
Deductive Framework for Programming Sensor
Networks

Himanshu Gupta, Xianjin Zhu, Xiang Xu

Department of Computer Science, Stony Brook University
Stony Brook, NY 11794

{hgupta,xjzhu,xxu@cs.sunysb.edu}

Abstract— Developing powerful paradigms for programming
sensor networks is critical to realize the full potential of sen-
sor networks as collaborative data processing engines. In this
article, we motivate and develop a deductive framework for
programming sensor networks, extending the prior vision of
viewing sensor network as a distributed database. The deduc-
tive programming approach is declarative, very expressive, and
amenable to automatic optimizations. Such a framework allows
users to program sensor network applications at a high-level
without worrying about the low-level tedious details. Our system
translates a given deductive program to efficient distributed code
that runs on individual nodes. To facilitate the above translation,
we develop techniques for distributed and asynchronous evaluation
of deductive programs in sensor networks. Our techniques gen-
eralize to recursive programs without negations, arbitrary non-
recursive programs with negations, and in general to arbitrary
“locally non-recursive” programs with function symbols. We
present performance results on TOSSIM, a network simulator,
and a small network testbed.

I. Introduction

Programming a sensor network application remains a diffi-
cult task, since the programmer is burdened with low-level de-
tails related to distributed computing, careful management of
limited resources, energy optimizations, unreliable infrastruc-
ture, and other network machineries. Thus, developing a pow-
erful programming framework for sensor network is critical to
realizing the full potential of sensor networks as collaborative
monitoring systems. There has been some progress in develop-
ing operating system prototypes [13, 14] and programming ab-
stractions [19, 41]; however, these abstractions have provided
only minimal programming support. Prior work on viewing the
sensor network as a distributed database provides a declarative
programming framework which is amenable to optimizations.
However, it lacks expressive power, and the developed query
engines (TinyDB [21], Cougar [5], SNLog [12]) for sensor
networks implement only a limited functionality. On the other
hand, more expressive frameworks such as Kairos [26] are
based on procedural languages and hence, are difficult to
translate to efficient distributed code. Thus, the overall vision
of a programming framework that automatically translates
a high-level user specification to efficient distributed code
remains far from realized. In general, a perfect programming
paradigm for sensor networks must be declarative (to hide
low-level details from the user), be sufficiently expressive, and
be amenable to automatic optimizations especially related to
energy consumption.

In a recent concurrent work, a dialect of Datalog without
negations was suggested for use in sensor networks [12], and
a limited query processor designed. Our works extends the
above, by motivating the full deductive approach for program-
ming sensor networks, and developing optimized techniques
for distributed asynchronous evaluation of deductive queries
under resource constraints. Based on our query evaluation
techniques, our system compiles a given deductive program
into efficient distributed code that runs on individual nodes.
Deductive approach is declarative, fully expressive (Turing
complete), and most importantly, amenable to optimization.
We believe that the collaborative (involving multiple nodes)
functionality of a sensor network application can be easily
represented using deductive rules, and the remaining local
arithmetic computations can be embedded in built-in func-
tions without affecting the communication efficiency of the
translated code.

Our Contributions. We make the following specific contri-
butions in this article. First, we motivate the use of the
full deductive framework for programming sensor networks.
Second, we develop distributed and asynchronous techniques
for evaluation of recursive deductive programs without nega-
tions and non-recursive deductive programs with negations.
In general, our techniques work for XY -stratified [43] and
locally non-recursive deductive programs [6], which are useful
in the context of sensor networks. Our system architecture
justifies the feasibility of our sensor-network deductive query
engine based on our query evaluation techniques. We conduct
experiments on the TOSSIM simulator and a small sensor
network testbed to demonstrate the robustness and efficiency
of our techniques.

Article Organization. We start with a discussion of related
work and giving an overview of deductive framework in
the next section. The following two sections present query
evaluation techniques for programs without negations and
programs with negations respectively. Section V presents the
system architecture and implementation details. We present
our performance results in Section VI.

II. Related Work and Deductive Framework

In this section, we start with a discussion on related work,
and then, give an overview of the deductive framework.

A. Related Work

Here, we give an overview of prior works on programming
sensor networks and query processing in sensor networks.

NesC and Programming Abstractions. The Berkeley
motes [17] platform provides the C-like, fairly low-
level programming language called nesC [14] on top of the
TinyOS [13] operating system. However, the user is still faced
with the burden of low-level programming and optimization
decisions. There has been some work done on developing
programming abstractions [15, 19, 24, 25, 34, 41] for sensor
networks; however, these abstractions provide only minimal
programming support. Finally, authors in [4] propose an
interesting novel approach of expressing computations as
“task graphs,” but the approach has limited applicability.

Sensor Network as a Distributed Database. Recently, some
works [5, 20, 21] proposed the powerful vision viewing the
sensor network as a distributed database. The distributed
database vision is declarative, and hence, amenable to op-
timizations. However, the current sensor network database
engines (TinyDB [21], Cougar [5]) implement a limited
functionality of SQL, the traditional database language. In
particular, they only handle single queries involving simple
aggregations [32, 42] or selections [22] over single tables [33],
local joins [42], or localized/centralized joins [1] involving a
small static table. These approaches are appropriate for peri-
odic data gathering applications. SQL is not expressive enough
to represent general sensor network applications. Moreover,
due to the lack of an existing SQL support for sensor networks,
there is no real motivation to choose SQL. Recently, a dialect
of Datalog without negations has been suggested for use in
sensor networks [12], and a limited query processor designed.
The focus of [12] is generally on declarative representation of
networking and routing protocols. Our deductive framework is
essentially an expansion of the above approaches, wherein we
use a more expressive language for programming high-level
applications and design an efficient full-fledged in-network
query engine for sensor networks.

Procedural Languages. Recently proposed Kairos [26] pro-
vides certain global abstractions and a mechanism to translate
a centralized program (written in a high-level procedural
language) to an in-network implementation. In particular,
it provides abstractions such as get available nodes,
get neighbors, and remote data access. Kairos is the first
effort towards developing an automatic translator that compiles
a centralized procedural program into a distributed program
for sensor nodes. However, Kairos does not focus much
on communication efficiency; for instance, the abstraction
get available nodes gathers the entire network topol-
ogy, which may be infeasible in most applications.

In some sense, our approach has the same goals as that of
Kairos – to automatically translate a high-level user specifi-
cation into distributed code. However, since Kairos approach
is based on a procedural language, it is much harder to
optimize for distributed computation. Through some examples
in Section II-B, we suggest that our proposed framework

will likely yield more compact and clean programs than the
procedural code written in Kairos. Moreover, the deductive
programs for the examples in Section II-B yield efficient
distributed implementations involving only localized joins.

In general, we feel that procedural languages are unlikely to
be very useful in a restricted setting such as sensor networks,
since they are not declarative and would be hard to distribute
and optimize for communication cost.

In-Network Query Evaluation Techniques. The traditional dis-
tributed query processing algorithms are not directly applicable
to sensor networks due to their unique characteristics. There
has been a lot of work done on distributed query processing
for streaming data [11, 38]; however, they do not consider
resource-constrained networks and hence, minimizing commu-
nication cost is not the focus of these works. As mentioned
before, the current current sensor network database engines
(TinyDB [21], Cougar [5]) implement a limited functionality
of SQL. All of the above works are for distributed evaluation
of SQL, which is less expressive than our proposed deductive
framework. Recently, Loo et al. [10] presented distributed
evaluation of positive (without negations) datalog programs
with localized joins in a general network with no resource
constraints. In contrast, for our purposes, we need to evaluate
logic programs with negations involving non-localized joins
in networks with limited memory and energy resources.

