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Abstract. Wireless sensors rely on battery power, and in many appli-
cation it is difficult or prohibitive to replace them. Hence, in order to
prolongate the system’s lifetime, some sensors can be kept inactive while
others perform all the tasks. In this paper, we study the k-coverage prob-
lem of activating the minimum number of sensors to ensure that every
point in the area is covered by at least k sensors. This ensures higher
fault tolerance, robustness, and improves many operations, among which
position detection and intrusion detection.

The k-coverage problem is trivially NP-complete, and hence we can
only provide approximation algorithms. In this paper, we present an
algorithm based on an extension of the classical ε-net technique. This
method gives a O(logM)-approximation, where M is the number of sen-
sors in an optimal solution. We do not make any particular assumption
on the shape of the areas covered by each sensor, besides that they must
be closed, connected and without holes.

1 Introduction

Coverage problems have been extensively studied in the context of sensor net-
works (see for example [1–4]). The objective of sensor coverage problems is to
minimize the number of active sensors, to conserve energy usage, while ensur-
ing that the required region is sufficiently monitored by the active sensors. In
an over-deployed network we can also seek k-coverage, in which every point in
the area is covered by at least k sensors. This ensures higher fault tolerance,
robustness, and improves many operations, among which position detection and
intrusion detection.

The k-coverage problem is trivially NP-complete, and hence we focus on
designing approximation algorithms. In this paper, we extend the well-known
ε-net technique to our problem, and present an O(logM)-factor approximation
algorithm, where M is the size of the optimal solution. The classical greedy
algorithm for set cover [5], when applied to k-coverage, delivers a O(k log n)-
approximation solution, where n is the number of target points to be covered.
Our approximation algorithm is an improvement over the greedy algorithm, since
our approximation factor of O(logM) is independent of k and of the number of
target points.

Instead of solving the sensor’s k-coverage problem directly, we consider a dual
problem, the k-hitting set. In the k-hitting set problem, we are given sets and
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Fig. 1. Sensing regions associated with a sensor: (a) a general shape that is closed,
connected, and without holes, and (b) a disk.

points, and we look for the minimum number of points that “hit” each set at least
k times (a set is hit by a point if it contains it). Brönnimann and Goodrich were
the first [6] to solve the hitting set using the ε-net technique [7]. In this paper, we
introduce a generalization of ε-nets, which we call (k, ε)-nets. Using (k, ε)-nets
with the Brönnimann and Goodrich algorithm’s [6], we can solve the k-hitting
set, and hence the sensor’s k-coverage problem. Our main contribution is a way
of constructing (k, ε)-nets by random sampling. A recent Infocom paper [8] uses
ε-nets to solve the k-coverage problem. However we believe that their result is
fundamentally flawed (see Section 2.1 for more details). So, to the best of our
knowledge, we are the first to give a correct extension of ε-nets for the k-coverage
problem.

2 Problem Formulation and Related Work

We start by defining the sensing region and then we will define the k-coverage
problem with sensors. In the literature, sensing regions have been often modeled
as disks. In this paper, we consider sensing regions of general shape, because this
reflects a more realistic scenario.

Definition 1 (Sensing Region). The sensing region of a sensor is the area
“covered” by a sensor. Sensing regions can have any shape that is closed, con-
nected, and without holes, as in Fig. 1(a). Often, sensing regions are modeled as
disks as in Fig. 1(b), but we consider more general shapes.

Definition 2 (Target Points). Target points are the given points in the 2D
plane that we wish to cover using the sensors.

k-SC Problem. Given a set of sensors with fixed positions and a set of target
points, select the minimum number of sensors, such that each target point is
covered (is contained in the selected sensing region) by at least k of the selected
sensors.

For simplicity, we have defined the above k-SC problem’s objective as cover-
age of a set of given target points. However, as discussed later, our algorithms
and techniques easily generalize to the problem of covering a given area.

Example 1. Suppose we are given 4 sensors and 20 points as in Fig. 2(a), and
we want to select the minimum number of sensors to 2-cover all points. In this
particular example, 2 sensors are not enough to 2-cover all points. Instead, 3
sensors suffices, as shown in Fig. 2(b).
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Fig. 2. Illustrating k-SC problem. Suppose we are given 4 sensors of centers s1, . . . , s4
and 20 points as in (a). The problem is to select the minimum number of sensors to
k-cover all points. A possible solution for k = 2 is shown in (b), where 3 sensor suffice
to 2-cover all points.

