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Abstract

Let P and @ be simple polygons with vertex sets {pi,...,pn} and
{q1,---, gn}, respectively. We present an algorithm to construct a piece-
wise linear homeomorphism between P and ) mapping each vertex p; € P
to g¢; € Q by constructing isomorphic triangulations of P and . These
isomorphic triangulations consist of O(M logn +nlog? n) triangles where
M is the size of the optimal (minimum size) solution. The algorithm runs
in O(M logn + nlog?n) time. We also give an O(n + L + klogk) algo-
rithm for constructing k pairwise disjoint interior paths between k pairs
of vertices in a simple polygon on n vertices using O(L + klog k) links.
The number L is the sum of the interior link distances between the k pairs
of vertices.
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1 Introduction

Let P and @ be simple polygons with vertex sets {p1,...,p,} and {q1, ..., gn},
respectively, listed in clockwise order around the polygons. A homeomorphism
is a continuous 1-1 onto map with continuous inverse. A homeomorphism from
P to @ is piecewise linear if there is a triangulation Tp of P such that the
homeomorphism is linear on each triangle in Tp. The triangulation Tp may have
vertices in the interior of P. We are interested in the problem of constructing
a piecewise linear homeomorphism between P and () which maps each vertex
p; € P to the corresponding vertex ¢; € (). Moreover, we want to use as few
“pieces” as possible in constructing our homeomorphism.

Problems of constructing homeomorphisms and its variants arise in the pro-
cess of combining cartographic maps [7], mesh generation in computational fluid
dynamics [11], and morphing in computer graphics and animation [4, 8]. Each of
these areas has devised its own set of algorithms and heuristics for constructing
homeomorphisms. These algorithms work well for their particular applications
but they are not guaranteed to succeed on all inputs and their running times
are not bounded as a function of input size. This and related papers [1, 5, 9]
apply computational geometry to construct and analyze correct, complete algo-
rithms for the problem of constructing a particular type of homeomorphism, a
piecewise linear homeomorphism.

A piecewise linear homeomorphism induces a triangulation Ty of ) which
is isomorphic to the triangulation Tp of P. A triangulation Tp of P (possibly
with interior vertices) is isomorphic to a triangulation Tg of @ if there is a
one-to-one, onto mapping f between the vertices of Tp and the vertices of Tg
such that p,p',p" are vertices of a triangle in Tp if and only if f(p), f(p'), fF(p")
are vertices of a triangle in Tg. Conversely, an isomorphic triangulation of
P and (@ defines a piecewise linear homeomorphism between P and (). Each
triangle in P with vertices p,p’,p" maps linearly to the triangle in @ with
vertices f(p), f(p"), f(p""). The size of a triangulation is the total number of
vertices, edges and triangles in the triangulation. Thus our original problem
of constructing piecewise linear homeomorphisms reduces to the problem of
constructing minimum size isomorphic triangulations of P and @) where p; € P
is identified with ¢; € Q.

Aronov, Seidel and Souvaine in [1] show that any two simple polygons P
and @ on n vertices have isomorphic triangulations mapping p; to ¢; of size
O(n?). Their construction translates into an O(n?) algorithm for finding such
a triangulation. This result is asymptotically worst-case optimal in the sense
that there exist pairs of polygons which require at least quadratic number of
additional vertices to produce isomorphic triangulations. Kranakis and Urrutia
in [5] improved on the result by Aronov et al. with an algorithm which constructs
isomorphic triangulations of size O(n + 72) in time O(n + r?) where r is the
number of reflex vertices in P and Q.

The algorithms in [1] and [5] may add Q(n?) interior points, when only



O(n) are required. Aronov et al. ask whether there exists a polynomial time
algorithm for finding the minimum size isomorphic triangulation between two
simple polygons. We were unable to construct such an algorithm or to show that
the problem is NP-hard. Instead we present here an approximation algorithm
which constructs isomorphic triangulations mapping p; to g; of size O(M logn +
n(logn)?) where M is the size of the optimal solution.