B. Deductive Programming Framework

In our programming framework, we use full first-order logic
which extends Datalog by allowing function symbols in the
arguments of predicates, and thus, making the framework Tur-
ing complete [39]. We illustrate the need for function symbols
in Example 2. Thus, in our framework, the arguments of a
predicate may be arbitrary terms, where a term is recursively
defined as follows. A term is either a constant, variable, or
f(t1, t2, . . . , tn) where each ti is a term and f is a function
symbol. Thus, a logic rule is written as

H : − G1, G2, . . . , Gk.

H is the head, and Gi’s are the subgoals. The head and
the subgoals are of the form p(t1, t2, . . . , tm) where p is a
predicate and t’s are arbitrary terms. We allow use of built-in
predicates or functions. A built-in predicate may be system
defined or defined by the user in procedural code. For sake of
ease in programming, we allow restricted use of negations (as
discussed in Section IV) and aggregations.

Motivation. Use of deductive approach for sensor networks
is motivated by the basic observation that sensor networks
essentially gather sets of “facts” by sensing the physical world,
and applications manipulate these facts. We believe that the
collaborative functionality of a sensor network application can
be easily represented using deductive rules that manipulate
these facts, and the remaining local arithmetic computations
can be embedded in procedural built-in functions. Most im-
portantly, the deductive framework lends itself to automatic
optimizations related to communication costs. In our context,

the optimization of deductive programs is largely embedded
in the efficient data storage schemes, in-network implementa-
tion of the join, join-ordering, and other query optimization
techniques.

Specification and Maintenance of Sliding Windows. Sensor
network data can be modeled as data streams of facts
corresponding to sensing readings [20, 42]. Due to limited
memory resources, we store the data streams as sliding-
window [3, 8] consisting of typically the most recent tuples.
In our framework, we can use temporal predicates to
specify time-based windows. For instance, consider a data
stream S(a, t), where a is an arbitrary attribute and t is the
timestamp. The following defines sliding windows R of range
τw .

R(a, t, T) : −S(a, t), T − τw < t < T, S(, τ)

Above, the last subgoal is used to bound T , “ ” denotes an
anonymous variable, and R(, , T) is a tuple in the sliding-
window of time T . Time-based sliding-windows can be easily
maintained in a sensor network, by independently expiring a
tuple after sufficient time. By default, each subgoal in a logic
rules refers to an “unbounded” data stream. In this article,
we restrict our discussions to time-based sliding windows; in-
network maintenance of other types of sliding-windows is a
challenge and part of our future work.

Examples. In a recent work [12], a limited form of deductive
approach has been shown to be convenient for specification
of many sensor network protocols and applications. Here,
we present additional examples to illustrate need for negated
subgoals, function symbols, and involved use of recursion with
negation, for programming typical sensor network applica-
tions.

EXAMPLE 1: Need for Negated Subgoals. Negation in
deductive framework is essential (in absence of function sym-
bols) if we need to take a difference of two sets/tables. Con-
sider a sensor network deployed in a battlefield for tracking
enemy vehicles. Here, lets assume availability of a data stream
veh(ID, type, location, time) that signifies vehicle detection of
a certain type (’friendly’ or ’enemy’) at a particular time and
location. Now, let us say we are interested in generating an
alert when there is an “uncovered” enemy vehicle, i.e., an
enemy vehicle that is not within a distance of say 5 from
any friendly vehicle. The corresponding query may be simply
written as follows.
cov(l1, t) : − veh(′enemy′, l1, t), veh(′friendly′, l2, t),

dist(l1, l2) ≤ 5
uncov(l, t) : − NOT cov(l, t), veh(′enemy′, l, t)

�

EXAMPLE 2: Need for Function Symbols. We now il-
lustrate the need for function symbols in our framework.
Essentially, function symbols are required when we want to
create non-atomic values. For example, in case of vehicle
trajectories, if we need to compute and store the actual path
of the trajectory, we need to use function symbols (or lists).

Below is a logic program to compute trajectories, and to
determine pairs of parallel trajectories.

notStartReport(R2) : − report(R1), report(R2), close(R1, R2)
notLastReport(R1) : − report(R1), report(R2), close(R1, R2)

traj([R1, R2]) : − report(R1), report(R2), close(R1, R2),
NOT notStartReport(R1)

traj([X|R1, R2]) : − traj([X|R1]), report(R2), close(R1, R2)
completeTraj([X|R]) : − traj([X|R]),NOT notLastReport(R)

parallel(L1 , L2) : − completeTraj(L1), completeTraj(L2),
isParallel(L1 , L2)

Here, we use R to represent (x, y, t) signifying the location
(x, y) and time t of vehicle detection, and compute vehicle
trajectory paths from the base data report(R). For simplicity,
we assume that at any instant there is only one sensor detecting
the target, so the trajectory can be directly synthesized from a
sequence of report tuples. For clarity, we use lists instead of
function symbols; the list notation [X|Y] signifies X as the
head-sublist and Y as the tail-element. We use two locally-
processed built-in functions: close checks if two reports can
be consecutive points on a trajectory (i.e., close enough in the
spatial and temporal domains), and IsParallel checks if two
trajectories are parallel. �

EXAMPLE 3: Recursion with Negation (Shortest-Path
Tree). We now give a logic program for constructing a
shortest-path tree (H) from a root node (A) in a network
graph G. Shortest-path trees are use for data-gathering at the
root from the network nodes. This example illustrates a more
involved (XY -stratified) use of recursion and negation. Note
that, for general graphs with cycles, the shortest path program
cannot be written using just aggregates (without negations
and/or function symbols).

logicH Program:
H(A, A, 0).
H(A, x, 1) : − G(A, x)
H ′(y, d + 1) : − H(, y, d′), (d + 1) > d′, H(, x, d), G(x, y)
H(x, y, d + 1) : − G(x, y), H(, x, d), NOT H ′(y, d + 1)

The predicate H(x, y, d) is true if there is a path of length d

from A to y using the edge (x, y); essentially, H(x, y, d) gives
the set of edges added in the breadth-first search at dth level.
The predicate H ′(y, d+1) is true if there is already a path from
A to y of length shorter than d+1. The first two logic rules of
the above program define the base cases. The third rule defines
H ′; “ ” is the notation for anonymous or don’t care variable,
and the last two terms in the rule serve the purpose of bounding
d (to ensure safety). The given logic program is XY -stratified
(see Section IV-C), and is more compact than the 20 lines of
procedural code written in Kairos [26]. More importantly, it
can be automatically translated into communication-efficient
distributed code; we present more details in Section VI. �

Embedding Arithmetic Computations in Built-in Predi-
cates. Certain aspects of sensor network applications involve
local arithmetic computations such as signal processing, data
fusion, synthesis of base data, etc. Such arithmetic com-

putations may be too inefficient to represent in a deduc-
tive framework, but can be embedded in procedural built-
in functions without affecting the communication efficiency
of the translated distributed code. The distributed arithmetic
computations can be embedded in built-in aggregates with
specialized distributed implementations. For instance, in vehi-
cle tracking [7, 36], arithmetic computations involve estimating
belief states, information utilities, and future target location;
the first two computations are local and can be embedded
in built-in functions, while the last computation requires the
maximum aggregate. The resulting deductive program is much
simpler [16] than the procedural code in Kairos [26].

