node reaches (or increases) by
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a certain threshold value. Light and sound events are similarly defined. Each of these three events is

detected locally, and stored in the respective tables along with the locally computed duration of the

event.

The explosion event may be defined to occur when the following conditions are satisfied. (i) The light,

sound, and temperature events occur within 10 meters of each other, (ii) The ratio of the durations of

sound and light events is at least c (some constant depending on the speeds of sound and light), and (iii)

The duration of the temperature event is at least 60 seconds. The SQL query to detect the above defined

explosion event is as follows.

SELECT event as “EXPLOSION”

FROM Sound, Light, Temperature

WHERE |Sound.location-Light.location|< 10

AND |Light.location-Temperature.location|< 10

AND |Sound.location-Temperature.location| < 10

AND Sound.duration > 60

AND Sound.duration/Light.duration > c

AND Temperature.duration > 60

�

The above example illustrate the use of join operation in sensor network applications. The key

optimization questions in the context of an efficient implementation of join in sensor networks are [15]:

• Where should the join operation be executed in the sensor network?

• What is the shape of the “join-region” when the size of the operand tables exceeds the memory

available at each node?

In this article, we answer the above questions comprehensively by designing an optimal algorithm that

yields an in-network implementation of join of two tables and incurs minimum communication cost under

certain assumptions. In-network implementation of multi-table join operation is the focus of our current

ongoing research.

III. In-network Implementation of Join

In this section, we first develop communication-efficient algorithms for implementation of a join

operation over static (non-streaming) database tables stored in some sensor network region. As data

in sensor network is better represented as data stream tables, we will generalize our techniques for

stream database tables in the next section.

Consider a join operation, initiated by a query source node Q, involving two static (non-streaming)

tables R and S distributed horizontally across some geographical regions R and S in the network. We

assume that the geographic regions are disjoint and small relative to the distances between the query

source and the operand table regions. We later discuss generalizing our algorithms for general query

source locations and operand regions. If we do not make any assumptions about the join predicates
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involved, each data tuple of table R should be paired with every tuple of S and checked for the join

condition. The joined tuple is then routed (if it passes the join selection condition) to the query source

Q where all the tuples are accumulated or consumed. Given that each sensor node has limited memory

resources, we need to find out appropriate regions in the network that would take the responsibility of

computing the join. In particular, we may need to store and process the relations at some intermediate

location before routing the result to the query source.

A simple nested-loop implementation of a join used in traditional databases is to generate the cross

product (all pairs of tuples), and then extract those pairs that satisfy the selection predicate of the join.

More involved implementations of a join operator widely used in database systems are merge-sort and

hash-join. These classical methods are unsuitable for direct implementation in sensor networks due to the

limited memory resources at each node in the network. Moreover, the traditional join algorithms focus on

minimizing computation cost, while in sensor networks the primary performance criteria is communication

cost. Below, we discuss various techniques for efficient implementation of the join operation in sensor

networks.

Naive Approach. A simple way to compute R on S could be to route the tuples of S from their original

location S to the region R, broadcast the S-tuples in the region R, compute the join within the region

R, and then route the joined tuples to the query source Q. The breakup of the total communication cost

incurred is as follows:

1) Cost incurred in routing the table S to the region R.

2) Cost incurred in broadcasting the table S throughout R.

3) Cost incurred in routing the result (from R) to the query source Q.

Note that in the above approach the roles of the tables R and S can be interchanged.1

Centroid Approach. Now, we consider another approach where the region responsible for computing

the join operation is a circular region around some point C in the sensor network. Let |R| denote the

size of the table R, and let Pc be the smallest circular region around C such that the region Pc has more

than |R|/m sensor nodes to store the table R. First we route and distribute the tuples of table R in the

region Pc, and then route and broadcast the tuples of table S in the region Pc. After computing the join

operation in the region Pc, we route the resulting tuples of (R on S) to the query source Q. See Figure 1.

The communication cost incurred consists of the following components.

1) Cost incurred in routing the tables to C.

2) Cost incurred in distributing R and broadcasting S in the region Pc around C.

3) Cost incurred in routing the result (R on S) to the query source Q.

1The other simple approach of computing the join at a region around Q is subsumed by the Centroid Approach discussed

next.
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Fig. 1. Centroid Approach.

Since the second component of the cost is independent of the choice of C, it is easy to see that the

communication cost incurred in the above approach is minimized when the point C is the weighted

centroid of the triangle formed by R, S, and Q (i.e., the point that minimizes the sum of the weighted

distances from the three points). Here, the choice of the centroid point C is weighted by the sizes of

R, S, and (R on S).

A. Path-Join Algorithm

In the above two paragraphs, we described a couple of simple approaches to compute the join operation

in a sensor network. However, in order to minimize communication cost, we may need to perform the

join operation in a region having a non-trivial shape. In this subsection, we present a novel path-join

approach of performing a join operation. In the next subsection, we will extend the path-join approach

to devise an optimal join algorithm that incurs minimum communication cost in dense sensor networks.