In designing our algorithm, we confronted the subproblem of constructing &
pairwise disjoint interior paths between k pairs of vertices in a simple polygon
using as few line segments as possible. Again we were unable to give a polyno-
mial time algorithm to find the minimum number of line segments required or
show that the problem is NP-hard. Instead we give an approximation algorithm
which produces k pairwise disjoint interior paths consisting of O(n+ L+ klog k)
line segments where L is the sum of the interior link distances between each pair
of vertices. L is clearly a lower bound on the size of the optimal solution. The
algorithm runs in O(n + L + klogk) time.

In related research, Saalfeld in [7] considers the problem of constructing a
piecewise linear homeomorphism between the convex hulls of two point sets
P = {p1,p2,...,pn} and Q = {q1,42,-..,qn} where p; € P maps to ¢; € Q.
He gives an algorithm for constructing such a homeomorphism but possibly
using an exponential number of triangles. Souvaine and Wenger in [9] give
an O(n?) algorithm for constructing a homeomorphism between two rectangles
with interior point sets P = {p1,p2,...,pn} and Q@ = {q1,42,-..,q,} where
p; € P maps to ¢; € Q. Their homeomorphism uses only O(n?) triangles. Pach,
Shahrokhi and Szegedy prove that Q(n?) triangles are sometimes required [6].

2 Constructing Pairwise Disjoint Link Paths

Let P be a simple polygon on a set of n vertices and let s and s’ be two points in
P. The link distance between s and s’ is the minimum number of line segments
(links) in any polygonal path in P connecting s to s’. However, such a polygonal
path may intersect the boundary of P in many points other than s and s’. The
interior link distance between s and s', denoted (s, s'), is the minimum number
of line segments (links) in any polygonal path in the interior of P connecting
s to s'. The interior link distance of s and s’ may differ greatly from the link
distance of s and s'. (See Figure 1.)

A polygonal path in the interior of P between s and s' which uses the
minimum number of links is called a minimum link interior path. There are an
(uncountably) infinite number of different minimum link interior paths between
s and s'. Suri in [10] gives a linear time algorithm for constructing a minimum
link path between two points in a simple polygon which can be easily modified
to construct a minimum link interior path.

Let s1, s8], 82, 85 be distinct vertices occuring in the given order around P.
There exist interior paths, 1, v2, connecting s; to s} and ss to sj, respectively,



Figure 1: Minimum link and minimum interior link paths.

Figure 2: Intersecting Link Paths

such that -, does not intersect v2. However, every minimum link interior path
connecting s to s may intersect every minimum link interior path connecting
s2 to sh. (See Figure 2.) We can construct pairwise disjoint paths by breaking
v just before and after its first and last intersection point with s and then
connecting the break points with a path which follows 2. Pairwise disjoint
paths can also be constructed by breaking s and connecting the break points
with a path following ;. One of these two constructions will require at most
two additional links. Thus two additional links may be needed and will always
suffice to connect s; to s] and s to s} by interior paths which do not intersect.

A set II = {(s,s")} of pairs of distinct vertices of P is untangled if for
every (s1,87),(82,85) € II there exist interior paths connecting s; to sj and
s2 to s, which do not intersect. Alternately, set II is untangled if for every
(s1,81), (s2,sh) € II vertices s1, 8, s2, 85 occur around the boundary of P in the
given (clockwise/counter-clockwise) order. If set II is untangled, then all the
pairs (s,s') € II can simultaneously be connected by pairwise disjoint paths.



Figure 3: Vis(e).

One can easily check whether II is untangled in linear time.

Let P be a simple polygon on n vertices. Let II = {(s, s')} be an untangled
set of k pairs of distinct vertices of P. Let I(s,s') be the interior link distance
from s to s and let L =}, ey l(s,8'). Clearly L total links are necessary
to connect all the pairs by interior polygonal paths. However, an additional
Q(klogk) links may be needed in some cases to ensure that these polygonal
paths are pairwise disjoint. We omit the rather intricate construction since
it is only tangentially related to the results in this paper. We will show that
O(klog k) additional links suffice and that a set of such non-intersecting paths
can be found in O(n + L + klog k) time.