Extensions and Limitations of the Approach. A deductive
framework has strong theoretical foundations and can be easily
extended to include other specialized deductive frameworks.
Specialized logics that could be useful in the context of sensor
networks include Probablistic LP [35] and Annotated Predicate
Logic [29] (for reasoning with uncertain information). As
with any programming framework, deductive programming
has its own limitations. In particular, logic programs are
sometimes non-intuitive or difficult to write; e.g., the shortest
tree program of Example 3 is clean and compact, but quite
non-intuitive compared to a procedural code. As such the
deductive framework is targeted towards expert and trained
users, for whom the relief from worrying about low-level
hardware and optimization issues would far offset the burden
of writing a logic program.

III. Queries without Negations

In this section, we discuss our techniques for in-network
evaluation of deductive queries without negations. In the next
section, we will extend these techniques to evaluation of
queries with negations.

Bottom-up Approach. We use the bottom-up approach [40] of
evaluating deductive queries, since the bottom-up approach is
amenable to incremental and asynchronous distributed evalua-
tion, and has minimal run time memory requirements beyond
storage of intermediate results. Since, the join operation is
at core of the bottom-up approach, we consider techniques
for in-network implementation of join in the next subsection.
Then, in the following subsection, we generalize the join
implementation to evaluation of recursive programs without
negations.

A. In-Network Implementation of Join

In this section, we address the problem of in-network
implementation of join of data streams. Here, we assume only
insertions into data streams; we will generalize our techniques
to handle deletions in Section IV-A.

Problem Model. More formally, we wish to compute R1 on

R2 on . . . Rn, where each Ri is a data stream being generated
in a distributed manner across the sensor network. The join
conditions may be arbitrary; however, we give special con-
sideration to “spatial” joins (discussed later). The join-query
result tuples may be output arbitrarily across the network, since

they will anyway be hashed appropriately for further use of
the join-query result. As suggested before, the join operation is
constrained to the join of sliding-windows of operand streams.

A naive way to compute the join is to send each gen-
erated tuple to some central server for computing the join.
Such a scheme without any in-network processing may incur
prohibitive communication costs [31, 32] and may result in
quick failure of the nodes close to the server (rendering the
central server disconnected from the network). Thus, we have
designed a Perpendicular Approach which is communication-
efficient, load-balanced, fault-tolerant, and immune to certain
topology changes. In this article, we give only the basic idea of
the approach by describing how it works on 2D grid networks.
The approach can be generalized to arbitrary topologies as
described in our other work [44]. We start with describing it
for a join of two data streams, and generalize it to join of
multiple data streams.

Perpendicular Approach (PA) for Two Streams in Grid
Networks. Consider a 2D grid network of size m×m, which
is formed by placing a node of unit transmission radius at each
location (p, q) (1 ≤ p ≤ m and 1 ≤ q ≤ m) in a 2D coordinate
system. Two nodes can directly communicate with each other
iff they are within a unit distance of each other. Now, consider
two data streams R1 and R2 in the above network, and a tuple
t (of either data stream) generated at coordinates (p, q). PA
consists of two phases, viz., storage and join-computation.

• Storage Phase: In the storage phase, the tuple t is stored
(replicated) along the qth horizontal line, i.e., at all nodes
whose y-coordinate is q. This ensures that set of nodes on
each vertical line collectively contain the entire sliding-
windows for R1 and R2.

• Join-computation Phase: In the join-computation phase,
we route t along the pth vertical line to compute the result
tuples due to t (i.e., t on R2 or t on R1 depending on
whether t is in R1 or R2). The result tuples are computed
by locally joining t with matching tuples of R1 or R2

stored at nodes on the pth vertical line.

The above scheme can be shown [44] to incur near-optimal
(within a factor of eight) communication cost in a square-
grid with uniform generation rates. Maintenance of sliding-
windows and handling of simultaneous updates is discussed
below, in the more generalized context of multiple data
streams.

PA for Multiple Streams in Grid Networks. We now
generalize PA to handle more than two data streams as follows.
First, the storage strategy remains the same as before, i.e.,
each tuple t generated at (p, q) is still stored along the qth

horizontal line. However, in the join-computation phase, we
need to traverse the vertical line in a more involved manner,
as described below. We start with a definition.

Definition 1: (Partial Result.) Let R1, R2, . . . , Rn be data
streams and let t be a tuple of Rj . A tuple T is called a
partial result for t if T is formed by joining t with less than
n−1 given data streams (other than Rj). More formally, T is
a partial result for t if T ∈ (t on Ri1 on Ri2 . . . Rik

) where

t21
t22

<t10,t21,t32 >

Complete
Results

<t10>
<t10, t21>
<t10, t32>

<t10>

t31
t32

t23
t24

t33
t34

Partial
Results

Local Tables for
Streams R2 and R3

<t10,t21,t34>
<t10,t23,t32>
<t10,t23,t34>

<t10, t23>
<t10, t34>

Vertical
Line

(p, q’)

(p, q’-1)

<t10>
<t10, t21>
<t10, t32>

Fig. 1. One-Pass Join Computation. Here, ti∗ ∈ Ri . We assume
assume the join conditions to be such that t10 matches only with
t21, t23, t32, t34 , and there is no join condition between R2 and R3 .

k < n− 1 and il 6= j for any l. The tuple t is also considered
a partial result (for the case when k = 0). If k = n − 1, then
T is called a complete result. �

Join-computation Phase. Consider a tuple t (of some data
stream) generated at a node (p, q). In the one-pass scheme,
the tuple t is first unicast to one end (i.e., (p, 0)), and then, is
propagated through all the nodes on the pth vertical line by
routing it to the other end. At each intermediate node (p, q′),
certain partial and complete results (as defined above) are
created by joining the incoming partial results from (p, q′−1)
with the operand tuples stored at (p, q′). The computed partial
results along with the incoming partial results are all forwarded
to the next node (p, q′ + 1). See Figure 1. Certain incoming
tuples may join with the operand tuples stored at (p, q′)
to yield complete results, which are then output and not
forwarded. The partial results generated at the last node (other
end) are discarded.

Multiple-Pass Scheme. The above join-computation scheme
is called the single-pass scheme. In the multiple-pass scheme,
the join-computation phase takes place in a certain order of
data streams. Each iteration of the multiple-pass scheme is
essentially a one-pass scheme involving join of a data stream
with partial results generated in the previous iteration.

Simultaneous Insertions and Sliding Windows. To correctly
handle simultaneously generated tuples across the network, we
should start the join-computation phase for a tuple only after
the completion of a storage phase. Thus, we introduce a delay
of τs between the start of two phases, where τs is the upper
bound on the time to complete a storage phase. To maintain
sliding-windows, tuples can be expired after a storage time of
(τs +τj +τw), where τj is the upper bound on the completion
time of a join-computation phase and τw is the sliding-window
range.1 We omit the proof of the below theorem; we prove a
more general claim in Theorem 3.

Theorem 1: Given data streams R1, R2, . . . , Rn in a 2D
grid sensor network, the Perpendicular Approach (PA) cor-
rectly maintains the join-query result R1 on R2 on . . . Rn, in

1For simplicity, we assume the range of the sliding-window to be in terms
of a global clock, or that all nodes have a synchronized clock. We relax the
assumption in Section IV.

response to distributed (and possibly, simultaneous) insertion
of tuples into the data streams. We assume bounded message
delays, so as to be able to bound the completion times of
storage and join-computation phases.

PA in General Networks. Generalization of PA to networks
with arbitrary topology requires developing an appropriate
notion of vertical and horizontal paths such that each vertical
path intersects with every horizontal path. We refer the reader
to [44] for details of such a scheme and its performance
comparison with the “Centroid Approach.” Here, we state the
below without proof.

