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Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to
prolongate the system’s lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the
k-coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least
k sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and
intrusion detection. The k-coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms.
In this paper, we present an algorithm based on an extension of the classical ε-net technique. This method gives an O(logM)-
approximation, where M is the number of sensors in an optimal solution. We do not make any particular assumption on the shape
of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

1. Introduction

Coverage problems have been extensively studied in the
context of sensor networks (see, e.g., [1–4]). The objective
of sensor coverage problems is to minimize the number
of active sensors, to conserve energy usage, while ensuring
that the required region is sufficiently monitored by the
active sensors. In an over-deployed network we can also
seek k-coverage, in which every point in the area is covered
by at least k sensors. This ensures higher fault tolerance,
robustness, and improves many operations, among which
position detection and intrusion detection.

The k-coverage problem is trivially NP-complete, and
hence we focus on designing approximation algorithms. In
this paper, we extend the well-known ε-net technique to
our problem and present an O(logM)-factor approximation
algorithm, where M is the size of the optimal solution.
The classical greedy algorithm for set cover [5], when
applied to k-coverage, delivers an O(k logn)-approximation
solution, where n is the number of target points to be
covered. Our approximation algorithm is an improvement
over the greedy algorithm, since our approximation factor of
O(logM) is independent of k and of the number of target
points.

Instead of solving the sensor’s k-coverage problem
directly, we consider a dual problem, the k-hitting set. In
the k-hitting set problem, we are given sets and points,
and we look for the minimum number of points that “hit”
each set at least k times (a set is hit by a point if it
contains it). Brönnimann and Goodrich were the first [6]
to solve the hitting set using the ε-net technique [7]. In
this paper, we introduce a generalization of ε-nets, which
we call (k, ε)-nets. Using (k, ε)-nets with the Brönnimann
and Goodrich algorithm’s [6], we can solve the k-hitting
set, and hence the sensor’s k-coverage problem. Our main
contribution is a way of constructing (k, ε)-nets by random
sampling. A recent Infocom paper [8] uses ε-nets to solve
the k-coverage problem. However we believe that their
result is fundamentally flawed (see Section 2.1 for more
details). So, to the best of our knowledge, we are the first
to give a correct extension of ε-nets for the k-coverage
problem.

Paper Organization. The rest of the paper is organized as
follow. The k-coverage problem is introduced in Section 2.
Section 2.1 contains detailed discussion about related work.
The ε-net approach is presented in Section 3.
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Figure 1: Sensing regions associated with a sensor: (a) a general shape that is closed, connected, and without holes, and (b) a disk.
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Figure 2: Illustrating k-SC problem. Suppose we are given 4 sensors of centers s1, . . . , s4 and 20 points as in (a). The problem is to select the
minimum number of sensors to k-cover all points. A possible solution for k = 2 is shown in (b), where 3 sensors suffice to 2-cover all points.

2. Problem Formulation and Related Work

We start by defining the sensing region and then we will
define the k-coverage problem with sensors. In the literature,
sensing regions have been often modeled as disks. In this
paper, we consider sensing regions of general shape, because
this reflects a more realistic scenario.

Definition 1 (sensing region). The sensing region of a sensor
is the area “covered” by a sensor. Sensing regions can have
any shape that is closed, connected, and without holes, as in
Figure 1(a). Often, sensing regions are modeled as disks as in
Figure 1(b), but we consider more general shapes.

Definition 2 (target points). Target points are the given
points in the 2D plane that we wish to cover using the
sensors.

k-SC Problem. Given a set of sensors with fixed positions and
a set of target points, select the minimum number of sensors,
such that each target point is covered (is contained in the
selected sensing region) by at least k of the selected sensors.

For simplicity, we have defined the above k-SC problem’s
objective as coverage of a set of given target points. However,
as discussed later, our algorithms and techniques easily
generalize to the problem of covering a given area.