The interior link distance between a point r and an edge e of P, denoted
l(e,r), is the minimum number of line segments (links) in any polygonal path in
the interior of P connecting r to a point in the interior of e. Let R be a subset
of the vertices of P of size m, let e be an edge of P andlet L = _p.l(e,7). We
first present an O(n + L + mlogm) algorithm to construct m pairwise disjoint
interior paths connecting the points in R with e using at most 2L + 2m|log m |
links. A modification of this algorithm solves the original problem of connecting
pairs of vertices.

The wisibility polygon from a point p € P, denoted by Vis(p), is the set of
points in P visible from p, i.e., ¢ € Vis(e) if and only if P contains line segment
(p,q). The wvisibility polygon from a line segment e C P, denoted by Vis(e), is
the set of points in P visible from e, i.e., ¢ € Vis(e) if and only if there exists a
point p € e such that P contains line segment (p, ¢). Guibas et al. in [3] give a
linear time algorithm for constructing Vis(e).

A point ¢ may be visible from a point p or edge e, yet every open line
segment connecting p and ¢q or e and ¢ may intersect the boundary of P. The



Figure 4: Region I', triangulation Tt and paths to the boundary of T'.

clear wvisibility polygon from a point p € P, denoted by Vis(p), is the set of
points in P “clearly visible” from p, i.e., ¢ € Vis(p) if and only if the open line
segment (p,q) lies in the interior of P. (See Figure 1 where s’ is in Vis(s) but
is not even on the boundary of Vis(s).) Note that Vis(p) is usually not closed.
The clear visibility polygon from a line segment e C P, denoted by Vis(e), is the
set of points “clearly visible” from e, i.e., ¢ € Vis(e) if and only if there exists
a point p € e such that the open line segment (p,q) lies in the interior of P.
(See Figure 3. Also see Figure 1 where s’ is in Vis(e) but is not even on the
boundary of Vis(e).) The algorithm in [3] can be easily modified to construct
Vis(e) in linear time.

Let T be a triangulation of polygon P using no vertices other than those of P.
Let v and e be a vertex and an edge of P, respectively. Edge d of triangulation
T separates v from e if every interior path from v to e must cross d. Triangle
t of triangulation T' separates v from e if every interior path from v to e must
cross t.

Lemma 2.1 Let P be a simple polygon on n vertices with distinguished edge
e = {we,w.} and let R be a subset of Vert(P) \ {we,wl} of size m. A set of
m pairwise disjoint interior paths connecting the vertices in R to the interior of
e can be constructed in O(n + L + mlogm) time using 2L + 2m/|log, m| total
links where L is the sum of the interior link distances from r € R to e.

Proof: Construct a triangulation Tp of P using no vertices other than those
of P. For each vertex v € P, let m, be the number of points of R which
lie clockwise between e and v, including v. Let r* be the vertex in R where
my« = [m/2]. A triangle t separates e from r* if and only if ¢ has vertices
v # r* and v’ # r* such that m, < m/2 and m,» > m/2. Let I be the union of



Figure 5: Line segments o (r).

the triangles of T» which intersect Vis(e) and separate e from 7*. (See Figure 4.)
I is a simple polygon in P. Triangulation Tp of P induces a triangulation Tt of
T. The diagonals of T} are the edges of Tp which intersect Vis(e) and separate
e from r*.

The boundary of T" is composed of edges and chords of the original polygon
P. Let C be the set of all such chords of P bounding I'. Each chord ¢ € C
divides P into two polygons. Let P(c) be the one not containing I'. Let w,. and
w!, be the endpoints of ¢. Let R(c) be the points of R\ {w.,w.} in P(c). For
each ¢ € C, recursively solve the problem of constructing pairwise disjoint paths
connecting each r € R(c) to the interior of c.

