
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Communication-efficient implementation of join
in sensor networks

Himanshu Gupta *, Vishal Chowdhary

Department of Computer Science, Stony Brook, NY 11794, United States

Received 10 February 2007; accepted 15 February 2007
Available online 24 February 2007

Abstract

A sensor network is a multi-hop wireless network of sensor nodes cooperatively solving a sensing task. Each sensor
node generates data items that are readings obtained from one or more sensors on the node. This makes a sensor network
similar to a distributed database system. While this view is somewhat traditional, efficient execution of database (SQL)
queries in sensor network remains a challenge, due to the unique characteristics of such networks such as limited memory
and battery energy on individual nodes, multi-hop communication, unreliable infrastructure, and dynamic topology. Since
the nodes are battery powered, the sensor network relies on energy-efficiency (and hence, communication efficiency) for a
longer lifetime of the network.

In this article, we have addressed the problem of communication-efficient implementation of the SQL ‘‘join’’ operator in
sensor networks. In particular, we design an optimal algorithm for implementation of a join operation in dense sensor net-
works that provably incurs minimum communication cost under some reasonable assumptions. Based on the optimal algo-
rithm, we design a suboptimal heuristic that empirically delivers a near-optimal join implementation strategy and runs
much faster than the optimal algorithm. Through extensive simulations on randomly generated sensor networks, we show
that our techniques achieve significant energy savings compared to other simple approaches.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Sensor network databases; Join implementation; Communication efficiency

1. Introduction

A sensor network consists of sensor nodes with a
short-range radio and on-board processing capabil-
ity forming a multi-hop network of an irregular
topology. Each sensor node can sense certain phys-

ical phenomena like light, temperature, or vibration.
There are many exciting applications of such sensor
networks, including monitoring and surveillance
systems in both military and civilian contexts, build-
ing smart environments and infrastructures such as
intelligent transportation systems and smart homes.

Each sensor node typically generates a stream of
data items that are readings obtained from one or
more sensing devices on the node. This motivates
visualizing sensor networks as distributed database
systems [8,15,18] and the data present in a sensor

1570-8705/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.adhoc.2007.02.002

* Corresponding author. Tel.: +1 631 632 8446; fax: +1 631 632
8334.

E-mail addresses: hgupta@cs.suny.edu (H. Gupta), vishalc@
microsoft.com (V. Chowdhary).

Ad Hoc Networks 5 (2007) 929–942

www.elsevier.com/locate/adhoc

Aut
ho

r's

pe
rs

on
al

co

py

network as relational data streams. Like a database,
the sensor network is queried to gather the sensed
data tuples. Database queries in SQL are a very
general representation of queries over data, and
because of the enormous amount of data present
in a typical sensor network, efficient implementation
of database queries is of great significance.

The main performance criterion for distributed
implementations of queries in sensor network is
the total communication cost incurred, since each
sensor node has limited battery power and message
communication nodes is the main consumer of
battery energy. Thus, distributed implementation
of queries must minimize the communication cost
incurred. In particular, we are interested in in-net-
work implementation strategies since a centralized
strategy of transmitting all sensor data to a central
server for further computation would incur prohib-
itive communication costs.

In this article, we focus on designing efficient dis-
tributed implementations for the join operation in
sensor networks. The join operator is essentially a
cartesian product of the operand tables followed
by a predicate selection. The motivation for the join
operation in sensor networks comes from one of the
most prominent sensor network applications viz.,
event detection, wherein complex events can be
defined as joins over data streams [2,11]. We pro-
pose a novel path-join algorithm, which computes
the join result by first distributing one of the oper-
and tables along a predetermined path of sensors.
Using path-join algorithm as the basic step, we
design an optimal algorithm for a join operation
that provably incurs minimum communication cost
in dense sensor networks under some reasonable
assumptions of communication cost and computa-
tion model. We also design a much faster subopti-
mal heuristic that empirically performs very close
to the optimal algorithm, and results in significant
savings over the naive approaches.

1.1. Paper organization

The rest of the paper is organized as follows. We
start with modeling the sensor network as a data-
base and motivating implementation of the join
operation in the sensor network. In Section 3, we
present various algorithms for in-network imple-
mentation of the join operator for static (non-
streaming tables). In Section 4, we generalize our
techniques to handle streaming tables and discuss
relaxation of other assumptions. We present our

experiment results in Section 5. Related work is dis-
cussed in Section 6, and concluding remarks pre-
sented in Section 7.

2. Sensor network databases

A sensor network consists of a large number of
sensors distributed randomly in a geographical
region. Each sensor has limited on-board process-
ing capability and is equipped with sensing devices.
We assume that each sensor node is aware of its
geographic location (obtained using GPS or other
localization techniques [5]). A sensor node also
has a radio which is used to communicate directly
with some of the sensors around it. Two sensor
nodes can communicate with each other if and only
if the distance between them is less than the trans-

mission radius. We assume that each sensor node in
the sensor network has a limited storage capacity
of m units. As mentioned above, each sensor node
has limited battery energy, which must be con-
served for prolonged unattended operation. Thus,
we have focused on minimization of communica-
tion cost (hence, energy cost) as the key perfor-
mance criteria of the join implementation
strategies.

2.1. Modeling the sensor network as a database

In a sensor network, the data generated by the
sensor nodes is simply the readings obtained from
the sensing devices on the node. The data records
produced by a group of sensor nodes with similar
capabilities and responsibility will have similar for-
mat and semantics, and thus, can be modeled as
rows of the same relational table. More specifically,
due to the continuous generation of data tuples in
the sensor network, the sensor network data is best
modeled as data streams [3]. The above motivates
visualizing sensor networks as distributed database
systems [8,15,18] of streaming tables. In a sensor
network, a data stream may be partitioned hori-
zontally across (or generated by) a set of sensors
in the network. Each data stream has a correspond-
ing generating region which could very well be the
entire network region. Due to the spatial and real-
time nature of the data generated, a tuple usually
has timeStamp and nodeLocation as attri-
butes, and the sensor node that generates a partic-
ular tuple is referred as its source node. Like
traditional database systems, the sensor network
database can also be queried to access and manip-

930 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

Aut
ho

r's

pe
rs

on
al

co

py

ulate the data tables, and SQL with some exten-
sions can be used as a query language for sensor
networks.

2.1.1. Database queries

A database query is composed of one or more
database operators. The core database operators
are viz. selection (selecting tuples based on a pred-
icate), projection (selecting given attributes of a
table), join (cartesian product followed by selec-
tion), grouping (partitioning a table based on a
set of attribute values), aggregation (aggregating
attributes for each group), outerjoins (join plus
the unmatched tuples padded with NULLs),
duplicate elimination, union, difference, and
intersection. Union, difference, and intersection
have same semantics as the corresponding set
operators.