Example 1. Suppose we are given 4 sensors and 20 points as
in Figure 2(a), and we want to select the minimum number
of sensors to 2-cover all points. In this particular example,

2 sensors are not enough to 2-cover all points. Instead, 3
sensors suffice, as shown in Figure 2(b).

2.1. Related Work. In the recent years, there has been a lot
of research done [1–3, 9] to address the coverage problem
in sensor network. In particular, Slijepcevic and Potkonjak
[3] design a centralized heuristic to select mutually exclusive
sensor covers that independently cover the network region.
In [2], Charkrabarty et al. investigate linear programming
techniques to optimally place a set of sensors on a sensor field
for a complete coverage of the field. In [10], Shakkottai et al.
consider an unreliable sensor network, and derive necessary
and sufficient conditions for the coverage of the region and
connectivity of the network with high probability. In one of
our prior works [1], we designed a greedy approximation
algorithm that delivers a connected sensor cover within a
logarithmic factor of the optimal solution; this work was later
generalized to k-coverage in [11].

Recently, Hefeeda and Bagheri [8] used the well-known
ε-net technique to solve the problem of k-covering the
sensor’s locations. However, we strongly believe that their
result is fundamentally flawed. Essentially, they select a set
of subsets of size k (called k-flowers) represented by the
center of their locations. However, their result is based on
the following incorrect claim that if the centers of a set of
k-flowers 1-cover a set of points N , then the set of sensors
associated with the k-flowers will k-cover N . In addition, in
their analysis, they implicitly assume that an optimal solution
can be represented as a disjoint union of k-flowers, which
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is incorrect. In this paper we present a correct extension of
the ε-net technique for the k-coverage problem in sensor
networks.

Two closely related problems to the sensor-coverage
problem are set cover and hitting set problems. The area
covered by a sensor can be thought as a set, which contains
the points covered by that sensor. The hitting set problem
is a “dual” of the set cover problem. In both set cover and
hitting set problems, we are given sets and elements. While
in set cover the goal is to select the minimum number of
sets to cover all elements/points, in hitting set the goal is
to select a subset of elements/points such that each set is
hit. The classical result for set cover [5] gives an O(logn)-
approximation algorithm, where n is the number of target
points to be covered. The same greedy algorithm also delivers
a O(k logn)-approximation solution for the k-SC problem.
In contrast, the result in this paper yields an O(logM)-
approximation algorithm for the k-SC problem, where M is
the optimal size (i.e., minimum number of sensors needed to
provide k-coverage of the given target points). Note that our
approximation factor is independent of k and of the number
of target points.

Brönnimann and Goodrich [6] were the first to use the
ε-net technique [7] to solve the hitting set problem and
hence the set cover with an O(logM)-approximation, where
M is the size of the optimal solution. In this paper, we
extend their ε-net technique to k-coverage. It is interesting
to observe that our extension is independent of k and it
gives an O(logM)-approximation also for k-coverage. For
the particular case of 1-coverage with disks, it is possible to
build “small” ε-nets using the method of Matoušek, Seidel,
and Welzl [12] and obtain a constant-factor approximation
for the 1-hitting set problem. Their method [12] can be easily
extended to k-hitting set, and this would give a constant-
factor approximation for the k-SC problem when the sensing
regions are disks. However, in this paper we focus on sensing
regions of arbitrary shapes and sizes, as long as they are
closed, connected, and without holes.

Another related problem is the art gallery problem (see
[13] for a survey) which is to place a minimum number of
guards in a polygon so that each point in the polygon is
visible from at least one of the guards. Guards may be looked
upon as sensors with infinite range. However, in this paper,
we focus on selecting already deployed sensor.

3. The ε-Net-Based Approach

In this section, we present an algorithm based on the
classical ε-net technique, to solve the k-coverage problem.
The classical ε-net technique is used to solve the hitting set
problem, which is the dual of the set cover problem. The
k-SC problem is essentially a generalization of the set cover
problem—thus, we will extend the ε-net technique to solve
the corresponding generalization of the hitting set problem.