The path-join implementation of the join operation works as follows. First, all the tuples of R are

distributed uniformly along an appropriately chosen path P containing |R|/m sensor nodes, where |R|

is the size of table R and m is the memory size of each sensor node. Then, every tuple of S is routed to

the path P and passed through all the sensors along P to perform the join. The resulting joined tuples

computed at each sensor along the path P are then routed to the query source Q. See Figure 2. The

location of the path P is chosen to minimize the total communication cost incurred. We estimate the

total communication incurred in terms of a notion of sensor length, defined below.

Definition 1: (Sensor Length d(X , y), and Notation |X |) The sensor length between a region X and a

point y in a sensor network plane is denoted as d(X , y) and is defined as the average weighted distance,

in terms of number of hops (i.e., intermediate nodes), between the region X and the point y. Here, the

distance between a point x ∈ X and y is weighted by the amount of data residing at x.



8

P
R table 
distributed along 
the path P

Each tuple of S 
broadcast over P

R

Table R Table S

Q

C0

Result 
tuples
routed to Q

S

l

Fig. 2. Path-Join implementation. Here, l = |R|/m.

For a region X in the sensor networks, the notation |X | denotes the number of sensors in the region

|X |. Note that for a relational table R, we use |R| to denote the size of the table R. �

Let |R|, |S|, and |R on S| be the respective sizes of the tables R, S, and the joined result R on S. Let

Q be the query source, C0 be an end of the path P that is closer to R and/or S, and |P | be the number

of sensors on the path P . Note that by choice of P , |P | = |R|/m. Let us assume that both R and S start

their broadcast and distribution phases from the same point C0. The total communication cost incurred in

the path-join algorithm consists of: cost of routing R to C0, cost of routing S to C0, cost of distributing

the table R along the path P , cost of broadcasting the table S along the path P , and finally, the cost

of routing the joined tuples from P to Q. If we assume that the resulting joined tuples are uniformly

distributed along the path P , then the total communication cost incurred is

|R|d(R, C0) + |S|d(S, C0) + |P ||R|/2 + |P ||S|+ |R on S|d(P, Q).

Note that the distribution and broadcast cost of R and S respectively is independent of the location of

P . In some cases, the path-join algorithm may not be optimal, i.e., may incur more than the minimum

communication cost possible.

B. Optimal Join Algorithm

In this section, we present an algorithm that uses path-join as a basic component, and constructs a

region for computing the join operation using optimal communication cost. We assume that the sensor

network is sufficiently dense that we can find a sensor node at any point in the region. To formally prove

the claim of optimality, we need to restrict ourselves to a class of join algorithms called Distribute-

Broadcast Join Algorithms (defined below). In effect, our claim of optimality states that the proposed

join algorithm incurs less communication cost than any distribute-broadcast join algorithm.
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(b) Shape of an Optimal Region P , when Q 6∈ P .

Fig. 3. Shape of an Optimal Join-Region.

Definition 2: (Distribute-Broadcast Join Algorithms) A join algorithm to compute R on S in a sensor

network is a distribute-broadcast join algorithm if the join is processed by first uniformly distributing

the table R in some region P (other than the region R storing R)2 of the sensor network followed by

broadcasting the relation S within the region P to compute the join. The joined tuples are then routed

from each sensor in the region P to the query source. �

As before, consider a query source Q, and regions R and S that store the static operand tables R and

S in a sensor network. The key challenge in designing an optimal algorithm for implementation of a

join operation is to select a region P for processing the join in such a way that the total communication

cost is minimized. Note that in general, P may be an arbitrary region as opposed to just a path as in

the path-join algorithm. We use the term join-region to refer to a region in the sensor network that is

responsible for computing the join.

Shape of an Optimal Join-Region. We show in Theorem 1 that the join-region P that incurs minimum

communication cost has a shape as shown in Figure 3 (a) or (b). In particular, the optimal join-region P

is formed using three point Cr , Cs, and Cq in the sensor network (typically these points will lie within

the 4RSQ). More precisely, given three points Cr , Cs, and Cq in the sensor network, the region P takes

one of the following forms:

1) Region P is formed of the paths Pr = (Cr, Cq) and Ps = (Cs, Cq), the line segment CqQ, and a

circular region PO of appropriate radius around Q. See Figure 3 (a).

2) Region P is formed of the paths Pr = (Cr, Cq) and Ps = (Cs, Cq), and a part of the line segment

CqQ. See Figure 3 (b).

2Else, the algorithm will be identical to one of the Naive Approaches.
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Theorem 1: In dense sensor networks, the shape of the join-region P used by a distribute-broadcast

join algorithm that incurs optimal communication cost is as described above or as depicted in Fig-

ure 3 (a) or (b).

PROOF. Let us consider an optimal distribute-broadcast implementation of join using a connected3 join-

region P . By definition of distribute-broadcast algorithms, the region P is different than R.