Each point 7 € R either lies in T' or lies in R(c) for some ¢ € C. If r € R(c),
let 7o(r) be the endpoint on ¢ of the path from r to ¢. Otherwise, let mo(r) be
r.

If Tt is a single triangle adjacent to e, then simply connect the points o (r),
r € R, by pairwise disjoint line segments to e. Assume 7T contains more than
one triangle. For each point p € T, let d(p) be the edge d of triangulation
Tr which lies on the same triangle of Tt as p and separates p from e. Let
d* = d(mo(r*)). d* is a diagonal of T, so d* intersects Vis(e). Let (p,p') be an
open line segment in the interior of P where p € e and p' € d*. By translating
(p,p') in both directions, we can find points po,p1 € e and pj,p] € d* such
that po, p1,ph, P} are vertices of a convex quadrilateral lying in P. Choose m
pairwise disjoint line segments connecting the open line segment (pg, p1) to the
open line segment (py,p}). (See Figure 5.)

For each 7 € R, let o(r) be the m,’th line segment from (po,p1) to (py,p})
in counter-clockwise order along e. Note that o(r) intersects every diagonal of
Tr. Let mi(r) = o(r) Nd(mo(r)) and ma(r) = o(r) Ne. Connect mo(r) to e by
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Figure 6: Paths from R to e.

line segments (mo(r), 71 (r)) and (71 (r), m2(r)). This completes the construction
of the paths to e. (See Figure 6.)

Let (. be the path connecting r € R to e. We prove, by induction, that (.
has at most 2I(e,r) + 2|log, m] links.

If r lies on the boundary of I', then ¢, has at most two links and 2 < 2I(e, r).
Assume r does not lie on the boundary of I'. Path (. intersects the boundary
of T in a chord ¢ of P. If r* € P(c), then no line segment in the interior of
P can intersect both ¢ and e. Thus I(¢c,r) < Il(e,r) — 1. By induction, the
algorithm constructs a path from r to ¢ of length at most 2{(c, r) + 2|log, m| <
2l(e,r) — 2 + 2|log, m|. Since ¢, contains at most two links in T', the length of
¢ is at most 2l(e,r) + 2|log, m].

Finally, if »* ¢ P(c), then the size of R(c) is at most |m/2|. By induc-
tion, the algorithm constructs a path from r to ¢ of length at most 2I(c,r) +
2|logy m/2| = 2l(e,r) + 2|log, m| — 2. Since ¢, contains at most two links in
T, the length of ¢, is at most 2I(e,r) + 2|log, m|. Summing this bound over all
paths (., r € R, bounds the total number of links used by 2L + 2m|log, m|.

T and Tr can be constructed in linear time by first constructing Vis(e) and
then determining which triangles of T intersect Vis(e) and separate e from
r*. This results in an O(n?) bound on the running time of the algorithm.
However, using a technique introduced by Suri in [10], we can construct I' in
time proportional to the size of Tr after some initial preprocessing. Let 7 be
the set of triangles separating e from r*. These triangles can be ordered by
adjacency starting at the triangle containing e and ending at the one containing
r*. Let 7; be the first j triangles in 7. Set 7; can be constructed in O(j) time
by starting at the triangle containing e and processing adjacent triangles to
determine which ones separate e from r*.
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Let P; be the polygon formed from the union of 7;. Instead of constructing
Vis(e) in P, find 7; and P; for some suitable small j and construct Vis(e) in
P If Vis(e) intersects every triangle of 7; and 7; # 7, then double j and try
again. Otherwise, I' is a subset of Pj. Determine which triangles in P; intersect
Vis(e) and use them to construct I' and Tp. This construction of T takes time
proportional to 1 +2+4+4---+j/2+ j < 2j. Since It contains at least j/2
triangles, the time is proportional to the size of Tr.