3.1. Hitting Set Problem and the ε-Net Technique. We start by
describing the use of the classical ε-net technique to solve the

traditional hitting set problem. We begin with a couple of
formal definitions.

Set Cover (SC); Hitting Set (HS). Given a set of points X and
a collection of sets C, the set cover (SC) problem is to select
the minimum number of sets from C whose union contains
(covers) all points in X . The hitting set (HS) problem is to
select the minimum number of points from X such that all
sets in C are “hit” (a set is considered hit, if one of its points
has been selected).

Note that HS is a dual of SC, and hence solving HS is
sufficient to solve SC.

We now define ε-nets. Intuitively, an ε-net is a set of
points that hits all large sets (but may not hit the smaller
ones). For the overall scheme, we will assign weights to
points, and use a generalized concept of weighted ε-nets that
must hit all large-weighted sets.

Definition 3 (ε-Net; Weighted ε-Net). Given a set system
(X , C), where X is a set of points and C is a collection of
sets, a subset H ∈ X is an ε-net if for every set S in C s.t.
|S| ≥ ε|X|, we have that H ∩ S /=∅.

Given a set system (X , C), and a weight functionw : X →
Z+, define w(S) = ∑

x∈S w(x) for S ⊆ X . A subset H ⊆ X
is a weighted ε-net for (X , C,w) if for every set S in C s.t.
w(S) ≥ ε ·w(X), we have that H ∩ S /=∅.

Using ε-Nets to Solve the Hitting Set Problem. The original
algorithm for solving hitting set problem using ε-net was
invented by Brönnimann and Goodrich [6]. Below, we give
a high-level description of their overall approach (referred
to as the BG algorithm), because it will help understand our
own extension. We begin by showing how ε-nets are related
to hitting sets, and then, show how to use ε-nets to actually
compute hitting sets.

Let us assume that we have a black-box to compute
weighted ε-nets, and that we know the optimal hitting set
H∗ which is of size M. Now, define a weight function w∗ as
w∗(x) = 1 if x ∈ H∗ and w∗(x) = 0 otherwise. Then, set ε =
1/M, and use the black-box to compute a weighted ε-net for
(X , C,w∗). It is easy to see that this weighted ε-net is actually
a hitting set for (X , C), since w∗(S) ≥ εw∗(X) for all sets
S ∈ C. There are known techniques [7] to compute weighted
ε-nets of sizeO((1/ε) log(1/ε)) for set systems with a constant
VC-dimension (defined later); thus, the above gives us an
O(logM)-approximate solution. For the particular case of
disks, it is possible to construct ε-nets of size O(1/ε) [12] and
hence obtain a constant-factor approximation.

However, in reality, we do not know the optimal hitting
set. So, we iteratively guess its size M, starting with M = 1
and progressively doubling M until we obtain a hitting set
solution (using the above approach). Also, to “converge”
close to the w∗ above, we use the following scheme. We start
with all weights set to 1. If the computed weighted ε-net is
not a hitting set, then we pick one set in C that is not hit
by it and double the weights of all points that it contains.
Then, we iterate with the new weights. It can be shown that
if the estimate of M is correct and using ε = 1/(2M), then
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we are guaranteed to find a hitting set using the previous
approach after a certain number of iterations. Thus, if we
do not find a hitting set after enough iterations, we double
the estimate of M and try again. It can be shown in [6]
that the previous approach finds an O(logM)-approximate
hitting set in polynomial time for set systems with constant
VC-dimension (defined below), where M is the size of the
optimal hitting set.

VC-dimension. We end the description of the BG algorithm,
with the definition of Vapnik-C̆ervonenkis (VC) dimension
of set systems. Informally, the VC-dimension of a set
system (X , C) is a mathematical way of characterizing the
“regularity” of the sets in C (with respect to the points
X) in the system. A bounded VC-dimension allows the
construction of an ε-net through random sampling of large
enough size. The VC-dimension is formally defined in terms
of set shattering, as follows.