2.1 Related Work

In recent years, there has been a lot of research done [2, 3, 9, 1] to address the
coverage problem in sensor networks. In particular, Slijepcevic and Potkonjak-
the [3] design a centralized heuristic to select mutually exclusive sensor covers
that independently cover the network region. In [2], Charkrabarty et al. inves-
tigate linear programming techniques to optimally place a set of sensors on a
sensor field for a complete coverage of the field. In [10], Shakkottai et al. consider
an unreliable sensor network, and derive necessary and sufficient conditions for
the coverage of the region and connectivity of the network with high probability.
In one of our prior works [1], we designed a greedy approximation algorithm
that delivers a connected sensor-cover within a logarithmic factor of the optimal
solution; this work was later generalized to k-coverage in [11].

Recently, Hefeeda and Bagheri [8] used the well-known ε-net technique to
solve the problem of k-covering the sensor’s locations. However, we strongly be-
lieve that their result is fundamentally flawed.1 In this article we present a correct
extension of the ε-net technique for k-coverage problem in sensor networks.

Two closely related problems to the sensor-coverage problem are set cover
and hitting set problems. The area covered by a sensor can be thought as a set,
which contains the points covered by that sensor. The hitting set problem is
a “dual” of the set cover problem. In both set cover and hitting set problems,
we are given sets and elements. While in set cover the goal is to select the
minimum number of sets to cover all elements/points, in hitting set the goal
is to select a subset of elements/points such that each set is hit. The classical
result for set cover [5] gives a O(log n)-approximation algorithm, where n is the
number of target points to be covered. The same greedy algorithm also delivers a
O(k log n)-approximation solution for the k-SC problem. In contrast, the result
in this article yields an O(logM)-approximation algorithm for the k-SC problem,
where M is the optimal size (i.e., minimum number of sensors needed to provide
1 Essentially, they select a set of subsets of size k (called k-flowers) represented by the

center of their locations. However, their result is based on the following incorrect
claim that if the centers of a set of k-flowers 1-covers a set of points N , then the set
of sensors associated with the k-flowers will k-cover N . In addition, in their analysis,
they implicitly assume that an optimal solution can be represented as a disjoint
union of k-flowers, which is incorrect.
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k-coverage of the given target points). Note that our approximation factor is
independent of k and of the number of target points.

Brönnimann and Goodrich [6] were the first to use the ε-net technique [7]
to solve the hitting set problem and hence the set cover with an O(logM)-
approximation, where M is the size of the optimal solution. In this article, we
extend their ε-net technique to k-coverage. It is interesting to observe that our
extension is independent of k and it gives a O(logM)-approximation also for k-
coverage. For the particular case of 1-coverage with disks, it is possible to build
“small” ε-nets using the method of Matoušek, Seidel and Welzl [12], and obtain
a constant-factor approximation for the 1-hitting set problem. Their method
[12] can be easily extended to k-hitting set, and this would give a constant-
factor approximation for the k-SC problem when the sensing regions are disks.
However, in this paper we focus on sensing regions of arbitrary shapes and sizes,
as long as they are closed, connected, and without holes.

Another related problem is the art gallery problem (see [13] for a survey)
which is to place a minimum number of guards in a polygon so that each point
in the polygon is visible from at least one of the guards. Guards may be looked
upon as sensors with infinite range. However, in this paper, we focus on selecting
already deployed sensor.

3 The ε-Net Based Approach

In this section, we present an algorithm based on the classical ε-net technique, to
solve the k-coverage problem. The classical ε-net technique is used to solve the
hitting set problem, which is the dual of the set cover problem. The k-SC problem
is essentially a generalization of the set cover problem – thus, we will extend
the ε-net technique to solve the corresponding generalization of the hitting set
problem.

3.1 Hitting Set Problem and the ε-Net Technique
We start by describing the use of classical ε-net technique to solve the traditional
hitting set problem. We begin with a couple of formal definitions.

Set Cover (SC); Hitting Set (HS). Given a set of points X and a collection of
sets C, the set cover (SC) problem is to select the minimum number of sets from
C whose union contains (covers) all points in X. The hitting set (HS) problem is
to select the minimum number of points from X such that all sets in C are “hit”
(a set is considered hit, if one of its points has been selected).