Cost of Distribution and Broadcast. We assume that due to lack of global knowledge about the other

sensors’ locations and available memory capacities, the best way to distribute R in the region P is to

route the tuples of R to a some point Cr in P and then, traverse the region P in a linear manner (as in

the case when P is a path) to distributed the tuples evenly in P . The total cost of distributing of R in

the region P using the above approach is:

|R|d(R, Cr) + |R||P |/2,

where Cr is the point in P where the tuples of R are first routed to and |P | denotes the total number

of sensors in the region P . Based on the same assumption and a similar argument, the total cost of

broadcasting S in the region P is

|S|d(S, Cs) + |S||P |,

where Cs is some point in P where the tuples of S are first routed to. Note that the above formulated

cost of distribution of R and broadcast of S in the region P is independent of the shape and location of

P .

Total Communication Cost. Given the join-region P and the points Cr, Cs ∈ P , where R and S are routed

for distribution and broadcast respectively in the region P , the total communication cost T (Cr, Cs, P )

incurred in computing the join can be formulated as below.

T (Cr, Cs, P ) = |R|d(R, Cr) + |S|d(S, Cs) + |R||P |/2 + |S||P |+ |R on S|d(P, Q) (1)

The term |R on S|d(P, Q) is the communication cost incurred in routing the result tuples from P to the

query source Q. Note that for a fixed pair of points Cr and Cs, the only component of T (Cr, Cs, P ) that

depends on the shape of P is d(P, Q).

Proof Plan. We prove the theorem by contradiction. In particular, we show that if P is not of a shape

depicted in Figure 3 (a) or (b), then we can alter the shape of region P without changing |P |, Cr, or Cs,

such that the cost component d(P, Q) is further reduced. The above change will result in a reduction of

the total cost T (Cr , Cs, P ), since we keep |P |, Cr , and Cs fixed.

Reducing d(P, Q), when Q ∈ P . Lets consider the case when Q is in P , but the region P is not of the

form Figure 3 (a). Let Cr and Cs be the points in P to where R and S are routed for distribution and

3The generalization to disconnected join-regions can be easily made by applying the proof to each connected subregion

independently.
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Table R Table S
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Cs
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Cq

P

Fig. 4. An arbitrary join-region P containing Q, and the shortest paths (Cr,Q) and (Cs,Q) in P . Here, s is the point in

P − (Cr ,Q) − (Cs,Q) that is farthest from Q, and s′ is the point not in P that is closest to Q. If P is not of the form

Figure 3 (a), then d(P,Q) can be reduced (without changing Cr , Cs, or |P |) by replacing s by s′, and thus, reducing the total

cost T (Cr , Cs, P ).

broadcast respectively in the region P . See Figure 4. Consider paths (not necessarily disjoint) (Cr, Q)

and (Cs, Q) contained in P that connect Cr and Cs respectively to Q using minimum number of sensor

nodes. Since P is connected, such paths exist. Consider a point s in P such that s is neither on path

(Cr, Q) nor on path (Cs, Q), and is farthest away from Q. Such a point s much exist, else P would be

comprised entirely of paths (Cr, Q) and (Cs, Q) and hence, of the form Figure 3 (a).4

Now, consider a point s′ /∈ P that is closest to Q. See Figure 4. If Q is closer to s than s′, i.e., if

d(s, Q) ≤ d(s′, Q), then P is just comprised of the paths (Cr, Q), (Cs, Q), and a fully packed circular

region around Q, and thus, of the form Figure 3 (a). Since we assumed to the contrary, Q must be

closer to s′ than s, i.e., d(s′, Q) < d(s, Q)). Now, in such a case, d(P, Q) can be reduced as follows.

Since d(P, Q) = 1/|P |
∑

p∈P d(p, Q) (since R is uniformly distributed in P ), the value d(P, Q) can

be reduced by changing P to P − {s} ∪ {s′}, i.e., replacing s by s′. Note that such a point s′ will be

directly connected to P , and hence, addition of s′ maintains the connectivity of P . Moreover, since s is

neither in (Cr, Q) nor in (Cs, Q), and is farthest such point from Q, removal of s from P maintains the

connectivity of P . Finally, the above replacement keeps Cr , Cs, and |P | fixed.

Final Arguments. Thus, we can reduce d(P, Q), while keeping Cr , Cs, and |P | fixed, and thus, reduce the

total cost T (Cr, Cs, P ), when Q ∈ P and P is not of the form Figure 3 (a). Thus, by contradiction, the

optimal join-region P must be of the form depicted in Figure 3 (a) if Q ∈ P . Using similar arguments,

4Note that since paths (Cr ,Q) and (Cs,Q) are shortest in P , they intersect at only one point Cq and have the same subpaths

(Cq ,Q).
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we can show that if Q /∈ P , the optimal join-region must be of the shape depicted in Figure 3 (b).

Note that the assumptions made (viz. restricted class of algorithms, distributing and broadcasting in a

linear fashion) in proving the above theorem do not restrict the applicability of our developed techniques.

The assumptions were made solely to prove optimality, and more importantly, to develop an algorithm

that could form the basis of a communication-efficient implementation of the join operation in general

sensor networks without any restrictions on the communication/computation model.