Definition 4 (VC-dimension). A set S is considered to be
shattered by a collection of sets C if for each S′ ⊆ S, there
exists a set C ∈ C such that S ∩ C = S′. The VC-dimension
of a set system (X , C) is the cardinality of the largest set of
points in X that can be shattered by C.

In our case, the VC dimension is at most 23 as given by
the following theorem by Valtr [14].

Theorem 1. If X ⊂ R2 is compact and simply connected, then
VC-dimension of the set system (X , C), where X is a set of
points and C is a collection of sets, is at most 23.

Note that for a finite collection of sensors, whose covering
regions are compact and simply connected, the dual is
compact and simply connected too.

3.2. k-Hitting Set Problem and the (k, ε)-Net Technique. We
now formulate the k-hitting set (k-HS) problem, which is a
generalization of the hitting set problem, normely, we want
each set in the system to be hit by k selected points.

Definition 5 (k-hitting set (k-HS)). Given a set system
(X , C), the k-hitting set (k-HS) problem is to find the
smallest subset of points H ⊆ X with at most one point for
each sibling-set such thatH hits every set in C at least k times.

3.2.1. Connection between k-HS and k-SC Problem. Note that
the previous k-HS problem is the (generalized) dual of our
sensor k-coverage problem (k-SC problem). Essentially, each
point in the k-HS problem corresponds to a sensing region
of a sensor, and each set in the k-HS problem corresponds to
a target point. In what followos, we describe how to solve the
k-HS problem, which essentially solves our k-SC problem.
To solve the k-HS, we need to define and use a generalized
notion of ε-net.

Definition 6 (weighted (k, ε)-net). Suppose that (X , C) is a
sibling-set system, and w : X → Z+ is a weight function.
Define w(S) = ∑

x∈S w(x) for S ⊆ X . A set N ⊆ X is a

weighted (k, ε)-net for (X , C,w) if |N ∩ S| ≥ k, whenever
S ∈ C and w(S) ≥ ε ·w(X).

Using (k, ε)-Nets to Solve k-HS. We can solve the k-HS prob-
lem using the BG algorithm [6], without much modification.
However, we need an algorithm compute weighted (k, ε)-
nets. The below theorem states that an appropriate random
sampling of about O(k/ε log k/ε) points from X gives a
(k, ε)-net with high probability, if the set system (X , C) has
a bounded VC-dimension. For the sake of clarity, we defer
the proof of the following theorem.

Theorem 2. Let (X , C,w) be a weighted set system. For a given
number m, let N(m) be a subset of points of size m picked
randomly from X with probability proportional to the total
weight of the points in such subset.

Then, for

m ≥ max
(

2
ε

log2
2
δ

,
K

ε
log2

K

ε

)

(1)

the subset N(m) is a weighted (k, ε)-sibling-net with proba-
bility at least 1 − δ, where K = 4(d + 2k − 2), and d is the
VC-dimension of the set system.

Now, based on the prevouise theorem, we can use the
BG algorithm with some modifications to solve the k-HS
problem. Essentially, we estimate the size M of an optimal
k-HS (starting with 1 and iteratively doubling it), set ε =
k/(2M), and use Theorem 2 to compute a (k, ε)-net N of size
m. Theorem 2 gives a (k, ε)-net with high probability. It is
possible to check efficiently if the obtained set is indeed a
(k, ε)-net. If it is not, we can try again until we get one. On
average, a small number of trials are sufficient to obtain a
(k, ε)-net. If N is indeed a k-hitting set, we stop; else, we pick
a set in the system C that is not k-hit and double the weight
of all the points it contains. With the new weights, we iterate
the process. It can be shown that within (4/k)Mlog2(n/M)
iterations of weight-doubling, we are guaranteed to get a k-
HS solution if the optimal size of a k-HS is indeed M. See
Appendix A for the proof, which is similar to the one for BG
in [6]. Thus, after (4/k)M log2(n/M) iterations, if we have not
found a k-HS, we can double our current estimate of M, and
iterate. see Algorithm 1. The below theorem shows that the
previous algorithm gives an O(log M)-approximate solution
in polynomial time with high probability for general sets.
The proof of the following theorem is again similar to that
for the BG algorithm [6].