Theorem 2: Given data streams R1, R2, . . . , Rn in a sensor
network with arbitrary topology, the Perpendicular Approach
(PA) correctly maintains the join-query result R1 on R2 on

. . . Rn, in response to distributed (and possibly, simultaneous)
insertion of tuples into the data streams. We assume bounded
message delays.

Function Symbols and Spatial Constraints. Note that PA eas-
ily generalizes to attributes with arbitrary terms involving
function symbols, since the join conditions are evaluated only
locally at each node. Due to inherent spatial correlation in
sensor network data [9], the join predicates in sensor network
queries frequently include a spatial constraint (i.e., two tuples
can join only if they are generated at nodes within a certain
hop/Euclidean distance). To incorporate spatial constraints in
PA, we can store each tuple over only an appropriate part of
the horizontal path, and similarly, traverse only an appropriate
part of the vertical path. The above results in storage and
communication cost savings.

Generalized Perpendicular Approach (GPA). The core idea
used in the above Perpendicular Approach is that of intersect-
ing storage and join-computation regions, which are the set
of nodes using in the respective phases. In PA, the storage
and join-computation regions were the vertical and horizontal
paths. In general, such regions can be arbitrary as long as
every storage region intersects with every join-computation
region.2 We refer to such a general scheme as the Generalized
Perpendicular Approach (GPA). The degenerate examples of
GPA are (i) Naive Broadcast Approach, wherein the storage
region is the entire network and the join-computation region
is the local node, and (ii) Local Storage Approach, wherein
the storage region is the local node, and the join-computation
region is the entire network. The correctness of our query
evaluation schemes in the next section hold for the Generalized
Perpendicular Approach, irrespective of the specific storage
and join-computation regions.

B. Evaluation of Queries without Negation

In this section, we discuss in-network evaluation of deduc-
tive queries without negations. We start with discussing storage
of derived tuples, which is key to uniform treatment of derived
and base streams.

2However, for arbitrary join-computation regions, the multiple-pass scheme
may be easier to implement than the single-pass scheme.

Hashing Derived Tuples; Derived Data Streams. The Gener-
alized Perpendicular Approach (GPA) discussed in the previ-
ous subsection generates the result tuples across the network
in some arbitrary manner. However, for efficient elimination
of duplicates (we store derived tables as sets), we need to
hash and store the derived tuples across the network such that
identical derived tuples are stored at same (or close-by) nodes.
We can use well-known geographic hashing schemes for above
(see Section V for more discussion).

The above hashing and storage scheme facilitates transfor-
mation of each derived table into a data stream for evaluation
of higher-level predicates. Essentially, a derived tuple t is
considered to be generated (just like a base fact) at the hashed
location at its first instance. Note that later duplicates of t are
not considered as generations.

Evaluation of Deductive Queries without Negations.
Consider a predicate Q represented by multiple deductive
rules (without recursion or negation) over base streams and
with common head predicate Q. Evaluating the query Q

is equivalent to computing the join corresponding to each
deductive rule and then, taking a union of the results. The
union of results is facilitated by the hashing/storage scheme
described in the previous paragraph. It is easy to include
recursion in the deductive rules, since a recursive subgoal can
be treated just like a subgoal of another predicate. Finally,
the above evaluation algorithm can also be use to evaluate an
arbitrary recursive deductive program without negations, due
to the generation of each derived result as a data stream. Note
that the above evaluation algorithm is for insert-only base
streams, as is typically the case in sensor networks where
data is a stream of sensor readings.

IV. Queries With Negations

In this section, we generalize our Generalized Perpendic-
ular Approach of Section III-A to evaluate deductive queries
involving negations.

High-Level Plan. In Section III-A, we showed that the
Generalized Perpendicular Approach (GPA) correctly main-
tains a join-result in response to simultaneous insertions. We
generalize GPA to evaluate deductive programs with negations
in the following steps.

• First, in Section IV-A, we generalize GPA to maintain a
join-result in response to deletions to the operand streams.
This generalization is fundamental to handle negations in
deductive programs.

• Then, in Section IV-B, we generalize GPA to evaluate
queries represented by a single deductive rule involving
negated subgoals.

• Finally, in Section IV-C, we generalize our scheme to
evaluation of XY -stratified and locally non-recursive
deductive programs, which incorporate a restricted form
of combined recursion and negation and are useful in the
context of sensor networks. Lastly, we discuss evaluation
of general stratified deductive programs.

Nature of Extensions to GPA. In general, generalizing GPA
for the above cases requires one or more of the following
types of changes: (i) The storage phase of a deleted tuple t

will involve removing (see below) the replicated copies of t

from its storage region, (ii) The result of the join-computation
phase needs to be appropriately processed to maintain the
query result, (iii) The join-computation phase will need to
be extended to evaluate rules with negated subgoals, and (iv)
There would be an appropriate delay introduced before the
start of the join-computation phase. We use the term removal
of a tuple to signify removing the replications of a tuples
from its storage region; in contrast, deletion refers to an actual
deletion of the tuple from its table. Note that deletion of a tuple
occurs only at its source node.

A. Generalizing GPA to Handle Deletions

Consider data streams R1, R2, . . . , Rn in a sensor network.
Let R1, R2, . . . , Rn also denote the current sliding windows
of respective data streams, and let the join-query result
R1 on R2 . . . on Rn be stored (as a set, without duplicates)
in a distributed manner across the network based on some
hashing scheme (as discussed in the previous subsection).

Various Possible Techniques. Let us consider deletion of a
tuple t1 from the stream R1. For now, lets assume that
there are no other insertions or deletions. To maintain the
join-query result, we must compute t1 on R2 . . . on Rn and
“delete” it from the maintained join-query result. However, a
straightforward subtraction of sets may not work, since the
set (R1 − t1) on R2 . . . on Rn may not be equal to the set
(R1 on R2 . . . on Rn) − (t1 on R2 . . . on Rn). We can solve
the above problem in one of the following ways: (i) Counting
Approach [27]: Store the query result as a bag, or keep a
count of multiplicity of each result tuple, (ii) Rederivation
Approach [27]: Partly recompute the result, or (iii) Keep
the actual set of derivations (as described below) for each
result tuple. The counting approach is difficult to implement
accurately for a fault-tolerant technique such as GPA, due to
non-deterministic duplication of result tuples. The rederivation
technique will result in a lot of communication overhead.
However, the technique of keeping the actual set of derivations
incurs no additional communication overhead. There is a space
overhead of storing the derivations, but it may be tolerable if
tuples have only a few derivations.

Definition 2: (Source Node; Tuple ID; Derivation of a
Tuple) The source node of a tuple is the node in the network
where the tuple is generated; note that a derived tuple is
generated at its hashed location.

Tuple-ID is used to uniquely identify a tuple in the system.
We use (I, τ) as the ID of a tuple t, where I is its source
node and τ is its generation-timestamp (local time at I when
t was generated).

A derivation of a derived tuple t is the list of the tuple-
IDs, that join to yield t, one from each of the data streams
corresponding to the non-negated subgoals of the (safe) de-
ductive rule used to derive t. In general, we also include in
the derivation, the ID of the rule used to derive t. �

Set-of-Derivations Approach. Let T = R1 on R2 . . . on Rn

be the current join-result. For each tuple t ∈ T , we maintain
its set of derivations with it. Now, in response to an isolated
deletion of tuple tr1 from R1, the join-result T is maintained
as follows. Isolated insertions into a data stream are similarly
handled.

• First, we compute Tr1 = tr1 on R2 . . . on Rn) along
with the derivation of each tuple in Tr1.

• Second, for each derived tuple t ∈ T , we subtract the
set of derivations of t in Tr1 from the set of derivations
of t in T .