Note that the above theorem only restricts the shape of an optimal join-region; there are still an infinite

number of possible join-regions of shapes depicted in Figure 3. Thus, we now further restrict the shape

of an optimal join-region. by characterizing the equations of the paths Pr and Ps that connect Cr and

Cs respectively to Cq .

Optimizing Paths Pr and Ps in the Join-Region. Consider an optimal join-region P that implements a

join operation using minimum communication cost. By Theorem 1, we know that the region P is of the

shape depicted in Figure 3 (a) or (b). As derived in Equation 1, the total communication cost T (Cr, Cs, P )

incurred in processing of a join using the region P is |R|d(R, Cr) + |S|d(S, Cs) + |R||P |/2+ |S||P |+

|R on S|d(P, Q). Let P ′ = P − Pr −Ps, i.e., the region P without the paths Pr and Ps. Since the result

|R on S| is uniformly spread along the entire region P , we have

d(P, Q) =
1

|P |
(|P ′|d(P ′, Q) + |Pr|d(Pr, Q) + |Ps|d(Ps, Q).

For a given |P | and a given set of points Cr, Cs, and Cq, the total communication cost T is minimized

when the path Pr is constructed such that |Pr|d(Pr, Q) is minimized. Otherwise, we could reconstruct Pr

with a smaller |Pr|d(Pr, Q), and remove/add sensors nodes from the end5 of the region P ′ to maintain

|P |. Removal of sensor nodes from P ′ will always reduce T , and it can be shown that addition of

sensor nodes to the end of the region P ′ will not increase the cost more than the reduction achieved by

optimizing Pr. Similarly, the path Ps could be optimized independently.

We now derive the equation of the path Pr that minimizes |Pr|d(Pr, Q) for a given Cr and Cq. Consider

an arbitrary point R(x, y) along the optimal path Pr. The length of an infinitesimally small segment of

the path Pr beginning at R(x, y) is
√

(dx)2 + (dy)2, and the average distance of this segment from Q

is
√

x2 + y2, if the coordinates of Q are (0, 0). Sum of all these distances over the path Pr is:

F =

∫ x2

x1

√

x2 + y2
√

(dx)2 + (dy)2

=

∫ x2

x1

√

x2 + y2
√

(1 + (y′)2 dx

To get the equation for the path Pr, we would need to determine the extremals of the above function

F . Using the technique of calculus of variations [16], we can show that the extremal values of F satisfy

5Here, by the end of the region P ′, we mean either the circular part PO or the line segment CqCq2 depending on the shape.



13

the Euler-Lagrange differential equation. The equation of the path Pr can thus be computed as (we omit

the details):

β = x2 cosα + 2xy sin α − y2 cosα (2)

where the constants α and β are evaluated by substituting for coordinates of Cr and Cq in the equation.

Computing Communication Cost. Given |P | and the three points Cr, Cs, and Cq , we now derive

the total communication cost Topt(Cr, Cs, Cq, |P |) incurred by using the optimal join-region of size |P |

constructed over Cr, Cs, and Cq. We will use the formulation of Topt(Cr, Cs, Cq, |P |) to design an optimal

algorithm by consider all possible combinations of values of |P |, Cr , Cs, and Cq and picking the quartet

that results in minimum Topt(Cr, Cs, Cq, |P |).

Given |P | and points Cr, Cs, Cq, let Pr and Ps be the paths obtained by Equation 2, i.e., paths

connecting Cr and Cs to Cq respectively such that the values |Pr|d(Pr, Q) and |Ps|d(Ps, Q) respectively

are minimized. Let

lY = |Pr|+ |Ps| + |CqQ|.

If lY > |P |, then the optimal join-region P cannot contain the point Q, and hence, by Theorem 1, the

region P is comprised of the optimized paths Pr, Ps, and the line segment CqCq2, where Cq2 ∈ CqQ is

such that |CqCq2| = |P |−(|Pr|+ |Ps|). See Figure 3 (b). For the case when lY ≤ |P |, the lY /|P | fraction

of the join is processed on the curves Pr, Ps, and the line segment CqQ, while the remaining fraction of

the join is processed on a circular region PO of appropriate radius around Q. See Figure 3 (a). From

Theorem 1, the above choice of P minimizes the value d(P, Q) for a given combination of Cr , Cs, Cq,

and |P |. Thus, we have

P = Pr ∪ Ps ∪ CqCq2 if lY > |P | (3)

P = Pr ∪ Ps ∪ CqQ ∪ PO if lY ≤ |P | (4)

As mentioned before, the point Cq2 is such that CqCq2 = |P |− (|Pr|+ |Ps|), and PO is a circular region

of sufficient radius around Q such that |PO| = |P |− (|Cq, Q|+ |Pr|+ |Ps|). For a given quartet of values

(Cr, Cs, Cq, |P |), let Topt(Cr, Cs, Cq, |P |) denote the total communication cost incurred when the join-

region P is optimally constructed as suggested by Equations 3 and 4. In other words, Topt(Cr , Cs, Cq, |P |)

is equal to |R|d(R, Cr) + |S|d(S, Cs) + |R on S|d(P, Q)+ |R||P |/2+ |S||P |, where P is the optimally

constructed join-region as suggested by Equations 3 and 4.