Theorem 3. The algorithm described previous (Algorithm 1)
runs in time O((|C|+ |X|) |X| log |X|) and gives a O(logM)-
approximate solution for the k-HS problem for a general set
systems (X , C) of constant VC-dimension, where M is the
optimal size of a k-HS.

Proof. The outer for loop, where M is doubled each time,
is run at most O(log |X|) times. The inner for loop, where
the weights are doubled for a set, is executed at most
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(4/k)M log2|X|/M = O(|X|/k) times. Computing a (k, ε)-
net using Theorem 2 takes at most O(|X|) time, while the
doubling-weight process may take up to O(|C|) time.

We now prove the approximation factor. An optimal
algorithm would find a k-hitting set of size M. If the VC-
dimension is a constant, the k-HS method of Theorem 2
finds a (k, ε)-net of size O(k/ε log k/ε). So if ε = k/(2M), the
size of the k-hitting set is O(M logM), which is an O(logM)-
approximation.

Outline of Proof of Theorem 2. There are two challenges in
generalizing the random-sampling technique of [7], namely,
(i) sampling with replacement cannot be used, and (ii)
weights must be part of the sampling process.

3.2.2. Challenges in Extending the Technique of [7] to k-
Hitting Set. The classical method [7] of constructing a ε-net
consists of randomly picking a set N of at least m points,
for a certain m, where each point is picked independently
and randomly from the given set of points. This way of
constructing a ε-net may result in duplicate points in N ,
but the presence of duplicates does not cause a problem in
the analysis. Thus, we can also construct weighted ε-net
easily by emulating weights using duplicated copies of the
same point. The above described approach works well for 1-
hitting set, partly because we do not count the number of
times each set is hit. However, for the case of k-hitting set,
when constructing a (k, ε)-net, we need to ensure that the
number of distinct points that hit each set is at least k. Thus,
constructing a (k, ε)-net by picking points independently at
random (with duplicates) does not lead to correct analysis.
Instead, we suggest a novel method to construct a weighted
(k, ε)-net N by: (i) selecting a random subset of points
(without duplicates) at once, and (ii) including the weights
directly in the previous sampling process. To the best of our
knowledge, we are the first one to propose this extension (as
discussed before, [8] uses ε-nets to solve sensor’s k-coverage,
but their method is flawed).

Proof Sketch of Theorem 2. Letm be as given by (1), and letN
be the subset of points randomly picked from X as described
in Theorem 2. After picking N , pick another set T (for the
purposes of the below analysis) in the same way as N . We
now define two events

E1 = {∃A ∈ C s.t.|A∩N| < k,w(A) ≥ ε w(X)},
E2={∃A∈C s.t.|A∩N|<k,w(A)≥εw(X), |A∩ Z|≥εm},

(2)

where Z = N ∪T and εm ≤ E[|A∩Z|]/2. The proof consists
of 3 major steps.

(1) First, we show that Pr[E1] ≤ 2Pr[E2].

(2) Then, it is easier to bound the probability of E2

Pr[E2] ≤ (2m)d+2k−2 2−εm. (3)

(3) Finally, we have that m verifies 2(2m)d+2k−2 2−εm≤δ.