The focus of this article is communication-effi-
cient in-network implementation of the join opera-
tor. The join operator is used to correlate data
from multiple tables and is essentially a cartesian
product of the operand tables followed by a selec-
tion. As selection and projection are unary opera-
tors and operate on each tuple independently, they
could be implemented by computing the operation
locally followed by efficiently routing to the query
source. Union operation can be reduced to dupli-
cate elimination, and the difference and intersection
operations can be reduced to the join operation.
Implementation of other database operators (aggre-
gation, duplicate elimination, and outerjoins) is
challenging and is part of our future work.

2.1.2. In-network implementation of SQL queries

A plausible implementation of a sensor network
database query engine could be to have an external
database system handle all the queries over the net-
work. In such a realization, all the data from each
sensor node in the network is sent to the external
system that handles the execution of queries com-
pletely. Such an implementation would incur very
high communication costs and congestion-related
bottlenecks. Thus, prior research has proposed
query engines that would execute the queries within
the network with little external help. In particular,
[9] shows that in-network implementation of data-
base queries is fundamental to achieving energy-effi-
cient communication in sensor networks. Moreover,
due to the very limited processing memory available
on a sensor nodes, it will be impossible to compute

the join locally on any particular node, especially
for large tables.

2.1.3. Querying and cost model in sensor networks
A query in a sensor network is initiated at a node

called query source and the result of the query is
required to be routed back to the query source for
storage and/or consumption. A stream database
table may be generated by a set of sensor nodes in
a closed geographical region. The optimization
algorithms, proposed in this article, to determine
how to implement the join operation efficiently,
are run at the query source. As typical sensor net-
work queries are long running, the query source
can gather all the catalogue information needed
(estimated sizes and locations of the operand rela-
tions, join selectivity factor to estimate the size of
the join result, density of the network) by initially
sampling the operand tables. As mentioned before,
we concentrate on implementations that minimize
communication cost. We define the total communi-
cation cost incurred as the total data transfer
between neighboring sensor nodes.

Our algorithms target the general long-running
queries in the sensor network. Given a query source
Q and regions R and S where a join has to be taken.
Initially all the tuples of the participating tables are
routed to the query source Q, which collects catalog
information and estimates parameters such as loca-
tions of the region R and S, sizes of R, S and R ffl S,
and join selectivity factor f. Using the optimal algo-
rithm, the query source Q calculates the optimal
region P where the join should be executed in the
sensor network.

2.1.4. Join in sensor networks
The SQL join operator is used to correlate data

from multiple tables, and can be defined as a selec-
tion (join) predicate over the cross-product of a pair
of tables; a join of R and S tables is denoted as
R ffl S. One of the most popular applications of sen-
sor networks is event detection, which motivates the
body of our work. An event indicates a point in time
of interest based on certain conditions over the gen-
erated sensor data. For certain applications, events
may simply depend on the local value of a particular
sensor reading. Higher-level events or complex
events may be specified using composition operators
over the primitive events. In particular, the complex
events may be represented as a join of multiple data
streams, involving spatial and temporal constraints
and correlations.

H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942 931

Aut
ho

r's

pe
rs

on
al

co

py

3. In-network implementation of join

In this section, we first develop communication-
efficient algorithms for implementation of a join
operation over static (non-streaming) database
tables stored in some sensor network region. As
data in sensor network is better represented as data
stream tables, we will generalize our techniques for
stream database tables in the next section.

Consider a join operation, initiated by a query
source node Q, involving two static (non-streaming)
tables R and S distributed horizontally across some
geographical regions R and S in the network. We
assume that the geographic regions are disjoint
and small relative to the distances between the query
source and the operand table regions. We later dis-
cuss generalizing our algorithms for general query
source locations and operand regions. If we do
not make any assumptions about the join predicates
involved, each data tuple of table R should be
paired with every tuple of S and checked for the join
condition. The joined tuple is then routed (if it
passes the join selection condition) to the query
source Q where all the tuples are accumulated or
consumed. Given that each sensor node has limited
memory resources, we need to find out appropriate
regions in the network that would take the respon-
sibility of computing the join. In particular, we
may need to store and process the relations at some
intermediate location before routing the result to
the query source.

A simple nested-loop implementation of a join
used in traditional databases is to generate the
cross-product (all pairs of tuples), and then extract
those pairs that satisfy the selection predicate of
the join. More involved implementations of a join
operator widely used in database systems are
merge-sort and hash-join. These classical methods
are unsuitable for direct implementation in sensor
networks due to the limited memory resources at
each node in the network. Moreover, the tradi-
tional join algorithms focus on minimizing compu-
tation cost, while in sensor networks the primary
performance criteria is communication cost.
Below, we discuss various techniques for efficient
implementation of the join operation in sensor
networks.

Naive approach. A simple way to compute R ffl S
could be to route the tuples of S from their original
location S to the region R, broadcast the S-tuples in
the region R, compute the join within the region R,
and then route the joined tuples to the query source

Q. The breakup of the total communication cost
incurred is as follows:

(1) Cost incurred in routing the table S to the
region R.

(2) Cost incurred in broadcasting the table S

throughout R.
(3) Cost incurred in routing the result (from R) to

the query source Q.

Note that in the above approach the roles of the
tables R and S can be interchanged.1

Centroid approach. Now, we consider another
approach where the region responsible for comput-
ing the join operation is a circular region around
some point C in the sensor network. Let jRj denote
the size of the table R, m denote the memory of each
sensor node, and let Pc be the smallest circular
region around C such that the region Pc has more
than jRj/m sensor nodes to store the table R. First
we route and distribute the tuples of table R in the
region Pc, and then route and broadcast the tuples
of table S in the region Pc. After computing the join
operation in the region Pc, we route the resulting
tuples of ðR ffl SÞ to the query source Q. The com-
munication cost incurred consists of the following
components. (i) Cost incurred in routing the tables
to C. (ii) Cost incurred in distributing R and broad-
casting S in the region Pc around C. (iii) Cost
incurred in routing the result ðR ffl SÞ to the query
source Q. Since the second component of the cost
is independent of the choice of C, it is easy to see
that the communication cost incurred in the above
approach is minimized when the point C is the
weighted centroid of the triangle formed by R, S,
and Q (i.e., the point that minimizes the sum of
the weighted distances from the three points). Here,
the choice of the centroid point C is weighted by the
sizes of R, S, and ðR ffl SÞ.