Optimal Join Algorithm. Based on the above discussion, we construct an optimal join-region to compute

a join operation for tables R and S and the query source Q, by considering all possible triples of points

Cr, Cs, and Cq in the sensor network and values of |P |, and pick the quartet (Cr, Cs, Cq, |P |) that

minimizes the value Topt(Cr , Cs, Cq, |P |). For such an optimal quartet (Cr, Cs, Cq, |P |), we construct the

optimal join-region P as suggested by Equations 3 and 4 in the previous paragraph. The time complexity
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Fig. 5. Suboptimal Heuristic for Join Implementation.

of the above algorithm which constructs an optimal join-region is O(n4), where n is the total number of

sensor nodes in the sensor network.

Suboptimal Heuristic. The high time complexity of the optimal algorithm described above makes it

impractical for large sensor networks. Here, we design a suboptimal heuristic that has a much lower

time complexity and performs very well in practice. In particular, we reduce the complexity of our

designed algorithm from O(n4) to O(n3/2) as follows.

• We choose the minimum value of |P |, i.e., |P | = |R|/m, where |R| is the size of the table R to be

distributed and m is the memory at each sensor node.

• We look at all possible values for Cr in the region.

• For each Cr, we stipulate that Cs should be “symmetrically” located (|R|d(R, Cr) = |S|d(S, Cs))

in the 4RQS. Thus, the location of Cs is fixed for a given Cr.

• We approximate paths Pr and Ps to be straight line segments CrCq and CsCq respectively.

• We further stipulate that the point Cq should lie on the median of the 4CrCsQ.

Thus, for each point as Cr in the sensor network, we determine Cs and search for the best Cq on the

median of 4CrCsQ. See Figure 5. The above reduces the time complexity to construct a join-region to

O(n3/2), where n is the network size.

IV. Generalizations to Stream Tables and General Sensor Networks

In this section, we extend the our proposed algorithms to real sensor networks and relax the assumptions

made in the previous section. We start with generalizing our technique for stream database tables. Then,

we present the overall working of our approach in general sensor networks. Finally, we discuss a few

other generalizations.
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A. Implementation for Stream Database Tables

In the previous section, we discussed implementation of the join operation in a sensor network for

static database tables. Since, sensor network data is better represented as stream database tables, we now

generalize the algorithms to handle stream database tables. First, we start with presenting our model of

stream database tables in sensor networks.

Data Streams in Sensor Networks. As for the case of static tables, a stream database table R corre-

sponding to a data stream in a sensor network is associated with a region R, where each node in R is

continually generating tuples for the table R. To deal with the unbounded size of stream database tables,

the tables are usually restricted to a finite set of tuples called the sliding window [17–19]. In effect, we

expire or archive tuples from the data stream based on some criteria so that the total number of stored

tuples does not exceed the bounded window size. We use WR to denote the sliding window for a stream

database table R.

Naive Approach for Stream Tables. In the Naive Approach, we use the region R (or S) to store the

windows WR and WS of the stream tables R and S.6 Each sensor node in the region R uses WR/(|WR|+

|WS |) fraction of its local memory to store tuples of WR, and the remaining fraction of the memory to

store tuples of WS .7 We need to store WS also in the region R to find matches for a newly generated

tuple of R. To perform the join operation, each newly generated tuple (of R or S) is broadcast to all

the nodes in the region R, and is also stored in some node of R with available memory. Note that the

generated data tuples of S need to be first routed from the region S to the region R. The resulting joined

tuples are routed from R to the query source Q.

Generalizing Other Approaches. The other approaches viz. Centroid Approach, Optimal Algorithm, and

Suboptimal Heuristic, use a join-region that is separate from the regions R and S. These algorithms are

generalized to handle stream database tables as follows. First, the strategy to choose the join-region P

remains the same as before for static tables, except for the size of the join-region. For stream database

tables, the chosen join-region is used to store WR as well as WS , with each sensor node in the join-region

using WR/|WR| + |WS | fraction of its memory to store tuples of WR, and the rest to store tuples of

WS . We need to store WS as well in the join-region in order to find matches for the newly generated

tuples of R. Now, each newly generated tuple (of R or S) is routed from its source node in R or S to

the join-region P , and broadcast to all the nodes in P . The resulting joined tuples are then routed to Q.

As part of the broadcast process (without incurring any additional communication cost), each generated

tuple of R (or S) is also stored at some node in P with available memory.

6If the total memory of the nodes in R is not sufficient to store WR and WS , then the region R is expanded to include more

sensor nodes.
7An alternate naive strategy could be to store WR and WS in R and S respectively, but route each new tuple of R to S and

each new tuple of S to R. Such a strategy uses more number of nodes for storages, but incurs more routing communication

cost.
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B. Overall Implementation in Real Sensor Networks

In this subsection, we consider overall working of our approaches in general sensor networks. We start

with discussing the construction of join-region and details of the underlying routing protocols appropriate

for our developed techniques.