The outline of each step follows.
(1) From the definition of conditional probability

Pr[E2 | E1] = Pr[E2 ∩ E1]
Pr[E1]

= Pr[E2]
Pr[E1]

. (4)

So we just need to show that Pr[E2|E1] ≥ 1/2. Let Z =
{y1, . . . , y2m} (where yi’s are pairwise different). Define the
random variable

Yi =
⎧
⎨

⎩

1, if yi ∈ A,

0, o.w.
(5)

Set Y = ∑2m
i=1 Yi, and we have Y = |A ∩ Z|. It is possible

to show that E[Y] = μ ≥ 2εm, and Var[Y] ≤ μ. Applying
Chebyshev’s inequality

Pr
[

Y <
μ

2

]

≤ Pr
[

|Y − E[Y]| > μ

2

]

≤ 4
μ2

Var[Y] ≤ 1
2

,

(6)

the result follows.
(2) We use an alternate view. Instead of picking N and

then T , pick Z ⊆ X of size 2m, then pick N ⊆ Z and set
T = Z \N . It can be shown that the two views are equivalent.
Now, define

EA = {|A∩N| < k, |A∩ Z| ≥ εm}. (7)

Since N and T are disjoint |A∩ Z| = |A∩N| + |A∩ T| and
then |A∩N| < k if and only if |A∩ Z| < k + |A∩ T|. So we
have that EA happens only if εm ≤ |A ∩ Z| ≤ m + k − 1. By
counting the number of ways of choosing N s.t. |A∩N| < k,
we can bound Pr[EA]

Pr[EA]=Pr[|A∩N|<k, |A∩ Z| ≥ εm]

≤Pr[|A∩N|<k | εm ≤ |A∩ Z| ≤ m + k − 1]

≤
(2m)2k−2

( 2m−εm
m

)

( 2m

m

) ≤ (2m)2k−2 2−εm.

(8)

Since EA depends only on the intersection A∩ Z

Pr[E2] ≤
⋃

A | A∩Z is unique

Pr[EA] ≤ ∣∣C|Z|
∣
∣ (2m)2k−2 2−εm.

(9)

(3) it is similar to [7].
Please, refer to Appendix B for the detailed proof.

Remark 1. Note that the approximation factor of Theorem 3
could be improved, if we could design an algorithm to
construct smaller (k, ε)-nets. For instance, if we could
construct a (k, ε)-net of size O(k/ε), then we would have a
constant-factor approximation for the k-HS problem. For
the particular case of disks, it is easy to extend the method
in [12] to build a (k, ε)-net of size O(k/ε) (see Appendix C
for more details). Essentially, it is enough to replace δ = ε/6
with δ = ε/(6k) and the proof follows through. Also note
that the dual of disks and points is also composed by disks
and points.
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1 Given a set system (X ,C).
2 for (M = 1; M <= |X|; M∗ = 2)
3 ε = k/(2M)
4 reset the weights of all points in X to 1;
5 for (i = 0; i < (4/k)M log2(|X|/M); i + +)
6 Compute a (k, ε)-net N of size m using Theorem 2;
7 if each set in C is k-hit by N , return N ;
8 select a set in C that is not k-hit, and double the weight of all the points in the set;

Algorithm 1: Solving k-HS problem using (k, ε)-nets. Since k-HS is the dual of k-SC, this algorithm also solves k-SC (in k-SC, X
corresponds to the set of sensors, and C to the set of target points).

3.2.3. Distributed ε-Net Approach. Distributed implementa-
tion of the ε-net algorithm requires addressing the following
main challenges.

(1) We need to construct a (k, ε)-net, through some sort
of distributed randomized selection.

(2) For each constructed (k, ε)-net N , we need to verify
in a distributed manner whether N is indeed a k-
coverage set (k-hitting set in the dual).

(3) IfN is not a k-coverage set, then we need to select one
target point (a set in the dual) that is not k-covered
byN and double the weights of all the sensing regions
covering it.

We address the previous challenges in the following
manner. First, we execute the distributed algorithm in
rounds, where a round corresponds to one execution of
the inner for loop of Algorithm 1 (i.e., execution of the
sampling algorithm for a particular set of weights and a
particular estimate of M). We implement rounds in a weakly
synchronized manner using internal clocks. Now, for each of
the previous challenges, we use the following solutions.