3.1. Path-join algorithm

In the above two paragraphs, we described a
couple of simple approaches to compute the join
operation in a sensor network. However, in order
to minimize communication cost, we may need to
perform the join operation in a region having a
non-trivial shape. In this subsection, we present a

1 The other simple approach of computing the join at a region
around Q is subsumed by the Centroid Approach discussed next.

932 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

Aut
ho

r's

pe
rs

on
al

co

py

novel path-join approach of performing a join oper-
ation. In the next subsection, we will extend the
path-join approach to devise an optimal join algo-
rithm that incurs minimum communication cost in
dense sensor networks.

The path-join implementation of the join opera-
tion works as follows. First, all the tuples of R are
distributed uniformly along an appropriately cho-
sen path P containing jRj/m sensor nodes, where
jRj is the size of table R and m is the memory size
of each sensor node. Then, every tuple of S is routed
to the path P and passed through all the sensors
along P to perform the join. The resulting joined
tuples computed at each sensor along the path P

are then routed to the query source Q. See Fig. 1.
The location of the path P is chosen to minimize
the total communication cost incurred. We estimate
the total communication incurred in terms of a
notion of sensor length, defined below.

Definition 1 (Sensor length dðX; yÞ, and notation

jXj). The sensor length between a region X and a
point y in a sensor network plane is denoted as
dðX; yÞ and is defined as the average weighted
distance, in terms of number of hops (i.e., interme-
diate nodes), between the region X and the point y.
Here, the distance between a point x 2 X and y is
weighted by the amount of data residing at x.

For a region X in the sensor networks, the nota-
tion jXj denotes the number of sensors in the region
jXj. Note that for a relational table R, we use jRj to
denote the size of the table R.

Let jRj; jSj, and jR ffl Sj be the respective sizes of
the tables R, S, and the joined result R ffl S. Let Q

be the query source, C0 be an end of the path P that
is closer to R and/or S, and jPj be the number of
sensors on the path P. Note that by choice of P,
jP j ¼ jRj=m. Let us assume that both R and S start
their broadcast and distribution phases from the
same point C0. The total communication cost
incurred in the path-join algorithm consists of: cost

of routing R to C0, cost of routing S to C0, cost of
distributing the table R along the path P, cost of
broadcasting the table S along the path P, and
finally, the cost of routing the joined tuples from
P to Q. If we assume that the resulting joined tuples
are uniformly distributed along the path P, then the
total communication cost incurred is

jRjdðR;C0Þ þ jSjdðS;C0Þ þ jP jjRj=2þ jP jjSj
þ jR ffl SjdðP ;QÞ:

Note that the distribution and broadcast cost of R

and S respectively is independent of the location
of P. In some cases, the path-join algorithm may
not be optimal, i.e., may incur more than the mini-
mum communication cost possible.

3.2. Optimal join algorithm

In this section, we present an algorithm that uses
path-join as a basic component, and constructs a
region for computing the join operation using opti-
mal communication cost. We assume that the sensor
network is sufficiently dense that we can find a sen-
sor node at any point in the region. To formally
prove the claim of optimality, we need to restrict
ourselves to a class of join algorithms called Distrib-

ute-Broadcast Join Algorithms (defined below). In
effect, our claim of optimality states that the pro-
posed join algorithm incurs less communication cost
than any distribute-broadcast join algorithm.

Definition 2 (Distribute-broadcast join algo-

rithms). A join algorithm to compute R ffl S in a
sensor network is a distribute-broadcast join algo-
rithm if the join is processed by first uniformly
distributing the table R in some region P (other than
the region R storing R)2 of the sensor network
followed by broadcasting the relation S within the
region P to compute the join. The joined tuples are
then routed from each sensor in the region P to the
query source.

As before, consider a query source Q, and
regions R and S that store the static operand tables
R and S in a sensor network. The key challenge in
designing an optimal algorithm for implementation
of a join operation is to select a region P for pro-
cessing the join in such a way that the total commu-
nication cost is minimized. Note that in general, P

P
R table
distributed along
the path P

Each tuple of S
broadcast over P

Table R Table S

Q

C0

Result
tuples
routed to Q

l

Fig. 1. Path-join implementation. Here, l ¼ jRj=m.

2 Else, the algorithm will be identical to one of the naive
approaches.

H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942 933

Aut
ho

r's

pe
rs

on
al

co

py

may be an arbitrary region as opposed to just a path
as in the path-join algorithm. We use the term join-

region to refer to a region in the sensor network that
is responsible for computing the join.

3.2.1. Shape of an optimal join-region

We show in Theorem 1 that the join-region P

that incurs minimum communication cost has a
shape as shown in Fig. 2a or b. In particular, the
optimal join-region P is formed using three points
Cr;Cs, and Cq in the sensor network (typically these
points will lie within the MRSQ). More precisely,
given three points Cr;Cs, and Cq in the sensor net-
work, the region P takes one of the following forms:

(1) Region P is formed of the paths P r ¼ ðCr;CqÞ
and P s ¼ ðCs;CqÞ, the line segment CqQ, and a
circular region PO of appropriate radius
around Q. See Fig. 2a.

(2) Region P is formed of the paths P r ¼ ðCr;CqÞ
and P s ¼ ðCs;CqÞ, and a part of the line seg-
ment CqQ. See Fig. 2b.

Theorem 1. In dense sensor networks, the shape of

the join-region P used by a distribute-broadcast join
algorithm that incurs optimal communication cost is

as described above or as depicted in Fig. 2a or b.

Proof. Let us consider an optimal distribute-broad-
cast implementation of join using a connected3 join-
region P. By definition of distribute-broadcast algo-
rithms, the region P is different than R.

Cost of distribution and broadcast. We assume
that due to lack of global knowledge about the

other sensors’ locations and available memory
capacities, the best way to distribute R in the region
P is to route the tuples of R to a some point Cr in P

and then, traverse the region P in a linear manner
(as in the case when P is a path) to distributed the
tuples evenly in P. The total cost of distributing of R

in the region P using the above approach is

jRjdðR;CrÞ þ jRjjP j=2;

where Cr is the point in P where the tuples of R are
first routed to and jPj denotes the total number of
sensors in the region P. Based on the same assump-
tion and a similar argument, the total cost of broad-

casting S in the region P is

jSjdðS;CsÞ þ jSjjP j;
where Cs is some point in P where the tuples of S are
first routed to. Note that the above formulated cost
of distribution of R and broadcast of S in the region
P is independent of the shape and location of P.

Total communication cost. Given the join-region
P and the points Cr;Cs 2 P , where R and S are
routed for distribution and broadcast respectively in
the region P, the total communication cost
T ðCr;Cs; P Þ incurred in computing the join can be
formulated as below.