Join-Regions and Routing Protocols in General Networks. Till now, we have assumed “geometric”

sensor networks, and looked at the problem of finding an optimal join-region in a geometric sense. In

other words, we assumed that the sensor network is very dense so that we can find a sensor node at

any desirable point in the region. In case of non-geometric (i.e., not sufficiently dense) networks, we

define the join-region based on the paths traversed by appropriate routing protocols. In particular, we use

GPSR [20] and TBF (trajectory based forwarding [21]) routing protocols to traverse appropriate parts of

the intended join-region. More specifically, we use the paths traversed by GPSR protocol as the paths for

the line-segment parts of the join-region, i.e., CqQ (or CqCq2), and the paths Pr and Ps in the suboptimal

heuristic. However, for the curved (non-straight) parts of the join-region (i.e., the paths Pr and Ps in

the optimal algorithm), we need to use the TBF technique, which works by forwarding packets to nodes

closest to the intended path/trajectory. For reasonably dense sensor networks, the above approach yields

a join-region that is very close to the originally intended optimal geometric join-region.

Overall Working of Our Approaches. Recall that the algorithms to construct the join-regions are run

at the query source. As typical sensor network queries are long running, the query source can gather all

the catalogue information needed (estimated sizes and locations of the operand relations, join selectivity

factor, network density) by initially sampling the operand tables. When the query source Q needs to issue

a join query, it determines the join-region based on the catalogue information, and passes the constructed

join-region (represented by the paths Pr, Ps, and CqCq2 (or CqQ and radius around Q)) to all the nodes

in the regions R and S. Each generated tuple r of stream R is routed from its source node (in region R)

to the node nearest to Cr using GPSR protocol. On reaching Cr, we use GPSR/TBF protocol to route

the tuple r through the path Pr to reach the node nearest to Cq , and then use GPSR to route r to the

node nearest to Cq2 or Q depending on the join-region. Finally, if needed, the tuple is broadcast in a

region around Q of appropriate radius. In addition, during the above traversal, the tuple is joined with

tuples of Ws (the sliding window of S) stored locally at each node of the join-region. Also, the tuple r

is stored at the first encountered node with available memory in the join-region.

Effect of Node Failures. As described above, our proposed implementations do not use any specific

destination nodes for traversing the constructed join-region. That is, even though the join-region is

originally represented by certain geographic locations and paths, the actual join-region traversed is based

on the paths traversed by GPSR/TBF protocols to nodes nearest to geometric locations. Thus, our overall

techniques automatically adapt to node failures just as the underlying routing protocols.
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C. Other Generalizations

Here, we consider other generalization such as arbitrary query source locations and overlapping

operand regions. In addition, we also discuss certain special cases of join predicates, wherein some

other specialized techniques may yield efficient implementations.

General Query Source and Table Region Locations. To prove the claim of optimality, we assumed that

the network region storing an operand table is small relative to the distances between the query source

and the operand table regions. If the query source lies very close or within one of the operand table

regions, the join-region used by our designed algorithms may not have sufficient memory to compute

the join as the nodes in P may be storing the operand tables themselves. If the query source Q is close

enough to one of the operand table regions, it can be shown that the Naive Approach of using the region

R (or S) to store the windows WR and WS , or the Centroid Approach would yield most efficient ways of

implementing the join operation. However, when the regions R and S storing the operand tables are too

close, alternate implementations may be more efficient. In fact, when the operand table regions overlap,

different implementation strategies must be employed for different parts of the tables. For instance, for

the join operation involving overlapping portions of the operand tables, we could save on the routing

costs by employing the Naive Approach.

Equality or Range Predicate Joins. For some special join predicates, simpler approaches can yield effi-

cient implementations. If the selection predicate of the join is an equality condition on the nodeLocation

attribute, the join tuples can be computed locally at each sensor and then, routed to the query source. When

the join predicate involves an equality predicate on an attribute other than the nodeLocation attribute,

a slight variation of hash-join technique could be efficient by implementing efficient partitioning [22] and

distribution techniques [23] using the join-attribute value as the key. More specifically, we could hash

the join-attribute values into geographic coordinates, and store a tuple at the sensor node geographically

closest to the hash of its join-attribute. The individual partitions can be joined at each node and routed to

the query source. The above described approach can be generalized to range predicates by using a hash

function that guarantees that tuples with close values are stored in close proximity. The above approach

is discussed in more detail in our work in [24].