• Finally, based on the above, t is deleted from T if the
resulting set of derivations of t becomes empty.

The first step (computation of Tr1) constitutes the join-
computation phase of GPA for deletion of tr1. However,
preceding this first step is the storage phase of GPA for tr1,
wherein tr11 is removed from its storage region.

Handling Simultaneous Insertions and Deletions. The above
technique correctly maintains a join-result in response to
isolated (one at a time) insertions or deletions to operand
streams. To handle simultaneous updates, we start the join-
computation phase after a delay of τs+τc from the start of the
storage phase; here, τs is the upper bound on the completion
of a storage phase and τc is the maximum difference between
local clocks of two nodes. The above delay allows us to
essentially process the updates in the order of their local
timestamps. We prove the correctness of the above strategy
in a more general context in Theorem 3.

B. Deductive Rule with Negated Subgoals

Let T be a query represented by a non-recursive safe3

deductive rule with possibly negated subgoals. That is, let

T :- R1, . . . , Rn, NOT S1, . . . , NOT Sm

Above, each Ri or Sj (not necessarily distinct) is a data
stream. We now generalize our technique of previous subsec-
tion to maintain T . Let tr1 be an isolated insertion or deletion
into the stream R1. Maintenance of T in response to the above
update consists of the following steps.

• First, we compute

Tr1 :- tr1, R2, R3, . . . , Rn, NOT S1, . . . , NOT Sm,

along with the derivation of each tuple in Tr1. To compute
Tr1 , we modify the join-computation phase of tr1 as
follows. We compute and propagate partial results of
tr1 on R2 on . . . on Rn, and delete partial or complete
results that match with a tuple in some Sj .

• Then, for each tuple in Tr1, we add or subtract (based on
tr1 being an insertion or deletion) its set of derivations
in Tr1 with its original set of derivations in T .

• Similarly, to process an insertion or deletion ts1 from S1,
we first compute

Ts1:- R1, . . . , Rn, ts1, NOT S2, . . . , NOT Sm,

3In a safe rule, each variable in the rule must appear in a non-negated
relational subgoal.

and then, for each tuple in Ts1, add (for deletion ts1) or
subtract (for insertion ts1) its set of derivations in Ts1

from the original set of derivations in T .

It is easy to see that the above correctly maintains T in
response to such isolated insertions or deletions into the
operand streams.

Handling Simultaneous Updates. To maintain T in face of
simultaneous updates across the network, we use the follow-
ing strategy. Below, an event-timestamp refers to the local
timestamp at the node where and when the event (update,
generation, or deletion) occurred.

• We start the join-computation phase of any tuple after a
delay of τs + τc from the start of its storage phase; here,
τs is the upper bound on the storage-phase time and τc

is the maximum difference between the local clocks of
any two nodes.

• During the join-computation phase of a tuple t with a
update-timestamp of τ , we match/join t with only those
tuples that (i) have a generation-timestamp between τ and
(τ − τw), and (ii) do not have a deletion-timestamp of
less than τ . Here, τw is the range of the sliding-window.

• To facilitate the above step, during the storage-phase of a
tuple deletion, we do not remove the replicated copies
of the tuple from the nodes, but instead only record
its deletion-timestamp. They are eventually “expired” as
suggested below.

The above strategy ensures that the updates are virtually
processed in the order of their local timestamps. Tuple Expiry:
In conjunction with the above strategy, we can maintain
sliding-windows by expiring a tuple after a storage time of
(τs + τc) + τj + (τw + τc). Here, the first term of (τs + τc)
is due to the delay in starting a join-computation phase, the
second term τj is the upper bound on the completion time of
a join-computation phase, and the last term (τw + τc) is the
maximum “relative” range of the sliding-window.

Theorem 3: The above described strategy correctly main-
tains the query result

T:- R1, . . . , Rn, NOT S1, . . . , NOT Sm,

in face of simultaneous insertions or deletions to the given data
streams, under the assumption that τs, τj , and τc (as defined
above) are bounded and there are no message losses.
Proof. Consider a tuple tr1 that is inserted or deleted in R1

with an local timestamp of τ . Let Ri (1 ≤ i ≤ n) or Si

(1 ≤ i ≤ m) refer to the sliding-window of the respective
data stream consisting of all (and only those) tuples that:
(i) have a generation-timestamp of less than τ and more
than (τ − τw), and (ii) do not have a deletion-timestamp of
less than τ . To prove the theorem, we essentially need to
show that during the join-computation phase of tr1, the join-
computation region used by tr1 contains the sliding-windows
Ri (2 ≤ i ≤ n) and Si (1 ≤ i ≤ m). The above will show
that Tr1 :- tr1, . . . , Rn, NOT S1, . . . , NOT Sm is correctly
computed for the update of tuple tr1 into R1. Updates into
other streams occur in a similar manner. By the definition of

the sliding-windows Ri (1 ≤ i ≤ n) and Si (1 ≤ i ≤ m),
the above claims will prove that simultaneous updates across
the network are correctly handled in the order of their update-
timestamps, which proves the theorem.

To show that the join-computation region used by tr1

contains the defined sliding windows, observe the following.
Firstly, the delay of τs + τc before the join-computation of
tr1, guarantees that before the join-computation of tr1 starts,
storage phases of all tuples with a generation-timestamp of
less than τ have been completed. Secondly, the storage time
of (τs + τc) + τj + (τw + τc) ensures that the replications of
matching tuples do not expire before the completion of the
join-computation phase of tr1.

Multiple Rules with Same Head Predicate. Note that mainte-
nance of a query result represented by multiple non-recursive
deductive rules with the same head, is equivalent to maintain-
ing each rule independently, and taking a union. Recall that
derivation of a tuple includes the ID of the rule used.

C. General Deductive Programs

Non-Recursive Deductive Programs. In the above subsection,
we described a query evaluation scheme to maintain a query
represented by multiple non-recursive deductive rules with
negations. Actually, the same scheme also works for evaluation
of general non-recursive deductive programs, if we use the
hashing/storage scheme suggested in the previous section.
Essentially, hashing and storing the derived tuples based on
some hashing scheme yields a derived data stream for each
derived predicate; these derived streams can be handled in
the same manner as base streams to update “higher-level”
predicates. Note that in a program with negations, a derived
stream may incur deletions; this doesn’t pose a problem to
the correctness of the evaluation scheme since Theorem 3
holds for insertions as well as deletions into the operand
streams. However, we need to wait for an appropriate time
before actually “finalizing” a derived fact (since it may be
retracted/deleted later), which is acceptable due to bounded
size sliding-windows and implicit temporal correlation in the
sensor data.

The correctness of our evaluation scheme for general non-
recursive deductive programs follows from Theorem 3, and
the following two observations.

• First, the set of derivations of any derived tuple is
finite, since non-recursive programs (even with function
symbols) have finite query results.

• Second, each derivation of a derived tuple yields a valid
“proof tree” with leaves as base tuples.4 Again, this
holds because the program is non-recursive, and hence
the proof tree constructed (by iteratively “unfolding” the
derivations) will have no directed cycles. Thus, a set of

4A proof tree [40] of a derived tuple t describes how the tuple t is
constructed from the base tuples; an interior node in the tree corresponds
to an intermediate derived tuple, and a node r’s children are the tuples used
to derive r using a single rule in the program.

derivations of a tuple t is nonempty if and only if there
is a valid proof tree.