T ðCr;Cs; P Þ ¼ jRjdðR;CrÞ þ jSjdðS;CsÞ þ jRjjP j=2

þ jSjjP j þ jR ffl SjdðP ;QÞ ð1Þ

The term jR ffl SjdðP ;QÞ is the communication cost
incurred in routing the result tuples from P to the
query source Q. Note that for a fixed pair of points
Cr and Cs, the only component of T ðCr;Cs; P Þ that
depends on the shape of P is dðP ;QÞ.

Proof plan. We prove the theorem by contradic-
tion. In particular, we show that if P is not of a
shape depicted in Fig. 2a or b, then we can alter the
shape of region P without changing jPj, Cr, or Cs,
such that the cost component dðP ;QÞ is further
reduced. The above change will result in a reduction

Q

Table R Table S

Cq

PCr
Cs

Pr
Ps

Po
Q

Table R Table S

PCr

Cs

Cq

Cq2

Pr

Ps

a b

Fig. 2. Shape of an optimal join-region. (a) Shape of an optimal region P, when Q 2 P . (b) Shape of an optimal region P, when Q 62 P .

3 The generalization to disconnected join-regions can be easily
made by applying the proof to each connected subregion
independently.

934 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

Aut
ho

r's

pe
rs

on
al

co

py

of the total cost T ðCr;Cs; P Þ, since we keep jPj, Cr,
and Cs fixed.

Reducing dðP ;QÞ, when Q 2 P . Let us consider
the case when Q is in P, but the region P is not of
the form Fig. 2a. Let Cr and Cs be the points in P to
where R and S are routed for distribution and
broadcast respectively in the region P. See Fig. 3.
Consider paths (not necessarily disjoint) ðCr;QÞ and
ðCs;QÞ contained in P that connect Cr and Cs

respectively to Q using minimum number of sensor
nodes. Since P is connected, such paths exist.
Consider a point s in P such that s is neither on
path ðCr;QÞ nor on path ðCs;QÞ, and is farthest
away from Q. Such a point s much exist, else P

would be comprised entirely of paths ðCr;QÞ and
ðCs;QÞ and hence, of the form Fig. 2a.4

Now, consider a point s0 62 P that is closest to Q.
See Fig. 3. If Q is closer to s than s 0, i.e., if
dðs;QÞ 6 dðs0;QÞ, then P is just comprised of the
paths ðCr;QÞ, ðCs;QÞ, and a fully packed circular
region around Q, and thus, of the form Fig. 2a.
Since we assumed to the contrary, Q must be closer
to s 0 than s, i.e., dðs0;QÞ < dðs;QÞ. Now, in such a
case, dðP ;QÞ can be reduced as follows. Since
dðP ;QÞ ¼ 1=jP j

P
p2P dðp;QÞ (since R is uniformly

distributed in P), the value dðP ;QÞ can be reduced
by changing P to P � fsg [fs0g, i.e., replacing s by
s 0. Note that such a point s 0 will be directly
connected to P, and hence, addition of s 0 maintains
the connectivity of P. Moreover, since s is neither in

ðCr;QÞ nor in ðCs;QÞ, and is farthest such point
from Q, removal of s from P maintains the
connectivity of P. Finally, the above replacement
keeps Cr, Cs, and jPj fixed.

Final arguments. Thus, we can reduce dðP ;QÞ,
while keeping Cr, Cs, and jPj fixed, and thus, reduce
the total cost T ðCr;Cs; P Þ, when Q 2 P and P is not
of the form Fig. 2a. Thus, by contradiction, the
optimal join-region P must be of the form depicted
in Fig. 2a if Q 2 P . Using similar arguments, we can
show that if Q 62 P , the optimal join-region must be
of the shape depicted in Fig. 2b. h

Note that the assumptions made (viz. restricted
class of algorithms, distributing and broadcasting
in a linear fashion) in proving the above theorem
do not restrict the applicability of our developed
techniques. The assumptions were made solely to
prove optimality, and more importantly, to develop
an algorithm that could form the basis of a commu-
nication-efficient implementation of the join opera-
tion in general sensor networks without any
restrictions on the communication/computation
model.

Note that the above theorem only restricts the
shape of an optimal join-region; there are still an
infinite number of possible join-regions of shapes
depicted in Fig. 2. Thus, we now further restrict
the shape of an optimal join-region. by characteriz-
ing the equations of the paths Pr and Ps that con-
nect Cr and Cs respectively to Cq.

3.2.2. Optimizing paths Pr and Ps in the join-region

Consider an optimal join-region P that imple-
ments a join operation using minimum communica-
tion cost. By Theorem 1, we know that the region P
is of the shape depicted in Fig. 2a or b. As derived in
Eq. (1), the total communication cost T ðCr;Cs; P Þ
incurred in processing of a join using the region P

is jRjdðR;CrÞ þ jSjdðS;CsÞ þ jRjjP j=2þ jSjjP jþ
jR ffl SjdðP ;QÞ: Let P 0 ¼ P � P r � P s, i.e., the region
P without the paths Pr and Ps. Since the result
jR ffl Sj is uniformly spread along the entire region
P, we have

dðP ;QÞ ¼ 1

jP j jP
0jdðP 0;QÞþ jP rjdðP r;QÞþ jP sjdðP s;QÞ:

For a given jPj and a given set of points Cr, Cs, and
Cq, the total communication cost T is minimized
when the path Pr is constructed such that
jP rjdðP r;QÞ is minimized. Otherwise, we could
reconstruct Pr with a smaller jP rjdðP r;QÞ, and

Q

Table R Table S

Cr
Cs

s

s’

Cq

P

Fig. 3. An arbitrary join-region P containing Q, and the shortest
paths ðCr;QÞ and ðCs;QÞ in P. Here, s is the point in
P � ðCr;QÞ � ðCs;QÞ that is farthest from Q, and s 0 is the point
not in P that is closest to Q. If P is not of the form Fig. 2a, then
dðP ;QÞ can be reduced (without changing Cr;Cs; or jPj) by
replacing s by s 0, and thus, reducing the total cost T ðCr;Cs; PÞ.

4 Note that since paths ðCr;QÞ and ðCs;QÞ are shortest in P,
they intersect at only one point Cq and have the same subpaths
ðCq;QÞ.

H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942 935

Aut
ho

r's

pe
rs

on
al

co

py

remove/add sensors nodes from the end5 of the re-
gion P 0 to maintain jPj. Removal of sensor nodes
from P 0 will always reduce T, and it can be shown
that addition of sensor nodes to the end of the re-
gion P 0 will not increase the cost more than the
reduction achieved by optimizing Pr. Similarly, the
path Ps could be optimized independently.