Note that HS is a dual of SC, and hence solving HS is sufficient to solve SC.
We now define ε-nets. Intuitively, an ε-net is a set of points that hits all large

sets (but may not hit the smaller ones). For the overall scheme, we will assign
weights to points, and use a generalized concept of weighted ε-nets that must
hit all large-weighted sets.

Definition 3 (ε-Net; Weighted ε-Net). Given a set system (X, C), where X
is a set of points and C is a collection of sets, a subset H ∈ X is an ε-net if for
every set S in C s.t. |S| ≥ ε|X|, we have that H ∩ S 6= ∅.
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Given a set system (X, C), and a weight function w : X → Z+, define w(S) =∑
x∈S w(x) for S ⊆ X. A subset H ⊆ X is a weighted ε-net for (X, C, w) if for

every set S in C s.t. w(S) ≥ ε · w(X), we have that H ∩ S 6= ∅.

Using ε-Nets to Solve the Hitting Set Problem. The original algorithm
for solving hitting set problem using ε-net was invented by Brönnimann and
Goodrich [6]. Below, we give a high-level description of their overall approach
(referred to as the BG algorithm), because it will help understand our own
extension. We begin by showing how ε-nets are related to hitting sets, and then,
show how to use ε-nets to actually compute hitting sets.

Let’s assume that we have a black-box to compute weighted ε-nets, and
that we know the optimal hitting set H∗ which is of size M . Now, define a
weight function w∗ as w∗(x) = 1 if x ∈ H∗ and w∗(x) = 0 otherwise. Then,
set ε = 1/M , and use the black-box to compute a weighted ε-net for (X, C, w∗).
It is easy to see that this weighted ε-net is actually a hitting set for (X, C),
since w∗(S) ≥ εw∗(X) for all sets S ∈ C. There are known techniques [7] to
compute weighted ε-nets of size O((1/ε) log(1/ε)) for set systems with a constant
VC-dimension (defined later); thus, the above gives us a O(logM)-approximate
solution. For the particular case of disks, it is possible to construct ε-nets of size
O(1/ε) [12], and hence obtain a constant-factor approximation.

However, in reality, we do not know the optimal hitting set. So, we iteratively
guess its size M , starting with M = 1 and progressively doubling M until we
obtain a hitting set solution (using the above approach). Also, to “converge”
close to the w∗ above, we use the following scheme. We start with all weights set
to 1. If the computed weighted ε-net is not a hitting set, then we pick one set in
C that is not hit by it and double the weights of all points that it contains. Then,
we iterate with the new weights. It can be shown that if the estimate of M is
correct and using ε = 1/(2M), then we are guaranteed to find a hitting set using
the above approach after a certain number of iterations. Thus, if we don’t find a
hitting set after enough iterations, we double the estimate of M and try again. It
can be shown [6] that the above approach finds an O(logM)-approximate hitting
set in polynomial time for set systems with constant VC-dimension (defined
below), where M is the size of the optimal hitting set.

VC Dimension. We end the description of the BG algorithm, with the def-
inition of Vapnik-C̆ervonenkis (VC) dimension of set systems. Informally, the
VC-dimension of a set system (X, C) is a mathematical way of characterizing
the “regularity” of the sets in C (with respect to the points X) in the system.
A bounded VC-dimension allows the construction of an ε-net through random
sampling of large enough size. The VC-dimension is formally defined in terms of
set shattering, as follows.

Definition 4 (VC-Dimension). A set S is considered to be shattered by a
collection of sets C if for each S′ ⊆ S, there exists a set C ∈ C such that
S ∩ C = S′. The VC-dimension of a set system (X, C) is the cardinality of the
largest set of points in X that can be shattered by C.
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In our case, the VC dimension is at most 23 as given by the following theorem
by Valtr [14].

Theorem 1. If X ⊂ R2 is compact and simply connected, then VC-dimension
of the set system (X, C), where X is a set of points and C is a collection of sets,
is at most 23.

Note that for a finite collection of sensors, whose covering regions are compact
and simply connected, the dual is compact and simply connected too.