(1) Each sensor keeps an estimate of the total weight
of the system and computes m independently. To
select m sensors, each sensor decides to select
itself independently with a probability p = m ∗
own weight/total weight, resulting in selection of m
sensors (in expectation).

(2) Locally, verify k-coverage of the owned target points,
by exchanging messages with near-by (that cover
a common target point) sensors. If a target point
owned by a sensor D and its near-by sensors are all
k-covered for a certain number of rounds (e.g., 10),
then D exits the algorithm.

(3) Each sensor decides to select one of the owned target
points with a probability of q = 1/((1− ε) n) , which
ensures that the expected number of selected target
point is 1.

3.2.4. Generalizations to k-Coverage of an Area. The ε-net
approach can also be used to k-cover a given area, rather than
a given set of target points (as required by the formulation

of k-SC problem). Essentially, coverage of an area requires
dividing the given area into “subregions” as in our previous
work [1]; a subregion is defined as a set of points in the
plane that are covered by the same set of sensing regions. The
number of such subregions can be shown to be polynomial
in the total number of sensing regions in the system. The
algorithm described here can then be used without any other
modification, and the performance guarantee still holds.

4. Conclusions

In this paper, we studied the k-coverage problem with
sensors, which is to select the minimum number of sensors
so that each target point is covered by at least k of them.
We provided an O(logM)-approximation, where M is the
number of sensors in an optimal solution. We introduced
a generalization of the classical ε-net technique, which we
called (k, ε)-net. We gave a method to build (k, ε)-nets based
on random sampling. We showed how to solve the sensor’s
k-coverage problem with the Brönnimann and Goodrich
algorithm [6] together with our (k, ε)-nets. We believe to be
the first one to propose this extension.

As a future work, we would like to extend this technique
to directional sensors. A directional sensor is a sensor that
has associated multiple sensing regions, and its orientation
determines its actual sensing region. The k-coverage problem
with directional sensors is NP-complete and in [15] we
proposed a greedy approximation algorithm. We believe that
the use of (k, ε)-nets can give a better approximation factor
for this problem.

Appendices

A. About the Number of Iterations of
the Doubling Process

This appendix contains the proof that when M is equal to
the size of the k-hitting set, then k/(2M), 4/k · M log2n/M
iterations of the doubling process are enough to retrieve the
optimal k-hitting set. This proof follows the lines of the one
in [6], but with the additional parameter k.

Theorem 4. If ε = k/(2M), 4/k ·M log2 n/M iterations of the
internal for loop of Algorithm 1 are sufficient to find a k-hitting
set.
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Proof. Initially w(X) = |X| = n. The set S selected at the
end of the internal for loop satisfies w(S) < ε ·w(X), because
the algorithm found a weighted ε-net. Doubling the weights
of the elements in S adds a total of w(S) new weight to the
system. So w(X) grows at most by a (1 + ε) factor at each
iteration. Then, after t iterations

w(X) ≤ n (1 + ε)t . (A.1)

Let H∗ be the optimal k-hitting set. Initially we have
w(H∗) = |H∗| = M. Since H∗ is a k-hitting set, there are
least k elements of H∗ in each set of R. So for any possible
set S chosen in step 11, there are at least k elements ofH∗ that
are doubled. By the convexity of the function 2x, the increase
of w(H∗) is minimal if the doublings are spread out over the
elements of H∗ as evenly as possible. So after t iterations, we
have

w(H∗) ≥M · 2kt/M. (A.2)

Since the weights are positive and H∗ ⊆ X , w(H∗) ≤
w(X). We need to find the largest t for which

M · 2kt/M ≤ n
(

1 +
k

2 M

)t
(A.3)

can be true. Taking the log

log2M +
kt

M
≤ log2n + t log2

(

1 +
k

2M

)

(A.4)

and solving for t

t ≤ log2n− log2M

k/M − log2(1 + k/(2M))
≤ 4
k
·M log2

n

M
. (A.5)

where we used the fact that log2(1+x) ≤ 3/2x for x > 0. Since
the expression on the RHS is O(n) for any possible value of
M, the theorem follows.