We now derive the equation of the path Pr that
minimizes jP rjdðP r;QÞ for a given Cr and Cq. Con-
sider an arbitrary point Rðx; yÞ along the optimal
path Pr. The length of an infinitesimally small seg-
ment of the path Pr beginning at Rðx; yÞ isffi
ðdxÞ2 þ ðdyÞ2

q
, and the average distance of this

segment from Q is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, if the coordinates of

Q are ð0; 0Þ. Sum of all these distances over the

path Pr is: F ¼
R Cq

Cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ffi
ðdxÞ2 þ ðdyÞ2

q
¼¼

R Cq

Cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
dx. To get the equation for

the path Pr, we would need to determine the extre-
mals of the above function F. Using the technique
of calculus of variations [7], we can show that the
extremal values of F satisfy the Euler–Lagrange dif-
ferential equation. The equation of the path Pr can
thus be computed as (we omit the details):
b ¼ x2 cos aþ 2xy sin a� y2 cos a where the con-
stants a and b are evaluated by substituting for
coordinates of Cr and Cq in the equation.

3.2.3. Computing communication cost

Given jPj and the three points Cr, Cs, and Cq, we
now derive the total communication cost
T optðCr;Cs;Cq; jP jÞ incurred by using the optimal
join-region of size jPj constructed over Cr, Cs and
Cq. We will use the formulation of
T optðCr;Cs;Cq; jP jÞ to design an optimal algorithm
by consider all possible combinations of values of
jPj, Cr, Cs and Cq and picking the quartet that
results in minimum T optðCr;Cs;Cq; jP jÞ.

Given jPj and points Cr;Cs;Cq, let Pr and Ps be
the paths as obtained in the previous paragraph. Let

lY ¼ jP rj þ jP sj þ jCqQj:

If lY > jP j, then the optimal join-region P cannot
contain the point Q, and hence, by Theorem 1, the
region P is comprised of the optimized paths Pr,
Ps, and the line segment CqCq2, where Cq2 2 CqQ
is such that jCqCq2j ¼ jP j � ðjP rj þ jP sjÞ. See
Fig. 2b. For the case when lY 6 jP j, the lY =jP j frac-

tion of the join is processed on the curves P r; P s, and
the line segment CqQ, while the remaining fraction
of the join is processed on a circular region P O of
appropriate radius around Q. See Fig. 2a. From
Theorem 1, the above choice of P minimizes the
value dðP ;QÞ for a given combination of
Cr;Cs;Cq; and jPj. Thus, we have

P ¼ P r [P s [CqCq2 if lY > jP j; ð2Þ
P ¼ P r [P s [CqQ [P O if lY 6 jP j: ð3Þ

As mentioned before, the point Cq2 is such that
CqCq2 ¼ jP j � ðjP rj þ jP sjÞ, and PO is a circular
region of sufficient radius around Q such that
jP Oj ¼ jP j � ðjCq;Qj þ jP rj þ jP sjÞ. For a given
quartet of values ðCr;Cs;Cq; jP jÞ, let T optðCr;Cs;
Cq; jP jÞ denote the total communication cost in-
curred when the join-region P is optimally con-
structed as suggested by Eqs. (2) and (3). In other
words, T optðCr;Cs;Cq; jP jÞ is equal to jRjdðR;CrÞþ
jSjdðS;CsÞþjRfflSjdðP ;QÞþjRjjP j=2þ jSjjP j, where
P is the optimally constructed join-region as sug-
gested by Eqs. (2) and (3).

3.2.4. Optimal join algorithm

Based on the above discussion, we construct an
optimal join-region to compute a join operation
for tables R and S and the query source Q, by con-
sidering all possible triples of points Cr, Cs, and Cq

in the sensor network and values of jPj, and pick the
quartet ðCr;Cs;Cq; jP jÞ that minimizes the value
T optðCr;Cs;Cq; jP jÞ. For such an optimal quartet
ðCr;Cs;Cq; jP jÞ, we construct the optimal join-
region P as suggested by Eqs. (2) and (3) in the pre-
vious paragraph. If n is the total number of network
nodes, then there are at most n4 combinations of
ðCr;Cs;Cq; jP jÞ. Thus, the time complexity of the
above algorithm which constructs an optimal join-
region is Oðn4Þ.

3.2.5. Suboptimal heuristic

The high time complexity of the optimal algo-
rithm described above makes it impractical for large
sensor networks. Here, we design a suboptimal heu-
ristic that has a much lower time complexity and
performs very well in practice (see Fig. 4). In partic-
ular, we reduce the complexity of our designed algo-
rithm from Oðn4Þ to Oðn3=2Þ using the following five
steps. (i) We choose the minimum value of jPj, i.e.,
jP j ¼ jRj=m, where jRj is the size of the table R to be
distributed and m is the memory at each sensor
node. (ii) We look at all possible values for Cr in

5 Here, by the end of the region P 0, we mean either the circular
part PO or the line segment CqCq2 depending on the shape.

936 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

Aut
ho

r's

pe
rs

on
al

co

py

the region. (iii) For each Cr, we stipulate that Cs

should be ‘‘symmetrically’’ located (jRjdðR;CrÞ ¼
jSjdðS;CsÞ) in the MRQS. Thus, the location of Cs

is fixed for a given Cr. (iv) We approximate paths
Pr and Ps to be straight line segments CrCq and
CsCq respectively. (v) We further stipulate that the
point Cq should lie on the median of the MCrCsQ.
Thus, for each point as Cr in the sensor network,
we determine Cs and search for the best Cq on the
median of MCrCsQ. The above reduces the time
complexity to construct a join-region to Oðn3=2Þ,
where n is the network size.

4. Generalizations to stream tables and general

sensor networks

In this section, we extend the our proposed algo-
rithms to real sensor networks and relax the
assumptions made in the previous section. We start
with generalizing our technique for stream database
tables. Then, we present the overall working of our
approach in general sensor networks. Finally, we
discuss a few other generalizations.

4.1. Implementation for stream database tables

In the previous section, we discussed implemen-
tation of the join operation in a sensor network
for static database tables. Since, sensor network
data is better represented as stream database tables,
we now generalize the algorithms to handle stream
database tables. First, we start with presenting our
model of stream database tables in sensor networks.