V. Performance Evaluation

In this section, we present our simulation results comparing performance of various algorithms designed

in this article. In particular, we compare the performance of Naive Approach, Centroid Algorithm, Optimal

Algorithm, and Suboptimal Heuristic. Each algorithm is generalized for stream database tables and non-

geometric general sensor network. We refer to the generalized algorithms as Naive, Centroid, OptBased,

and Suboptimal Heuristic respectively. Our simulations demonstrate the effectiveness of our developed

techniques. We start with defining join-selectivity factor which is used to characterize the size of the join

result.
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Definition 3: (Join-Selectivity Factor) Given instances of relations R and S and a join predicate, the

join-selectivity factor is the probability that a random pair of tuples from R and S will satisfy the given

join predicate. In other words, the join selectivity factor is the ratio of the size of R on S to the size of

the cartesian product, i.e., |R on S|/(|R||S|). �

Parameter Values and Experiments. We generated random sensor networks by randomly placing 10,000

sensors in an area of 10× 10 units. Each sensor has a uniform transmission radius, and two sensors can

communicate with each other if they are located within each other’s transmission radius. For the purposes

of comparing the performance of our algorithms, varying the number of sensors is tantamount to varying

the transmission radius. Thus, we fix the number of sensors to be 10,000 and measure performance for

different transmission radii. Memory size of a sensor node is 300 tuples, and the size of each of the

sliding windows WR and WS of stream tables R and S is 8,000 tuples. For simplicity, we chose uniform

data generation rates for R and S streams. In each of the experiments, we measure communication cost

incurred in processing 8000 newly generated tuples of R and S each, after the join-region is already filled

with previously generated tuples. We use the GPSR [20] algorithm to route tuples. Catalogue information

is gathered for non-Naive approaches by collecting a small sample of data streams at the query source.

We ran three sets of experiments on randomly generated sensor networks. In the first set of experiments,

we consider a fixed 4RSQ and calculate the total communication cost for various transmission radii and

join-selectivity factors. Next, we fix the transmission radius and calculate the total communication cost for

various join-selectivity factors and various shapes/sizes of the 4RSQ. Finally, we plot of performance

of various algorithms in terms of the network lifetime. Below, we discuss our simulation results in detail.

Fixed Triangle RSQ. In this set of experiments, we fix the locations of regions R, S, and query

source Q and measure the performance of our algorithms for various values of transmission radii and

join-selectivity factors. In particular, we choose coordinates (0,0), (5,9.5), and (9.5,0) for R, Q, and

S respectively. The total communication cost incurred by various algorithms for 8000 newly generated

tuples of R and S is shown in Figure 6 (a)-(c). We have looked at three transmission radii viz. 0.13, 0.15,

and 0.18 units. Lower transmission radii left the sensor network disconnected, and the trend observed

for these three transmission radii values is sufficient to infer behavior for larger transmission radii (see

Figure 7). From Figure 6 (a)-(c), we can see that the Suboptimal Heuristic performs very close to the

OptBased Algorithm, and significantly outperforms (upto 100%) the Naive and Centroid Approaches for

most parameter values. Sometimes the Suboptimal Heuristic even outperforms the OptBased Algorithm

by a small margin.8 The performance of the Naive approach worsens drastically with the increase in the

join-selectivity factor, since the routing cost of the joined tuples from the join region (R or S) to the

query source Q becomes more dominant. For sake of clarity, we have not shown the Naive Approach

8Note that this does not contradict the optimality of the Optimal Algorithm, since the OptBased is only based on the Optimal

Algorithm for real sensor networks.
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Fig. 6. Total communication cost incurred in computing R on S in large sensor networks (10,000 nodes in 10 × 10 area) for

a fixed 4RSQ, plotted against join-selectivity factor for various transmission radii. Note that we have used a logarithmic scale

on the Y-axis.

data points for high join-selectivity factors. Also, note that with the increase in transmission radius and/or

selectivity factor, the relative benefit of Suboptimal Heuristic over the Centroid Approach reduces. In

particular, for extremely large transmission radius, all algorithms will have similar performance. Also,

for very large selectivity factors, all non-Naive approaches would yield similar implementations, and the

savings with respect to the Naive approach would remain relatively constant after a certain (depending

on other parameter values) join-selectivity factor.

Fixed Transmission Radius (0.15 units). We also observe the performance of various algorithms for

different size and shapes of 4RSQ. In particular, we fix the transmission radius of each sensor node in

the network to be 0.15 units, and generate various 4RSQ’s as follows. We fix locations of regions R

and S, and select many locations of the query source Q with the constraint that the area of the 4RSQ



20

1000

2000

3000

4000

5000

0.13 0.18 0.25 0.35 0.5 1.0

T
ot

al
 C

om
m

un
ic

at
io

n 
C

os
t (

x 
10

3 )

Transmission Radius

Naive
Centroid

Suboptimal Heuristic
OptBased

Fig. 7. Total communication cost incurred for various transmission radii. Here, the 4RSQ is fixed and join-selectivity factor

is 0.05.

is between 10% to 50% of the total sensor network area. For each such generated 4RSQ, we run all

the four algorithms for three representative join-selectivity factor values viz. 10−4, 5 ∗ 10−3, and 10−2.

See Figure 8. Again we observe that the Suboptimal Heuristic performs very close to the OptBased

Algorithm, and incurs much less communication cost than the Naive and Centroid Approaches for all

join-selectivity factor values.

Network Lifetime. Finally, we demonstrate the effectiveness of our algorithms in prolonging the lifetime

of the network. For each algorithm, we start with the same randomly generated sensor network, and equip

each sensor node with a uniform battery power capable of transmitting 50,000 tuples. Queries are issued

in the network by randomly selecting the locations of the regions R and S, and the query source Q. We

only execute those queries that can be successfully completed is all the three networks. As more and

more queries are answered, sensor nodes start getting depleted of their battery power. In Figure 9, we

plot number of dead sensors against number of queries answered for each of the three algorithms viz.