3.2 k-Hitting Set Problem and the (k, ε)-net Technique

We now formulate the k-hitting set (k-HS) problem, which is a generalization
of the hitting set problem, viz., we want each set in the system to be hit by k
selected points.

Definition 5 (k-Hitting Set (k-HS)). Given a set system (X, C), the k-
hitting set (k-HS) problem is to find the smallest subset of points H ⊆ X with
at most one point for each sibling-set such that H hits every set in C at least k
times.

Connection Between k-HS and k-SC Problem. Note that the above k-HS prob-
lem is the (generalized) dual of our sensor k-coverage problem (k-SC problem).
Essentially, each point in the k-HS problem corresponds to a sensing region of a
sensor, and each set in the k-HS problem corresponds to a target point. Below,
we describe how to solve the k-HS problem, which essentially solves our k-SC
problem. To solve the k-HS, we need to define and use a generalized notion of
ε-net.

Definition 6 (Weighted (k, ε)-Net). Suppose (X, C) is a sibling-set system,
and w : X → Z+ is a weight function. Define w(S) =

∑
x∈S w(x) for S ⊆ X. A

set N ⊆ X is a weighted (k, ε)-net for (X, C, w) if |N ∩S| ≥ k, whenever S ∈ C
and w(S) ≥ ε · w(X).

Using (k, ε)-Nets to Solve k-HS. We can solve the k-HS problem using the
BG algorithm [6], without much modification. However, we need an algorithm
compute weighted (k, ε)-nets. The below theorem states that an appropriate
random sampling of about O(k/ε log k/ε) points from X gives a (k, ε)-net with
high probability, if the set system (X, C) has a bounded VC-dimension. For the
sake of clarity, we defer the proof of the following theorem.

Theorem 2. Let (X, C, w) be a weighted set system. For a given number m, let
N(m) be a subset of points of size m picked randomly from X with probability
proportional to the total weight of the points in such subset. Then, for

m ≥ max
(

2
ε

log2

2
δ
,
K

ε
log2

K

ε

)
(1)

the subset N(m) is a weighted (k, ε)-sibling-net with probability at least 1 − δ,
where K = 4(d+ 2k − 2), and d is the VC-dimension of the set system. ut
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Now, based on the above theorem, we can use the BG algorithm with some
modifications to solve the k-HS problem. Essentially, we estimate the size M of
an optimal k-HS (starting with 1 and iteratively doubling it), set ε = k/(2M),
and use Theorem 2 to compute2 a (k, ε)-net N of size m. If N is indeed a k-
hitting set, we stop; else, we pick a set in the system C that is not k-hit and double
the weight of all the points it contains. With the new weights, we iterate the
process. It can be shown3 that within (4/k)M log2(n/M) iterations of weight-
doubling, we are guaranteed to get a k-HS solution if the optimal size of a k-HS is
indeed M . Thus, after (4/k)M log2(n/M) iterations, if we haven’t found a k-HS,
we can double our current estimate of M , and iterate. See Algorithm 1. The
below theorem shows that the above algorithm gives an O(logM)-approximate
solution in polynomial time with high probability for general sets. The proof of
the following theorem is again similar to that for the BG algorithm [6].

Theorem 3. The algorithm described above (Algorithm 1) runs in time O((|C|+
|X|) |X| log |X|) and gives a O(logM)-approximate solution for the k-HS prob-
lem for a general set systems (X, C) of constant VC-dimension, where M is the
optimal size of a k-HS.

Proof. The outer for loop, where M is doubled each time, is run at most
O(log |X|) times. The inner for loop, where the weights are doubled for a set, is
executed at most 4

kM log2
|X|
M = O(|X|/k) times. Computing a (k, ε)-net using

Theorem 2 takes at most O(|X|) time, while the doubling-weight process may
take up to O(|C|) time.