We are now ready to analyze the running time of the entire algorithm. The
initial preprocessing is the triangulation of P and the calculation of m, for each
vertex of P. These two steps are done only once in the entire algorithm, not
once for each recursive call. Using Chazelle’s algorithm from [2], triangulating
P takes linear time. Calculation of m, for each vertex of P also takes linear
time.

Note there is no need to explicitly construct the sets R(c) or P(c) in the
recursive calls. Whenever required the number of points of R(c) which lie clock-
wise between a vertex v and ¢ = (w¢,w.) can be calculated in constant time
from my, My, and My .

The rest of the algorithm consists of partitioning P into subpolygons and
routing the paths to e through those polygons. The total time spent routing
the paths is proportional to the total number of links used which is O(L +
mlogm). The time constructing each subpolygon is proportional to the size of
its triangulation. Since the subpolygons form a partition of P, the sum of their
triangulations is O(n) so the total running time is O(n + L + mlogm). O

The dual graph of a triangulation T is obtained by replacing the triangles
of T by vertices and connecting vertices corresponding to adjacent triangles. If
T is the triangulation of a simple polygon using no vertices other than those
of P, then the dual graph is a tree. If v’ 0" v"" are three nodes of a tree (not
necessarily distinct), then there is a unique node v such that any path from ¢’
to v or from v" to v or from v" to v' must contain v. Correspondingly, if
t',t",¢"" are three triangles of T' (not necessarily distinct), then there is a unique
triangle ¢ such that any path between any two of these triangles must intersect
t.

Lemma 2.2 Let P be a simple polygon on n wvertices and let II = {(s,s')}
be an untangled set of k pairs of distinct vertices of P. A set of k pairwise
disjoint interior paths connecting s to s' for each (s,s') € I can be constructed
in O(n + L + klogk) time using 2L + 4k|log, k| + 11k total links where L =

E(s,s’)eﬂ l(S, SI).

Proof: We first claim the following generalization of Lemma 2.1. Let P be a
simple polygon on n vertices with distinguished edge e. Let f[(r, er) be a set
of pairs of vertices and edges where either e, = e or e, separates e from r.
The vertices, but not the edges, are all distinct and are not endpoints of e. In
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Figure 7: Triangle t, .

O(n + L + mlogm) time, we can construct m pairwise disjoint interior paths
{» connecting r to the interior of e, for each (r,e,) € 11 where {- has at most
2l(er,r) + 2[logy k| + 2 links. The number L is the sum of the interior link
distances from r to e, for each (r,e,) € II.

The proof follows the proof of Lemma 2.1. We triangulate P, define m,
and r* and construct I' as in the proof of Lemma 2.1. Note that e, may not
equal e nor even be in I'. Removing I' subdivides P into subpolygons and we
recursively solve the problem of connecting pairs of vertices and edges in these
subpolygons. We then connect each path with endpoint on the boundary of T’
to the appropriate edge in I'. The only difference is that the connection may
not be to e but to some edge e, on the path to e.

If e, = e or r lies in I, then it follows directly from the proof of Lemma 2.1,
that ¢, has at most 2l(e,,r) + 2|log, k| links. If e, # e and (. crosses the
boundary of T at a chord ¢, then (. has at most 2l(c,r) + 2|log, k| + 2 links.
Since I(c,r) < Il{es,7), (- has at most 2l(e,,7) + 2|log, k| + 2 links. If e,
is not in I', then (, does not intersect I' and by induction (, has at most
2l(er,r) + 2|logs k| + 2 links. The running time analysis is exactly the same as
in Lemma 2.1.