Naive Approach, Centroid Approach, and Suboptimal Approach. Since the time-complexity of OptBased

Heuristic is very high and the Suboptimal Heuristic has been observed to perform very close to the

OptBased Algorithm, we did not run the OptBased Algorithm for this set of experiment. As expected,

higher transmission radius causes less depletion of batter power for each approach. We can easily observe

from the graphs in Figure 9 that the Suboptimal Heuristic cause much less depletion of battery power

compared to the Naive and Centroid Approaches.

Summary. From the above experiments, we observe that the Suboptimal Heuristic performs very close

to the OptBased Algorithm, but performs substantially better than the Centroid and Naive Approaches

for a wide range of sensor network parameters. The savings in communication cost reduce with the
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(b) Join selectivity factor = 5 ∗ 10−3
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(c) Join selectivity factor = 10−2

Fig. 8. Total communication cost incurred in computing R on S in large sensor networks (10,000 nodes with a transmission

radius of 0.15 units in 10 × 10 area) plotted against different triangles RSQ ordered by their area.

increase in join-selectivity factor and/or transmission radius. We expect the join-selectivity factor to be

relatively low in large sensor networks because of large sizes of operand tables and data generated having

only local spatial and temporal data correlations. Moreover, since sensor nodes have the capability to

adjust transmission power, effective topology control [25, 26] is used to minimize transmission radius at

each node to conserve overall energy. Thus, the Suboptimal Heuristic is a natural choice for efficient

implementation of join in sensor networks, and should result in substantial energy savings in practice.

VI. Related Work

The vision of sensor network as a database has been proposed by many works [5, 6, 27], and simple

query engines such as TinyDB [5] have been built for sensor networks. In particular, the COUGAR project

[27–29] at Cornell University is one of the first attempts to model a sensor network as a database system.
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Fig. 9. Effect on network lifetime by various algorithms for different transmission radii.

The TinyDB Project [5] at Berkeley also investigates query processing techniques for sensor networks.

However, TinyDB implements very limited functionality [30] of the traditional database language SQL. A

plausible implementation of an SQL query engine for sensor networks could be to ship all sensor nodes’

data to an external server that handles the execution of queries completely [31]. Such an implementation

would incur high communication costs and congestion-related bottlenecks. In particular, [12] shows that

in-network implementation of database queries is fundamental to conserving energy in sensor networks.

Thus, recent research has focussed on in-network implementation of database queries. However, prior

research has only addressed limited SQL functionality – single queries involving simple aggregations [29,

32, 33] and/or selections [30] over single tables [34], or local joins [29]. So far, it has been considered

that correlations such as median computation or joins should be computed on a single node [29, 30, 35].

In particular, [35] address the problem of operator placement for in-network query processing, assuming

that each operator is executed locally and fully on a single sensor node. In a recent work [9], authors
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consider a combination of localized and centralized implementation for a join operation wherein one of

the operands is a relatively small static table which is used to flood the network. However, the problem of

distributed and communication-efficient implementation for general join operation has not been addressed

yet in the context of sensor networks.

In addition, there has been a large body of work done on efficient query processing in data stream

processing systems [17, 36–38]. In particular, [39] approximates sliding window joins over data streams

and [40] has designed join algorithms for joining multiple data streams constrained by a sliding time

window. However, a data stream processing system is not necessarily distributed and hence, minimizing

communication cost is not the focus of the research. There has been a lot of work on query processing in

distributed database systems [41–43], but sensor networks differ significantly from distributed database

systems because of their multi-hop communication cost model and resource limitations.

VII. Conclusions

Sensor networks are capable of generating large amounts of data. Hence, efficient query processing

in sensor networks is of great importance. Since sensor nodes have limited battery power and memory

resources, designing communication-efficient distributed implementation of database queries is a key

research challenge. In this article, we have focussed on implementation of the join operator, which

is one of the core operators of database query language. In particular, we have designed an Optimal

Algorithm that incurs minimum communication cost for implementation of join in sensor networks under

certain reasonable assumptions. Moreover, we reduced the time complexity of the Optimal Algorithm

to design a Suboptimal Heuristic, and showed through extensive simulations that the generalization (for

non-geometric real sensor networks) of Suboptimal Heuristic perform very close to that of the Optimal

Algorithm. Techniques developed in this article are shown to result in substantial energy savings over

simpler approaches for a wide range of sensor network parameters.

Future Work. In this article, we have concentrated on efficient implementation of two-table join operation.

This situation is much more challenging when the join operation involves three or more tables. Optimal

implementation of other SQL operators viz. aggregation, duplicate elimination, and outerjoin is part

of our future research. More generally, communication-efficient implementation of general SQL query

expressions and multiple query optimization in sensor networks is very challenging and of great interest.

One promising direction to reduce the communication costs further would be to consider approximate

querying.
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