Combining Recursion and Negation – Evaluating XY -Stratified
Programs. Evaluation of logic programs with unrestricted
negation and recursion is infeasible in sensor networks,
since it will require a series of distributed fixpoint checks
for evaluation of well-founded semantics [2]. However, our
evaluation scheme outlined also works for evaluation of
XY -stratified programs [43], wherein the derived tables can
be partitioned into “sub-tables” such that the dependency
graph5 on the sub-tables is acyclic. The partitioning of tables
into sub-tables is generally based on the values of one or
more arguments of the derived tuples. For instance, consider
the logicH program of Example 3. The table H be partitioned
into sub-tables H1, H2, . . . , based on the the value of the third
argument, such that Hd represents the sub-table consisting
of all the facts H(, , d). Similarly, H ′

d can be the sub-table
consisting of all the facts H ′(, d). Now, the dependency
graph on the above sub-tables is actually acyclic, since there
exists a topological order (H0, H

′

1
, H1, H

′

2
, H3, . . . ,) of the

sub-tables in the dependency graph. Thus, the logicH program
is XY -stratified.6 Similarly, the program of Example 2 is
XY -stratified since the traj table can be partitioned based on
the path length.

The concept of XY -stratification is particularly useful in
the context of sensor network because of the ordering imposed
sometimes by timestamp attribute. Note that the partitioning
of tables into sub-tables and acyclicity of their dependency
graph is only to observe correctness of the evaluation scheme;
the evaluation scheme itself is oblivious of the partitioning.

Evaluating General Recursive Programs. Recall that the cor-
rectness of our evaluation scheme (specifically, the set-of-
derivations approach) hinges on the fact that each remaining
derivation of a derived tuple indeed yields a valid proof tree.
A derivation of a tuple is guaranteed to yield a valid proof
tree only if there are no directed cycles in the tree constructed
by unfolding the derivations. Thus, general recursive programs
(even with stratified negations) cannot be evaluated correctly
using our evaluation scheme, since a non-empty set of deriva-
tions of a tuple may not imply existence of a valid proof tree
for the tuple.

However, our evaluation scheme will correctly evaluate
programs with no cycles in the dependency graph over the
derived tuples, wherein there is a directed edge from tuple t1
to t2, if t2 was derived using t1. Such programs are referred
to as locally non-recursive programs [6].

For evaluation of general stratified programs, we need to
employ some variant of the rederivation approach [27]. The
rederivation approach in our context will essentially consists of
two steps: First, temporarily delete a tuple if the set of deriva-
tions reduces, and then, check if the temporarily-deleted tuple

5In the dependency graph, an edge exists from a predicate P to a predicate
Q if there is a rule with head P whose body contains Q.

6Our notion of XY -stratified programs is slightly more general than the
original notion defined in [43].

can be derived from the existing base tuples. Execution of the
second step may incur additional communication cost. Thus,
efficient in-network evaluation of general stratified programs
is a challenge, and will be addressed in our future work.

Built-in Predicates, Function Symbols, and Aggregations.
Our query evaluation scheme can be easily generalized
to handle built-in predicates, since the evaluation of join-
conditions and execution of built-in predicates is done only
locally. Also, incorporating function symbols in deductive
rules only requires extending the evaluation of join-condition
using the term-matching operator [40]. However, introduction
of function symbols in deductive programs may result
in non-termination of recursive programs and may make
optimizations difficult; but we anticipate that function symbols
will be used in limited contexts, and hence, allow their use
for full expressibility. Aggregates can be represented in
logic rules using the Prolog’s all-solutions predicate. We
can use specialized distributed techniques such as TAG [32]
or fault-tolerant synopsis diffusion [23] for evaluation of
incremental aggregates.

V. System Implementation

In this subsection, we give an overall architecture of our
system, address resource requirements, and present details of
our current implementation.

Overall Architecture. Figure 2 depicts our overall system
architecture and high-level plan of in-network evaluation of
logic queries. Basically, the user specified logic-program
is first optimized using magic-set transformations [40] (used
to optimize the bottom-up evaluation strategy), and then
translated into appropriate code which represents distributed
bottom-up incremental evaluation of the given user program.
The compiled code is downloaded into each sensor node.
Within each sensor node, there is a layer of in-network imple-
mentations of relational operators (such as join), aggregates,
and built-in predicates/functions. The above layer is in addition
to the usual routing and networking layers.

Sensor Node

User

Central
Server

Logic Program

Compiled Code
Relational Ops, Aggregates,

and Built -in Functions

Networking, Routing, Protocols

User Program

Bottom-up Control

Other Layers’ Control

Flash (Code space)

RAM

Views’
Fragments,
Base Facts

Control
Structures/Data

Magic Sets

Transformed Rules

for distributed bottom-up
incremental evaluation

Fig. 2. System Architecture.

Memory Requirements. Currently available sensor nodes
(motes) have 4 to 10 KB of RAM and 128 KB or more of on-
chip flash memory. The memory capacities have evolved over

Hashing
ComponentGeneric Join

Component

Stored
Tables

List of
Join

Conditions
User Built-in
Functions

Incoming
Partial
Results

Generated
(or deleted)

Tuples

Complete
Results

Partial
Results

Generated by
User Program

RAM

Routing
Component

Fig. 3. The join component at a sensor node. Newly generated tuples
are fed into the join component, which generates partial and complete
results by joining with local tables. The complete results are sent
to the hashing component for hashing, and then, forwarded to the
routing component for storage at the hashed location. The partial
results are also forwarded to the routing component to route to the
next node on the join-computation path. Partial results received from
other nodes are treated similarly. In addition, newly generated tuples
are also routed for replication in the storage phase (not shown).

years [18], and latest Intel mote is being designed with 64 KB
RAM [28]. In our system, the user program essentially consists
of the generic join interface (as described in Section VI),
the list of join-conditions for the deductive rules, and the
(procedural) code for the system/user built-in functions. This
is in addition to the other networking layers. A typical on-chip
flash memory is ample to easily contain the native code of a
user program and various system layers.

Overall Main Memory Usage. The strain on sensor nodes’
main memory is due to (i) run-time control structures used
by various system layers and the bottom-up approach, and
(ii) derived results (i.e., storage of derived tuples and the
corresponding set of derivations, and their replication to fa-
cilitate efficient join computation) during program execution.
The bottom-up query evaluation approach requires minimal
run-time control structures beyond those needed for setting up
indexes and joins. Note that the list of join-conditions, being
read-only part of the user program, can reside on the on-chip
flash memory.

Derived Results. The derived/intermediate tables are stored in
a distributed manner across the network. So, the total main
memory available for storing derived tables is the cumulative
main memory of the entire network. Thus, we expect the
available main memory resources to be sufficient for most user
programs. For instance, for the shortest-path tree program of
Example 3, the derived results are H (or J , for the improved
logicJ program given in Section VI) and H ′, and based on the
storage scheme discussed in Section VI, each node y stores
only tuples of the form H(, y,) (or J(x,)) or H ′(y,) where
x is a neighbor of y. Thus, the total number of tuples stored
at any node is at most 2 to 3 times its degree. In a stable state,
each node contains a single tuple of H . In general the storage
and replication of intermediate results (materialized views) is
required for communication efficiency and is inherent to the
user program, rather than the programming framework.

Computation Load. Most of the processing in our system is in
the form of distributed evaluation of logic rules or local built-
in functions. The bottom-up evaluation of logic rules requires
simple local operations such as term-matching [40], and
hence, result in minimal processing load. The processing load
due to arithmetic-intensive local built-in functions is inherent
to a user program. Thus, our approach is not expected to
increase the overall processing load.