We return to our original problem of connecting k pairs of vertices (s, s') € II.
Arbitrarily choose an edge e of P. For each pair (s,s') € II, there is a unique
triangle ¢, o such that any path from s to s’ or any path from s to e or any path
from s’ to e must pass through ¢ ». If triangle ¢, »» does not contain s, let e,
be the edge of triangle ¢, ;» which separate t; o from s. Otherwise, let e; be the
edge of triangle ¢, s containing s. Similarly, let ey be the edge of triangle ¢, s
either separating t; s from s’ or containing s'. (See Figure 7.) We construct a
path from s to s’ by constructing paths from s to e; and from s’ to ey and then
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Figure 8: Paths connecting vertices.

connecting these paths with a line segment. If s and s’ happen to lie on the
same triangle, then this construction connects s to s’ by a single line segment.

Let II be the set of 2k pairs (s, e,) where (s,s') € II (or (s',s) € IL.) Run
the algorithm to connect the pairs of vertices and edges in . Finally, connect
the paths (s and (s by a line segment. (See Figure 8.)

Since (, has at most 2l(es, s) + 2|log, 2k| + 2 links and (- has at most and
2l(esr, ') + 2|log, 2k| + 2 links, the path from s to s’ has at most 2l(es,s) +
2l(egsr, s') + 4|log, 2k| + 5 links. Since I(s,s') +1 > l(es,s) +I(es, s'), the path
from s to s’ has at most 2I(s, s')+4|log, 2k| +7 or 2I(s, s')+4|log, k| +11 links.
Summing this bound over all k paths give a bound of 2L + 4k|log, k| + 11k on
the total number of links. m|

The interior link diameter § of a polygon P is the maximum interior link
distance between any two points in P. The following corollary follows directly
from Lemma 2.2.

Corollary 2.1 Let P be a simple polygon on n vertices of interior link diameter
0 and let II = {(s,s')} be an untangled set of k pairs of distinct vertices of P.
A set of k pairwise disjoint interior paths connecting s to s' for each (s,s') € I
can be constructed in O(nd + klogk) time using 2nd + 4k|log, k| + 11k total
links.

The algorithms described in Lemma 2.2, Lemma 2.1 and Corollary 2.1 use
coordinates whose precision is a fixed constant times the precision of the input.
However, Suri’s paper [10] on constructing minimum link paths assumes the
less restrictive real RAM model of computation. The previous results can be
improved under the real RAM model by constructing I' directly from Vis(e)
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Figure 9: Isomorphic Triangulations

instead of from the triangles of Tp intersected by Vis(e). Doing so enables
many paths to intersect I" in only one line segment, instead of two. The modified
algorithm reduces the 2L+4k|log, k|+11k term in Lemma 2.2 to L+2k|log, k |+
11k. Similar reductions can also be made to Lemma 2.1 and Corollary 2.1.

3 Constructing Isomorphic Triangulations

As before, let P and @) be simple polygons with vertex sets {pi,p2,...,pn}
and {q1,¢2,-- -, gn}, respectively, listed in clockwise order around the polygons.
Aronov, Seidel and Souvaine in [1] observe that if one of the polygons, say @,
is convex, then any triangulation of P induces a corresponding triangulation of
Q. Thus if @ is convex, then P and @ have isomorphic triangulations mapping
p; to g; with 2n — 3 edges.

We need a slight generalization of the previous result to the case where not all
the vertices, {q1, ¢z, - - ., gn}, of Q are extreme, i.e., ¢; may be collinear with ¢; 1
and g; 1. (See Figure 9.) In this case, a diagonal from ¢; ; to g;;1 would create
an unacceptable degenerate triangle ¢; 1, q;,q;+1- To avoid this, triangulate @)
and perturb the vertices of ) toward the interior of ) so that they form the
extreme points on a convex polygon @Q'. Similarly, triangulate P and perturb
the vertices of P toward the interior of P so that they form a shrunken version
P’ of P. Discard the original triangulations of P and @). Connect the perturbed
vertices in P and @ in cyclic order and connect each perturbed point on P’ and
Q' to its original version on P and (). Triangulate each of the quadrilaterals

15



between P and P’ and @) and @' in corresponding manner. Finally, triangulate
P’ and construct the corresponding triangulation of @'. The total number of
new edges added is 4n — 3. Note that this procedure does not add any new
vertices to the boundary of P and Q.