We now prove the approximation factor. An optimal algorithm would find
a k-hitting set of size M . If the VC-dimension is a constant, the k-HS method
of Theorem 2 finds a (k, ε)-net of size O(k

ε log k
ε ). So if ε = k

2 M , the size of the
k-hitting set is O(M logM), which is a O(logM)-approximation. ut

Outline of Proof of Theorem 2. There are two challenges in generalizing the
random-sampling technique of [7], viz., (i) sampling with replacement cannot be
used, and (ii) weights must be part of the sampling process.
Challenges in Extending the Technique of [7] to k-hitting set. The classical me-
thod [7] of constructing an ε-net consists of randomly picking a set N of at
least m points, for a certain m, where each point is picked independently and
randomly from the given set of points. This way of constructing an ε-net may
result in duplicate points in N , but the presence of duplicates does not cause
a problem in the analysis. Thus, we can also construct weighted ε-net easily by
emulating weights using duplicated copies of the same point. The above described
approach works well for 1-hitting set, partly because we do not count the number
of times each set is hit. However, for the case of k-hitting set, when constructing
a (k, ε)-net, we need to ensure that the number of distinct points that hit each set
2 Theorem 2 gives a (k, ε)-net with high probability. It is possible to check efficiently

if the obtained set is indeed a (k, ε)-net. If it is not, we can try again until we get
one. On average, a small number of trials are sufficient to obtain a (k, ε)-net.

3 See [15] for the proof, which is similar to the one for BG in [6].
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Algorithm 1: Solving k-HS Problem using (k, ε)-nets.
Since k-HS is the dual of k-SC, this algorithm also solves k-SC
(in k-SC, X corresponds to the set of sensors, and C to the set of target points).

Given a set system (X, C).1

for (M = 1; M <= |X|; M ∗= 2)2

ε = k/(2M);3

reset the weights of all points in X to 1;4

for (i = 0; i < (4/k)M log2(|X|/M); i+ +)5

Compute a (k, ε)-net N of size m using Theorem 2;6

if each set in C is k-hit by N , return N ;7

select a set in C that is not k-hit, and double the weight of all the points8

in the set;

is at least k. Thus, constructing a (k, ε)-net by picking points independently at
random (with duplicates) does not lead to correct analysis. Instead, we suggest
a novel method to construct a weighted (k, ε)-net N by: (i) selecting a random
subset of points (without duplicates) at once, and (ii) including the weights
directly in the above sampling process. To the best of our knowledge, we are the
first one to propose this extension.4

Proof Sketch of Theorem 2. Let m be as given by equation (1), and N be the
subset of points randomly picked from X as described in Theorem 2. After
picking N , pick another set T (for the purposes of the below analysis) in the
same way as N . We now define two events

E1 = {∃A ∈ C s.t. |A ∩N |<k, w(A)≥εw(X)}
E2 = {∃A ∈ C s.t. |A ∩N |<k, w(A)≥εw(X), |A ∩ Z|≥εm}

where Z = N ∪ T and εm ≤ E[ |A ∩ Z| ]/2. The proof consists of 3 major steps:

1. First, we show that Pr[E1] ≤ 2 Pr[E2].
2. Then, it’s easier to bound the probability of E2

Pr[E2] ≤ (2m)d+2k−2 2−εm

3. Finally, we have that m verifies 2(2m)d+2k−2 2−εm ≤ δ

The outline of each step follows:

1. From the definition of conditional probability

Pr[E2 | E1] = Pr[E2 ∩ E1]/Pr[E1] = Pr[E2]/Pr[E1]

So we just need to show that Pr[E2 | E1] ≥ 1/2. Let Z = {y1, . . . , y2m}
(where yi’s are pairwise different). Define the random variable

Yi =

{
1 if yi ∈ A
0 o.w.

4 As discussed before, [8] uses ε-nets to solve sensor’s k-coverage, but their method is
flawed (see Footnote 1 for more details).
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Set Y =
∑2m

i=1 Yi, and we have Y = |A ∩ Z|. It is possible to show that
E[Y ] = µ ≥ 2εm, and Var[Y ] ≤ µ. Applying Chebyshev’s inequality

Pr[Y <
µ

2
] ≤ Pr[|Y − E[Y ]| > µ

2
] ≤ 4

µ2
Var[Y ] ≤ 1

2

and the result follows.
2. We use an alternate view. Instead of picking N and then T , pick Z ⊆ X of

size 2m, then pick N ⊆ Z and set T = Z \N . It can be shown that the two
views are equivalent. Now, define

EA = {|A ∩N | < k, |A ∩ Z| ≥ εm}

Since N and T are disjoint |A∩Z| = |A∩N |+ |A∩T | and then |A∩N | < k
iff |A∩Z| < k+ |A∩T |. So we have that EA happens only if εm ≤ |A∩Z| ≤
m+ k − 1. By counting the number of ways of choosing N s.t. |A ∩N | < k,
we can bound Pr[EA]