4.1.1. Data streams in sensor networks

As for the case of static tables, a stream database
table R corresponding to a data stream in a sensor
network is associated with a region R, where each
node in R is continually generating tuples for the
table R. To deal with the unbounded size of stream

database tables, the tables are usually restricted to a
finite set of tuples called the sliding window [1,6,16].
In effect, we expire or archive tuples from the data
stream based on some criteria so that the total num-
ber of stored tuples does not exceed the bounded
window size. We use WR to denote the sliding win-
dow for a stream database table R.

4.1.2. Naive approach for stream tables
In the naive approach, we use the region R (or S)

to store the windows WR and WS of the stream
tables R and S.6 Each sensor node in the region R
uses W R=ðjW Rj þ jW S jÞ fraction of its local memory
to store tuples of WR, and the remaining fraction of
the memory to store tuples of WS.7 We need to store
WS also in the region R to find matches for a newly
generated tuple of R. To perform the join operation,
each newly generated tuple (of R or S) is broadcast
to all the nodes in the region R, and is also stored in
some node of R with available memory. Note that
the generated data tuples of S need to be first routed
from the region S to the region R. The result-
ing joined tuples are routed from R to the query
source Q.

4.1.3. Generalizing other approaches

The other approaches viz. centroid approach,
optimal algorithm, and suboptimal heuristic, use a
join-region that is separate from the regions R
and S. These algorithms are generalized to handle
stream database tables as follows. First, the strategy
to choose the join-region P remains the same as
before for static tables, except for the size of the
join-region. For stream database tables, the chosen
join-region is used to store WR as well as WS, with
each sensor node in the join-region using
W R=jW Rj þ jW S j fraction of its memory to store
tuples of WR, and the rest to store tuples of WS.
We need to store WS as well in the join-region in
order to find matches for the newly generated tuples
of R. Now, each newly generated tuple (of R or S) is
routed from its source node in R or S to the join-
region P, and broadcast to all the nodes in P. The
resulting joined tuples are then routed to Q. As part

Q

Table R Table S

Cr

Cs

Cq

M

|R|d(R, Cr) = |S|d(S, Cs)

Fig. 4. Suboptimal heuristic for join implementation.

6 If the total memory of the nodes in R is not sufficient to store
WR and WS, then the region R is expanded to include more
sensor nodes.

7 An alternate naive strategy could be to store WR and WS in R

and S respectively, but route each new tuple of R to S and each
new tuple of S to R. Such a strategy uses more number of nodes
for storages, but incurs more routing communication cost.

H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942 937

Aut
ho

r's

pe
rs

on
al

co

py

of the broadcast process (without incurring any
additional communication cost), each generated
tuple of R (or S) is also stored at some node in P

with available memory.

4.2. Overall implementation in real sensor networks

In this subsection, we consider overall working of
our approaches in general sensor networks. We start
with discussing the construction of join-region and
details of the underlying routing protocols appro-
priate for our developed techniques.

4.2.1. Join-regions and routing protocols in general

networks

Till now, we have assumed ‘‘geometric’’ sensor
networks, and looked at the problem of finding an
optimal join-region in a geometric sense. In other
words, we assumed that the sensor network is very
dense so that we can find a sensor node at any desir-
able point in the region. In case of non-geometric
(i.e., not sufficiently dense) networks, we define the
join-region based on the paths traversed by appro-
priate routing protocols. In particular, we use
GPSR [10] and TBF (trajectory based forwarding
[17]) routing protocols to traverse appropriate parts
of the intended join-region. More specifically, we
use the paths traversed by GPSR protocol as the
paths for the line-segment parts of the join-region,
i.e., CqQ (or CqCq2), and the paths Pr and Ps in
the suboptimal heuristic. However, for the curved
(non-straight) parts of the join-region (i.e., the paths
Pr and Ps in the optimal algorithm), we need to use
the TBF technique, which works by forwarding
packets to nodes closest to the intended path/trajec-
tory. For reasonably dense sensor networks, the
above approach yields a join-region that is very
close to the originally intended optimal geometric
join-region.

4.2.2. Overall working of our approaches

Recall that the algorithms to construct the join-
regions are run at the query source. As typical sen-
sor network queries are long running, the query
source can gather all the catalogue information
needed (estimated sizes and locations of the operand
relations, join selectivity factor, network density) by
initially sampling the operand tables. When the
query source Q needs to issue a join query, it deter-
mines the join-region based on the catalogue infor-
mation, and passes the constructed join-region
(represented by the paths Pr, Ps, and CqCq2 (or

CqQ and radius around Q)) to all the nodes in the
regions R and S. Each generated tuple r of stream
R is routed from its source node (in region R) to
the node nearest to Cr using GPSR protocol. On
reaching Cr, we use GPSR/TBF protocol to route
the tuple r through the path Pr to reach the node
nearest to Cq, and then use GPSR to route r to
the node nearest to Cq2 or Q depending on the
join-region. Finally, if needed, the tuple is broadcast
in a region around Q of appropriate radius. In addi-
tion, during the above traversal, the tuple is joined
with tuples of Ws (the sliding window of S) stored
locally at each node of the join-region. Also, the
tuple r is stored at the first encountered node with
available memory in the join-region.

4.2.2.1. Effect of node failures. As described above,
our proposed implementations do not use any spe-
cific destination nodes for traversing the constructed
join-region. That is, even though the join-region is
originally represented by certain geographic loca-
tions and paths, the actual join-region traversed is
based on the paths traversed by GPSR/TBF
protocols to nodes nearest to geometric locations.
Thus, our overall techniques automatically adapt
to node failures just as the underlying routing
protocols.

5. Performance evaluation

In this section, we present our simulation results
comparing performance of various algorithms
designed in this article. In particular, we compare
the performance of Naive Approach, Centroid
Algorithm, Optimal Algorithm, and Suboptimal
Heuristic. Each algorithm is generalized for stream
database tables and non-geometric general sensor
network. We refer to the generalized algorithms as
Naive, Centroid, OptBased, and Suboptimal Heuris-
tic respectively. Our simulations demonstrate the
effectiveness of our developed techniques. We start
with defining join-selectivity factor which is used
to characterize the size of the join result.

Definition 3 (Join-selectivity factor). Given instances
of relations R and S and a join predicate, the join-
selectivity factor is the probability that a random
pair of tuples from R and S will satisfy the given join
predicate. In other words, the join selectivity factor
is the ratio of the size of R ffl S to the size of the
cartesian product, i.e., jR ffl Sj=ðjRjjSjÞ.