Our System Implementation. The main purpose of our
system is to automatically translate a given deductive program
into distributed code that runs on individual sensor nodes.
The generated code represents our outlined query evaluation
strategy. In particular, we have developed nesC interface
components for various versions (see Section III-A) of the
Generalized Perpendicular Approach, viz., Naive Broadcast,
Local Storage, Perpendicular Approach, and Semi-Naive Strat-
egy (see Section VI). These generic components reside in each
node. The front-end compiler parses and compiles a given
deductive program into a .h file containing (i) the database
schema (list of predicates and attributes), and (ii) for each
rule, the list of attributes in the result and each subgoal, and
the join conditions. The join-conditions are used by the generic
join component to evaluate the predicates in the program. The
appropriate formatted .h file is #-included in the nesC program,
and read into appropriate data structures. Figure 3 shows a
high-level block diagram of our implementation.

The current version of our system can handle general deduc-
tive programs with arithmetic built-in functions and predicates.
Our implementation platform is the TOSSIM [30] simulator,
and a small network tested of sensor motes. Later versions of
our system would incorporate function symbols, aggregations,
and arbitrary user-defined built-in functions. In our current
implementation, the hashing scheme of the tables is provided
by the user.

VI. Performance Evaluation

In this section, we present our simulation results for imple-
mentation of the shortest-path tree program of Example 3. The
shortest-path tree program of Example 3 incorporates quite
a non-trivial combination of negation and recursion, and the
resulting query evaluation algorithm is quite different from
the native implementation. In contrast, the translated code for
other examples or typical applications, viz., Examples 1 to 3
in Section II-B, vehicle tracking based on belief states [16]
or Darpa-Nest software [41], and multilateration [37], natu-
rally yields communication-optimal translations (essentially,
the same algorithm as the native algorithms) with appropriately
chosen hashing schemes [16]. Thus, to gain more insight into
our proposed approach, we choose the challenging shortest-
path tree example for performance comparison.

Comparison of Program Sizes. For the above given examples,
the deductive programs are much shorter and compact (very
few logic rules) compared to the corresponding procedural
code. Here, we ignore the size of the procedural code for
user-defined built-in functions, since that is common across
the deductive and procedural frameworks.

A. Distributed Evaluation of logicH Program

logicH Program (Repeated from Example 3)

H(A,A, 0).
H(A,x, 1) : − G(A,x)
H ′(y, d + 1) : − H(, y, d′), (d + 1) > d′,H(, x, d),G(x, y)
H(x,y, d + 1) : − G(x, y),H(, x, d), NOT H ′(y, d + 1)

Hashing Scheme, and In-Network Join of logicH Rules.
Since y is the only node-ID attribute in H ′(y, d) tuples, each
tuple H ′(y, d) is hashed to the y node. Also, to facilitate
efficient join, we hash each tuple H(x, y, d) to y. The above
hashing scheme entails that all pairs of matching tuples reside
within one hop of each other. Thus, we can easily use the
Naive Broadcast approach for computing joins. However,
for our specific context, the below described Semi-Naive
Approach is most efficient.

Semi-Naive Approach. Consider a join of two tables R1

and R2 with the join-predicate containing a one-hop spatial
constraint. We can compute the join of R1 and R2 using
the following Generalized Perpendicular Approach (GPA). For
R1, we choose the storage and join-computation regions to
be the source node itself, while, for R2, we choose both the
regions to be 1-hop neighborhoods of the source node. Thus,
to compute the join, only the tuples of R2 need to be 1-hop
broadcast from the source node; this broadcast can serve the
purpose of both the storage and join-computation phases for
R2 tuples.

In-Network Join of logicH Rules. In our logicH program, the
third and fourth rules are essentially two-table joins with one-
hop spatial constraint, since we assume each tuple G(x, y) to
be available at both x and y nodes. Thus, we can use the Semi-
Naive Approach for them. For the third rule, we choose the
subgoal H(, y, d′) as R1, and for the fourth rule, we choose
the subgoal H ′ as R1.

The above scheme requires only one broadcast for each
insertion or deletion into the H table, and the tuples H ′(y,)
and H(, y,) are derived at their hashed locations itself. Thus,
the only communication cost incurred for the logicH program
is the 1-hop broadcast of each H tuple.

Optimized logicJ Program. The logicH program for shortest-
path tree can be optimized by a simple aggregation or pushing
down projection. Note that the evaluation of the third and
fourth logic rules in logicH is independent of the value of the
first argument of the subgoal predicates H . Thus, we do not
need to process an insertion H(z, x, d), if there already exists
a tuple H(z′, x, d). Thus, we need to only process insertions
or deletions of J(y, d) where J(y, d) : − H(x, y, d). We can
thus rewrite the logicH program as follows.

logicJ Program:

H(A,A, 0).
H(A,x, 1) : − G(A, x)
J(y, d) : − H(x, y, d)
H ′(y, d + 1) : − J(y, d′), (d + 1) > d′, J(x, d), G(x, y)
H(x, y, d + 1) : − G(x, y), J(x, d), NOT H ′(y, d + 1)

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10

R
es

ul
t i

na
cc

ur
ac

y
(%

)

Message loss probability (%), 25 nodes

Procedural Code
LogicH
LogicJ

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10

R
es

ul
t i

na
cc

ur
ac

y
(%

)

Message loss probability (%), 50 nodes

Procedural Code
LogicH
LogicJ

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10

R
es

ul
t i

na
cc

ur
ac

y
(%

)

Message loss probability (%), 75 nodes

Procedural Code
LogicH
LogicJ

Fig. 4. Comparison of result inaccuracies of various programs for varying parameters on the TOSSIM simulator.

B. Simulation Results

We now compare the performance of our translated codes
for logicH and logicJ programs with the procedural code.
Simulation Setup, Programs, and Performance Metrics. We
run our simulations using the TOSSIM simulator on a
randomly generated sensor network, and on a network tested
of 25 motes placed in an arbitrary topology. In particular,
the sensor network for TOSSIM simulations is generated by
randomly placing the given number of nodes in an area of
50 × 50, and connected two nodes with an edge if they are
within a distance of 20 (the transmission radius). For the
network testbed, we use 25 Crossbow TelosB motes using
TinyOS 2.0 and place them randomly in a room so as to form
an arbitrary connected network. In certain simulations, we
vary the message loss probability to compare the robustness
of various approaches. We simulate a message loss probability
of P by ignoring a message at the receiver with a probability
of P ; this is in addition to the minimal message losses due to
collisions. We compare the performance of various programs
using two performance metrics, viz., the result inaccuracy
and total communication cost. Here, we define the result
inaccuracy as the ratio of the number of missed shortest
paths over the total number of shortest paths computed
by a centralized program. In our simulations, we compare
the performance of three programs: (i) procedural code,
the distributed nesC code for breadth-first search which
incurs optimal communication of one message per node, (ii)
logicH, the generated code for the logicH program, and (iii)
logicJ, the generated code for the logicJ program. In the
translated codes, we use the Semi-Naive Approach for join
computation.
Comparison of Result Inaccuracies. We first compare the re-
sult inaccuracy of various programs for varying message loss
probability. We conduct the experiment on three different net-
work sizes on TOSSIM and on the 25-node network testbed.
See Figure 4 and 5(a). When there are no message losses, the
accuracy of the result is 100% for all the programs. For non-
zero message loss probabilities, we observe the following. (i)
As expected, result inaccuracy of logicJ is mostly higher than
that of logicH. (ii) Result inaccuracy of the logicJ and logicH
programs is generally close to (sometimes even lower than)
that of the procedural code. The above observation shows the
robustness of our techniques.
Comparison of Communication Costs. We now compare the

 0

 10

 20

 30

 40

 50

2 4 6 8 10

R
es

ul
t i

na
cc

ur
ac

y
(%

)

Message loss probability (%), 25 nodes

Procedural Code
LogicH
LogicJ

 0

 100

 200

 300

 400

 500

 600

 700

2 4 6 8 10

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t

Message loss probability (%), 25 nodes

Procedural Code
LogicH
LogicJ

Fig. 5. Experiments results on a 25-node network testbed of
Crossbow TelosB motes.

total communication cost incurred by various programs on
the 25-node network testbed (Figure 5(b)) and for varying
network size on TOSSIM (Figure 6). We observe that the
communication cost of logicJ is less than twice of that of
the procedural code. The ratio of the communication costs of
logicJ and procedural code decreases with increasing network
size (Figure 6), and for larger networks the communication
cost of logicJ is only marginally higher than that of the
procedural code. Also, the communication cost for all program
is largely proportional to (i.e., linear in) the network size. The
above observations show the scalability and efficiency of our
techniques.