Pr[EA] = Pr[|A ∩N |<k, |A ∩ Z| ≥ εm]
≤ Pr[|A ∩N |<k | εm ≤ |A ∩ Z| ≤ m+k−1]
≤ (2m)2k−2

(
2m−εm

m

)
/
(
2m
m

)
≤ (2m)2k−2 2−εm

Since EA depends only on the intersection A ∩ Z

Pr[E2] ≤
⋃

A |A∩Z is unique
Pr[EA] ≤ |C|Z|| (2m)2k−2 2−εm

3. Similar to [7]. ut

Please, refer to [15] for the detailed proof, which is omitted here due to lack of
space.
Remark. Note that the approximation factor of Theorem 3 could be improved, if
we could design an algorithm to construct smaller (k, ε)-nets. For instance, if we
could construct a (k, ε)-net of size O(k/ε), then we would have a constant-factor
approximation for the k-HS problem. For the particular case of disks, it is easy
to extend5 the method in [12] to build a (k, ε)-net of size O(k/ε) (see [15] for
more details).

3.3 Distributed ε-Net Approach

Distributed implementation of the ε-net algorithm requires addressing the fol-
lowing main challenges.

1. We need to construct a (k, ε)-net, through some sort of distributed random-
ized selection.

5 Essentially, it is enough to replace δ = ε/6 with δ = ε/(6k) and the proof follows
through. Also note that the dual of disks and points is also composed by disks and
points.
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2. For each constructed (k, ε)-net N , we need to verify in a distributed manner
whether N is indeed a k-coverage set (k-hitting set in the dual).

3. If N is not a k-coverage set, then we need to select one target point (a set
in the dual) that is not k-covered by N and double the weights of all the
sensing regions covering it.

We address the above challenges in the following manner. First, we execute
the distributed algorithm in rounds, where a round corresponds to one execution
of the inner for loop of Algorithm 1 (i.e., execution of the sampling algorithm
for a particular set of weights and a particular estimate of M). We implement
rounds in a weakly synchronized manner using internal clocks. Now, for each of
the above challenges, we use the following solutions.

1. Each sensor keeps an estimate of the total weight of the system, and com-
putes m independently. To select m sensors, each sensor decides to select
itself independently with a probability p = m ∗ own weight/total weight,
resulting in selection of m sensors (in expectation). Each selected sensor
picks an orientation (sensing-region) of highest weight.

2. Locally, verify k-coverage of the owned target points, by exchanging messages
with near-by (that cover a common target point) sensors. If a target point
owned by a sensor D and its near-by sensors are all k-covered for a certain
number of rounds (for example 10), then D exits the algorithm.

3. Each sensor decides to select one of the owned target points with a probabil-
ity of q = 1/((1− ε)n), which ensures that the expected number of selected
target point is 1.

3.4 Generalizations to k-coverage of an Area

The ε-net approach can also be used to k-cover a given area, rather than a given
set of target points (as required by the formulation of k-SC problem). Essentially,
coverage of an area requires dividing the given area into “subregions” as in our
previous work [1]; a subregion is defined as a set of points in the plane that are
covered by the same set of sensing regions. The number of such subregions can
be shown to be polynomial in the total number of sensing regions in the system.
The algorithm described here can then be used without any other modification,
and the performance guarantees still hold.

4 Conclusions

In this paper, we studied the k-coverage problem with sensors, which is to select
the minimum number of sensors so that each target point is covered by at least
k of them. We provided a O(logM)-approximation, where M is the number of
sensors in an optimal solution. We introduced a generalization of the classical
ε-net technique, which we called (k, ε)-net. We gave a method to build (k, ε)-nets
based on random sampling. We showed how to solve the sensor’s k-coverage
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problem with the Brönnimann and Goodrich algorithm [6] together with our
(k, ε)-nets. We believe to be the first one to propose this extension.

As a future work, we would like to extend this technique to directional sen-
sors. A directional sensor is a sensor that has associated multiple sensing regions,
and its orientation determines its actual sensing region. The k-coverage prob-
lem with directional sensors is NP-complete and in [16] we proposed a greedy
approximation algorithm. We believe that using (k, ε)-nets can give better ap-
proximation factor for this problem.
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