Triangulating P, P’ and @ takes only linear time [2]. Perturbing the vertices
and connecting them also takes linear time. We have shown:

Lemma 3.3 Let P be a simple polygon with vertices {p1,pa,...,pn} and Q be
a convex polygon with vertices {qi1,qz,- .., gn}, not all of which are necessarily
extreme. Isomorphic triangulations mapping p; to q; using 5n — 3 edges can be
constructed in linear time. Moreover, no new vertices are added to the boundary
of P and @ in these triangulations.

Combining Lemma 3.3 and Corollary 2.1 gives an algorithm for constructing
isomorphic triangulations between a simple polygon and a polygon with interior
link diameter d.

Lemma 3.4 Let P be a simple polygon with vertices {p1,pa,-...,pn} and Q
be a simple polygon with vertices {qi1,qz, ..., qn} and interior link diameter J.
Isomorphic triangulations mapping p; to ¢; using at most 20nd + 40n|log, n| +
115n edges can be constructed in O(nd+nlogn) time. Moreover, no new vertices
are added to the boundary of P and @) in these triangulations.

Proof: Triangulate P using n — 3 diagonals. For each diagonal (p;,p;) there
is a corresponding pair of vertices (g;,¢;) in . By Corollary 2.1, n —3 < n
non-intersecting interior paths connecting each pair (g;,q;) can be constructed
in O(nd + nlogn) time using a total of at most 2nd + 4n[log, n] + 11n links.
For each new vertex ¢’ on the path from g; to g; create a corresponding new
vertex p' on diagonal (p;,p;).

The triangulation diagonals split polygon P into triangles Py, Ps,..., P_o.
The interior paths split polygon @ into corresponding subpolygons @1, Q2, - - .,
@rn—2. By Lemma 3.3, isomorphic triangulations of P; and @); can be constructed
in O(n;) time using 5n; — 3 < 5n; edges where n; is the number of vertices of
P; and @;. (Note that P; may contain many new vertices p’ which are not
extreme.) Since the isomorphic triangulations of Lemma 3.3 do not contain any
new boundary vertices, their union is an isomorphic triangulation of P and Q.

The total number of edges in the isomorphic triangulation of P and @ is
bounded by Z?;f 5n;. Since each edge of @); is either an edge of @) or an
edge on one of the n — 3 < n non-intersecting interior paths, 2?2—12 n; <n+
2(2nd + 4n|logs n] + 11n). Thus the total number of edges is bounded by
5n + 20nd + 40n|log, n| + 110n. O

Note that a vertex of P or of () in Lemma 3.4 could be collinear with its

neighbors, i.e., p; could be collinear with p;_1 and p;41.
We are now ready for our main result.
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Figure 10: Choosing diagonals.

Theorem 3.1 Let P be a simple polygon with vertices {p1,p2,...,pn} and Q
be a simple polygon with vertices {q1,qz, - -, gn}. Let M be the minimum size of
any isomorphic triangulation of P and () mapping p; to q;. Isomorphic triangu-
lations mapping p; to q; using O(M logn +nlog®n) edges can be constructed in
O(M logn+n log® n) time. Moreover, no new vertices are added to the boundary
of P and @ in these triangulations.

Proof: Construct a triangulation Tp of P using no vertices other than those
of P. Choose a set of edges C from Tp as follows. Arbitrarily, pick an edge e of
P. Let ¥ be the union of the set of triangles of Tp which intersect Vis(e). The
boundary of ¥ is composed of edges and chords of the original polygon P. Add
all the chords bounding ¥ to C. Each such chord ¢ divides P into two polygons.
Let P(c) be one not containing ¥. Recursively apply this procedure to each
such polygon P(c) starting at its edge ¢, to choose a set of edges from P(c) and
add them to C. (See Figure 10.)