938 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

Aut
ho

r's

pe
rs

on
al

co

py

5.1. Parameter values and experiments

We generated random sensor networks by ran-
domly placing 10,000 sensors in an area of 10 · 10
units. Each sensor has a uniform transmission
radius, and two sensors can communicate with each
other if they are located within each other’s trans-
mission radius. For the purposes of comparing the
performance of our algorithms, varying the number
of sensors is tantamount to varying the transmission
radius. Thus, we fix the number of sensors to be
10,000 and measure performance for different trans-
mission radii. Memory size of a sensor node is 300
tuples, and the size of each of the sliding windows
WR and WS of stream tables R and S is 8000 tuples.
For simplicity, we chose uniform data generation
rates for R and S streams. In each of the experi-
ments, we measure communication cost incurred
in processing 8000 newly generated tuples of R

and S each, after the join-region is already filled
with previously generated tuples. We use the GPSR
[10] algorithm to route tuples. Catalogue informa-
tion is gathered for non-Naive approaches by col-
lecting a small sample of data streams at the query
source.

We ran three sets of experiments on randomly
generated sensor networks. In the first set of exper-
iments, we consider a fixed MRSQ and calculate the
total communication cost for various transmission
radii and join-selectivity factors. Next, we fix the
transmission radius and calculate the total commu-
nication cost for various join-selectivity factors and
various shapes/sizes of the MRSQ. Finally, we plot
of performance of various algorithms in terms of
the network lifetime. Below, we discuss our simula-
tion results in detail.

5.2. Fixed triangle RSQ

In this set of experiments, we fix the locations of
regions R, S, and query source Q and measure the
performance of our algorithms for various values
of transmission radii and join-selectivity factors. In
particular, we choose coordinates (0, 0), (5, 9.5),
and (9.5, 0) for R;Q, and S respectively. The total
communication cost incurred by various algorithms
for 8000 newly generated tuples of R and S is shown
in Fig. 5a–c. We have looked at three transmission
radii viz. 0.13, 0.15, and 0.18 units. Lower transmis-
sion radii left the sensor network disconnected, and
the trend observed for these three transmission radii
values was sufficient to infer behavior for larger
transmission radii. From Fig. 5a–c, we can see that
the Suboptimal Heuristic performs very close to the
OptBased Algorithm, and significantly outperforms
(upto 100%) the Naive and Centroid Approaches
for most parameter values. Sometimes the Subopti-
mal Heuristic even outperforms the OptBased
Algorithm by a small margin.8 The performance
of the Naive approach worsens drastically with the
increase in the join-selectivity factor, since the rout-
ing cost of the joined tuples from the join region (R
or S) to the query source Q becomes more domi-
nant. For sake of clarity, we have not shown the
Naive Approach data points for high join-selectivity
factors. Also, note that with the increase in trans-
mission radius and/or selectivity factor, the relative
benefit of Suboptimal Heuristic over the Centroid
Approach reduces. In particular, for extremely large

2000

4000

8000

16000

5*10-4 10-3 0.005 0.01 0.05 0.1

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t (

x
10

3)

Join Selectivity Factor

Naive
Centroid

Suboptimal Heuristic
OptBased

1000

2000

3000

4000

5000

5*10-4 10-3 0.005 0.01 0.05 0.1
T

ot
al

 C
om

m
un

ic
at

io
n

C
os

t (
x

10
3)

Join Selectivity Factor

Naive
Centroid

Suboptimal Heuristic
OptBased

500

1000

2000

3000

5*10-4 10-3 0.005 0.01 0.05 0.1

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t (

x
10

3)

Join Selectivity Factor

Naive
Centroid

Suboptimal Heuristic
OptBased

Fig. 5. Performance for a fixed MRSQ with varying join-selectivity factor for three different transmission radii: (a) 0.13 units, (b) 0.15
units, (c) 0.18 units.

8 Note that this does not contradict the optimality of the
Optimal Algorithm, since the OptBased is only based on the
Optimal Algorithm for real sensor networks.

H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942 939

Aut
ho

r's

pe
rs

on
al

co

py

transmission radius, all algorithms will have similar
performance. Also, for very large selectivity factors,
all non-Naive approaches would yield similar imple-
mentations, and the savings with respect to the
Naive approach would remain relatively constant
after a certain (depending on other parameter val-
ues) join-selectivity factor.

5.3. Fixed transmission radius (0.15 units)

We also observe the performance of various algo-
rithms for different size and shapes of MRSQ. In
particular, we fix the transmission radius of each
sensor node in the network to be 0.15 units, and
generate various MRSQ’s as follows. We fix loca-
tions of regions R and S, and select many locations
of the query source Q with the constraint that the
area of the MRSQ is between 10% and 50% of the
total sensor network area. For each such generated
MRSQ, we run all the four algorithms for three
representative join-selectivity factor values viz.

10�4; 5� 10�3, and 10�2. See Fig. 6. Again we
observe that the Suboptimal Heuristic performs
very close to the OptBased Algorithm, and incurs
much less communication cost than the Naive and
Centroid Approaches for all join-selectivity factor
values.

5.4. Network lifetime

Finally, we demonstrate the effectiveness of our
algorithms in prolonging the lifetime of the net-
work. For each algorithm, we start with the same
randomly generated sensor network, and equip each
sensor node with a uniform battery power capable
of transmitting 50,000 tuples. Queries are issued in
the network by randomly selecting the locations of
the regions R and S, and the query source Q. We
only execute those queries that can be successfully
completed is all the three networks. As more and
more queries are answered, sensor nodes start get-
ting depleted of their battery power. In Fig. 7, we

250

500

1000

 10 15 20 25 30 35 40 45

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t (

x
10

3)

Area of Triangle QRS

Naive
Centroid

Suboptimal Heuristic
OptBased

1000

2000

4000

 10 15 20 25 30 35 40 45

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t (

x
10

3)

Area of Triangle QRS

Naive
Centroid

Suboptimal Heuristic
OptBased

1000

2000

4000

 10 15 20 25 30 35 40 45

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t (

x
10

3)

Area of Triangle QRS

Naive
Centroid

Suboptimal Heuristic
OptBased

Fig. 6. Performance for different triangles RSQ (ordered by their area) for three different join-selectivity factors: (a) 10�4, (b) 5� 10�3,
(c) 10�2. Here, the transmission radius is 0.15 units.

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

O
f

D
ea

d
Se

ns
or

s

Number Of Queries

Naive
Centroid

Suboptimal Heuristic

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

O
f

D
ea

d
Se

ns
or

s

Number Of Queries

Naive
Centroid

Suboptimal Heuristic

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

N
um

be
r

O
f

D
ea

d
Se

ns
or

s

Number Of Queries

Naive
Centroid

Suboptimal Heuristic

Fig. 7. Effect on network lifetime for three different transmission radii: (a) 0.13 units, (b) 0.15 units, (c) 0.18 units.