VII. Conclusions and Future Work

In this article, we have motivated the deductive framework
for programming sensor networks and designed distributed and
asynchronous techniques for evaluation of deductive queries.
Our system translates a given deductive program into dis-
tributed code that runs on individual nodes. We demonstrate
the robustness, efficiency, and scalability of our developed
techniques using simulations and experiments. There are many
challenges that need to be addressed for an optimized (in

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

15 25 35 45 55 65 75

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t

Number of Nodes (P=0)

Procedural Code
LogicH
LogicJ

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

15 25 35 45 55 65 75

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t

Number of Nodes (P=5)

Procedural Code
LogicH
LogicJ

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

15 25 35 45 55 65 75

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t

Number of Nodes (P=10)

Procedural Code
LogicH
LogicJ

Fig. 6. Communication cost incurred by various programs for varying parameters on the TOSSIM simulator.

terms of main-memory usage and communication efficiency)
deductive query engine in sensor networks. As outlined in the
article, some of the challenges include: (i) Efficient (perhaps,
approximate) implementation of the counting approach for
incremental maintenance of join queries; such an implementa-
tion is unlikely to be fully accurate but will have minimal space
overhead, (ii) Automatic determination of attributes to use for
hashing derived results to minimize overall communication
cost, and (iii) Efficient implementation of the rederivation
approach of [27] which will pave the way for in-network
evaluation of general locally-stratified deductive programs.

Acknowledgements. We wish to thanks various people at
Stony Brook – especially, S. Das, M. Kifer, C.R. Ramakr-
ishnan, and D. Warren, for insightful discussions. Work was
supported in part by NSF grants 0713186 and 0721665.

REFERENCES

[1] D. Abadi, S. Madden, and W. Lindner. REED: Robust, efficient filtering
and event detection in sensor networks. In VLDB, 2005.

[2] S. Abiteboul, R. Hull, and V. Vianu, editors. Foundations of Databases.
Addison-Wesley Publishing Co., Inc., 1995.

[3] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. VLDB Journal, 2006.

[4] A. Bakshi, J. Ou, and V. K. Prasanna. Towards automatic synthesis of
a class of application-specific sensor networks. In CASES, 2002.

[5] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.
In Intl. Conference on Mobile Data Management, 2001.

[6] P. Cholak and H. A. Blair. The complexity of local stratification.
Fundamenta Informaticae, 21(4), 1994.

[7] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks. Intl.
Journal of High Performance Computing Apps., 2002.

[8] L. Ding, N. Mehta, E. Rundensteiner, and G. Heineman. Joining
punctuated streams. In EDBT, 2004.

[9] A. Deshpande et al. Exploiting correlated attributes in acquisitional
query processing. In ICDE, 2005.

[10] B. Loo et al. Declarative networking: language, execution and optimiza-
tion. In SIGMOD, 2006.

[11] D. Abadi et al. The Design of the Borealis Stream Processing Engine.
In CIDR, 2005.

[12] D. Chu et al. The design and implementation of a declarative sensor
network system. Technical report, Univ. of California, Berkeley, 2006.

[13] D. Culler et al. TinyOS. http://www.tinyos.net, 2004.
[14] D. Gay et al. The nesC language: A holistic approach to networked

embedded systems. In PLDI, 2003.
[15] E. Cheong et al. TinyGALS: a programming model for event-driven

embedded systems. In SAC, 2003.
[16] H. Gupta et al. Deductive approach for programming sensor networks.

Technical report, Stony Brook University, 2007. http://www.cs.
sunysb.edu/˜hgupta/ps/logicSN.pdf.

[17] J. Hill et al. System architecture directions for networked sensors.
SIGPLAN Notices, 35(11), 2000.

[18] J. Polastre et al. The mote revolution: Low power wireless sensor
network devices. In Symposium on High Performance Chips, 2004.

[19] K. Whitehouse et al. Hood: a neighborhood abstraction for sensor
networks. In Intl. Conf. on Mobile Systems, Apps., and Services, 2004.

[20] R. Govindan et al. The sensor network as a database. Technical report,
Univ. of Southern California, 2002.

[21] S. Madden et al. TinyDB: In-network query processing in TinyOS.
http://telegraph.cs.berkeley.edu/tinydb.

[22] S. Madden et al. The design of an acquisitional query processor for
sensor networks. In SIGMOD, 2003.

[23] S. Nath et al. Synopsis diffusion for robust aggregation in sensor
networks. In SenSys, 2004.

[24] T. Abdelzaher et al. Envirotrack: Towards an environmental computing
paradigm for distributed sensor networks. In ICDCS, 2004.

[25] T. Eicken et al. Active messages: A mechanism for integrated commu-
nication and computation. In ISCA, 1992.

[26] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
wireless sensor networks using kairos. In DCOSS, 2005.

[27] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views
incrementally. In SIGMOD, 1993.

[28] Intel Research. Intel mote. http://www.intel.com/research/exploratory/motes.htm.
[29] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic

programming and its applications. J. of Logic Programming, 1992.
[30] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable

simulation of entire tinyos applications. In SenSys, 2003.
[31] S. Madden and M. Franklin. Fjording the stream: An architecture for

queries over streaming sensor data. In ICDE, 2002.
[32] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A tiny

aggregation service for ad-hoc sensor networks. In OSDI, 2002.
[33] S. Madden and J. M. Hellerstein. Distributing queries over low-power

wireless sensor networks. In SIGMOD, 2002.
[34] R. Newton and M. Welsh. Region streams: Functional macroprogram-

ming for sensor networks. In DMSN, 2004.
[35] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic program-

ming. Information and Computation, 101(2), 1992.
[36] J. Reich, J. Liu, and F. Zhao. Collaborative in-network processing for

target tracking. In Euro. Assoc. for Signal, Speech and Image Proc.,
2002.

[37] A. Savvides, C. Han, and S. Srivastava. Dynamic fine-grained localiza-
tion in ad-hoc networks of sensors. In MobiCom, 2001.

[38] U. Srivastava, K. Munagala, and J. Widom. Operator placement for
in-network stream query processing. In PODS, 2005.

[39] S. A. Tarnlund. Horn clause computability. BIT, 17(2), 1977.
[40] J. D. Ullman. Principles of Database and Knowledge-Base Systems:

Volume II. W. H. Freeman & Co., 1990.
[41] M. Welsh and G. Mainland. Programming sensor networks using

abstract regions. In NSDI, 2004.
[42] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR,

2003.
[43] C. Zaniolo, N. Arni, and K. Ong. Negation and aggregates in recursive

rules: the ldl++ approach. In DOOD, 1993.
[44] X. Zhu, H. Gupta, and B. Tang. Join of multiple data streams in sensor

networks. TKDE, 2009.