For each diagonal (p;,p;) in P there is a corresponding pair of vertices g;, g;
in Q. Let k be the size of C. By Lemma, 2.2, a set of k non-intersecting interior
paths connecting each pair g;, ¢; can be constructed in O(n + L + klogk) time
using a total of at most 2L + 4k|log, k| + 11k links, where L is the sum of the
interior link distances between all pairs g;,q;. For each new vertex ¢' on the
path from g; to g; create a corresponding new vertex p’ on diagonal (p;,p;)-

The k diagonals in C split polygon P into k+1 subpolygons Py, Ps, ..., Pgy1.
The interior paths split polygon @ into k + 1 corresponding subpolygons @,
Q2,..., Qr+1. Each subpolygon P; has an edge e which lies within link dis-
tance two of every point in P;. Thus each P; has link diameter at most five.
By Lemma 3.4, isomorphic triangulations of P; and ; can be constructed in
O(n;logn;) time using 40n;|log, n;| + O(n;) edges where n; is the number of
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vertices of P; and @;. (Note that P; may contain many new vertices p’ which are
not extreme.) Since the isomorphic triangulations of Lemma 3.4 do not contain
any new boundary vertices, their union is an isomorphic triangulation of P and
Q.

The total number of edges in the isomorphic triangulations of P and @Q is
at most Zz 1 ! 40n; |log, n;] + O(n;). Since each edge of Q); is either an edge
of () or an edge on one of the k non-intersecting interior paths, Ek+1 n; <
n + 2(2L + 4k|log, k| + 11k). Bounding log, n; by log, n and k by n gives a
bound of

40(23n + 4L + 8n|log, n|)|logy, n| + O(n + L + nlogn) = O(Llogn + nlog® n).

Let T')5 and T¢) be minimum size isomorphic triangulations of P and ) mapping
pi to g; and let M be the sizes of T and T¢g,. We now show that L = O(M). By
the choice of C, no triangle of T can intersect more than three diagonals in C.
On the other hand, if { is the interior link distance from g¢; to g;, then any path
from g; to g; must intersect at least I triangles from T¢,. Any path between
the corresponding vertices p;,p; € P, must also intersect at least [ triangles
from T}. Thus the diagonals of C intersect at least L/3 different triangles in
Ty where L is the sum of the interior link distances between all pairs qz,qj
correspondmg to dlagonals in C. Therefore, M > L/3 and Llogn + nlog’n =
O(M logn +nlog”n).

Finally, we show that our algorithm runs in O(M logn + nlog® n) time. To
construct C we need to construct polygons Vis(c) in P(c) for each ¢ € C. Guibas
et al. give a linear time algorithm for constructing the visibility polygon from
a line segment [3]. This would result in an O(n?) algorithm for constructing
C. However, Suri shows in [10] that by only processing triangles which intersect
the visibility polygon and their neighbors, a polygon can be broken into weakly
visible polygons in O(n) time. A similar analysis and technique will construct
C in linear time.

Constructing the k paths takes a total of O(n + L + klogk) time by
Lemma 2.2. Constructing isomorphic triangulations between the subpolygons
P; and Q; takes O(n;logn;) time by Lemma 3.4. Since > n; = O(L + nlogn)
and L = O(M), the running time of the whole algorithm is bounded by
O(M logn + nlog®n). O

4 Conclusion

We have presented approximation algorithms for constructing pairwise disjoint
paths and isomorphic triangulations in simple polygons. One open question is
whether optimal solutions to these problems can be found in polynomial time.
A less ambitious question is can solutions be found which are bounded by a
constant instead of logn or log® n times the optimal?
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Suri’s paper in [10] on finding the minimum link distance between a pair
of vertices assumes a real RAM model of computation. Can this problem be
solved in linear time under a more realistic model of computation?

We can also consider the problem of constructing isomorphic triangulations
between simple polygons where certain interior points are constrained to map
to each other. Is there an approximation algorithm for finding such isomorphic
triangulations which produces a result which is a constant or logn times the
optimal solution?
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