940 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

Aut
ho

r's

pe
rs

on
al

co

py

plot number of dead sensors against number of que-
ries answered for each of the three algorithms viz.
Naive Approach, Centroid Approach, and Subopti-
mal Approach. Since the time-complexity of Opt-
Based Heuristic is very high and the Suboptimal
Heuristic has been observed to perform very close
to the OptBased Algorithm, we did not run the Opt-
Based Algorithm for this set of experiment. As
expected, higher transmission radius causes less
depletion of batter power for each approach. We
can easily observe from the graphs in Fig. 7 that
the Suboptimal Heuristic cause much less depletion
of battery power compared to the Naive and Cen-
troid Approaches.

6. Related work

The vision of sensor network as a database has
been proposed by many works [8,15,18], and simple
query engines such as TinyDB [15] have been built
for sensor networks. In particular, the COUGAR
project [18] at Cornell University is one of the first
attempts to model a sensor network as a database
system. The TinyDB Project [15] at Berkeley also
investigates query processing techniques for sensor
networks. However, TinyDB implements very lim-
ited functionality [14] of the traditional database
language SQL. A plausible implementation of an
SQL query engine for sensor networks could be to
ship all sensor nodes’ data to an external server that
handles the execution of queries completely [12].
Such an implementation would incur high commu-
nication costs and congestion-related bottlenecks.
In particular, [9] shows that in-network implemen-
tation of database queries is fundamental to con-
serving energy in sensor networks. Thus, recent
research has focussed on in-network implementa-
tion of database queries. However, prior research
has only addressed limited SQL functionality – sin-
gle queries involving simple aggregations [13] and/
or selections over single tables [14], or local joins
[18]. So far, it has been considered that correlations
such as median computation or joins should be
computed on a single node [4,14,18]. In particular,
[4] address the problem of operator placement for
in-network query processing, assuming that each
operator is executed locally and fully on a single
sensor node. In a recent work [2], authors consider
a combination of localized and centralized imple-
mentation for a join operation wherein one of
the operands is a relatively small static table which
is used to flood the network. However, the prob-

lem of distributed and communication-efficient
implementation for general join operation has
not been addressed yet in the context of sensor
networks.

7. Conclusions

Sensor networks are capable of generating large
amounts of data. Hence, efficient query processing
in sensor networks is of great importance. Since sen-
sor nodes have limited battery power and memory
resources, designing communication-efficient dis-
tributed implementation of database queries is a
key research challenge. In this article, we have
focussed on implementation of the join operator,
which is one of the core operators of database query
language. In particular, we have designed an Opti-
mal Algorithm that incurs minimum communica-
tion cost for implementation of join in sensor
networks under certain reasonable assumptions.
Moreover, we reduced the time complexity of the
Optimal Algorithm to design a Suboptimal Heuris-
tic, and showed through extensive simulations that
the generalization (for non-geometric real sensor
networks) of Suboptimal Heuristic perform very
close to that of the Optimal Algorithm. Techniques
developed in this article are shown to result in sub-
stantial energy savings over simpler approaches for
a wide range of sensor network parameters.

References

[1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik,
Aurora: a new model and architecture for data stream
management, The VLDB Journal 12 (2) (2003) 120–139.

[2] Daniel J. Abadi, Samuel Madden, Wolfgang Lindner,
REED: robust, efficient filtering and event detection in
sensor networks, in: VLDB, 2005.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, J.
Widom, Models and issues in data stream systems, in:
PODS, 2002.

[4] B. Bonfils, P. Bonnet, Adaptive and decentralized opera-
tor placement for in-network query processing, in: IPSN,
2003.

[5] N. Bulusu, J. Heidemann, D. Estrin, GPS-less low cost
outdoor localization for very small devices, IEEE Personal
Communications Magazine 7 (5) (2000) 28–34.

[6] L. Ding, N. Mehta, E. Rundensteiner, G.T. Heineman,
Joining punctuated streams, in: EDBT, 2004.

[7] I. Gelfand, S. Fomin, Calculus of Variations, Dover Publi-
cations, 2000.

[8] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M.
Franklin, S. Shenker, The sensor network as a database,
Technical report, University of Southern California, Com-
puter Science Department, 2002.

H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942 941

Aut
ho

r's

pe
rs

on
al

co

py

[9] J.S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, D. Ganesan, Building efficient wireless sensor
networks with low-level naming, in: SOSP, 2001.

[10] B. Karp, H. Kung, GPSR: greedy perimeter stateless routing
for wireless networks, in: MobiCom, 2000.

[11] S. Li, Y. Lin, S. Son, J. Stankovic, Y. Wei, Event detection
using data service middleware in distributed sensor net-
works, Special Issue on Wireless Sensor Networks of
Telecomm. Systems, 2004.

[12] S. Madden, M. Franklin, Fjording the stream: an architec-
ture for queries over streaming sensor data, in: ICDE, 2002.

[13] S. Madden, M. Franklin, J. Hellerstein, W. Hong, TAG: a
tiny aggregation service for ad-hoc sensor networks, in:
OSDI, 2002.

[14] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong,
The design of an acquisitional query processor for sensor
networks, in: SIGMOD, 2003, pp. 491–502.

[15] S.R. Madden, J.M. Hellerstein, W. Hong, D.B. Tiny, In-
network query processing in tinyos. <http://tele-
graph.cs.berkeley.edu/tinydb>, 2003.

[16] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.
Datar, G. Manku, C. Olston, J. Rosenstein, R. Varma,
Query processing, approximation, and resource management
in a data stream management system, in: CIDR, 2003.

[17] B. Nath, D. Niculescu, Routing on a curve, in: Proceedings
of the Workshop on Hot Topics in Networks, 2002.

[18] Y. Yao, J. Gehrke, Query processing for sensor networks, in:
CIDR, 2003.

Vishal Chowdhary obtained his M.S. in
Computer Science from Stony Brook
University in 2004, and his B.E. in
Mechanical Engineering from Bombay
University in 2000. He is currently
working at Microsoft Corporation in
Seattle, WA.

Himanshu Gupta joined the faculty of the
Department of Computer Science at
Stony Brook University in Fall 2002. His
recent research activities focus on theo-
retical issues in wireless networking. In
particular, he is interested in sensor net-
works and sensor databases. His other
research interests are in database systems
and theory, wherein, he is interested in
materialized views, (multiple) query
optimization, and data analysis. He

received a B.Tech. (1992) in Computer Science and Engineering
from IIT, Bombay, and an M.S. and Ph.D. in Computer Science
from Stanford University in 1999.

942 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929–942