B. Computing Weighted (k, ε)-Nets by
Random Sampling

This appendix contains the proof of Theorem 2, which is an
extension of the ε-net theorem of Haussler and Welz [7]. As
explained in Section 3.2, the two challenges in generalizing
the random-sampling technique are that (i) sampling with
replacement cannot be used, and (ii) weights must be part of
the sampling process. Our contribution is a new method to
obtain weighted (k, ε)-nets in which (i) we sample a subset of
points at once (without duplicates), and (ii) we include the
weights directly in the sampling process.

We start by proving three lemmas, and then we will
prove Theorem 2. Let m be as given by (1), and let N be
the subset of points randomly picked from X as described
in Theorem 2. After picking N , pick another set T (for the
purpose of the below analysis) in the same way as N . We now

define two events

E1 = {∃A ∈ Cs.t.|A∩N| < k,w(A) ≥ ε w(X)},
E2={∃A ∈ Cs.t.|A∩N|<k,w(A)≥ε w(X), |A∩ Z|≥εm},

(B.1)

where Z = N ∪ T .
Intuitively, E2 is the event that N does not k-hit some

set A ∈ C, but Z has a “large” intersection with the set A
(also remember that T is disjoint from N). Note that 2εm is
a lower bound the average size of the intersection of A and Z
(as computed below).

Lemma 1. It holds that Pr[E2] ≥ 1/2Pr[E1].

Proof. E2 ⊆ E1, because if E2 happens, then E1 happens too.
From the definition of conditional probability

Pr[E2 | E1] = Pr[E2 ∩ E1]
Pr[E1]

= Pr[E2]
Pr[E1]

, (B.2)

it suffices to show that Pr[E2 | E1] ≥ 1/2.
Let Z = {y1, . . . , y2m} (where the yi’s are pairwise

different). Since E1 happens, there is some setA s.t. |A∩N| <
k and w(A) ≥ ε · w(X). Therefore, Pr[E2|E1] is at least the
probability that, for this A, |A∩ Z| ≥ εm.

Let Yi be the random variable (r.v.)

Yi =
⎧
⎨

⎩

1, if yi ∈ A,

0, o.w.
(B.3)

Each subset N (resp., T) is picked with probability
proportional to the sum of the weights of its elements, and
each element can appear in

(
n−1
m−1

)
(resp.,

(
n−m−1
m−1

)
) subsets

(because these are the ways of putting every other elements
in the remaining positions). So the probability of picking
one element depends only on its weight, and not on the
other elements, which means that the elements are pairwise
independent. So we have that

Pr[Yi = 1] = w(A)
w(X)

≥ ε ·w(X)
w(X)

= ε, (B.4)

where w(·) is a function that returns the weight of given set,
which is defined as the sum of the weights of its elements.

Let Y =∑2m
i=1 Yi. Clearly Y = |A∩ Z|. We have

E[Y] = E

⎡

⎣
2m∑

i=0

Yi

⎤

⎦ =
2m∑

i=0

E[Yi]

=
2m∑

i=0

Pr[Yi = 1] =
2m∑

i=0

w(A)
w(X)

= 2m
w(A)
w(X)

≥ 2εm.

(B.5)

To bound the deviation from the expectation, we use
Chebyshev’s inequality

Pr[|Y − E[Y]| > t] ≤ Var[Y]
t2

. (B.6)
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Since Yi’s are independent, the covariance is zero. So we
get

Var[Y] =
2m∑

i=0

Var[Yi] = 2mVar[Yi]

= 2m
(
E
[
Y 2
i

]− (E[Yi])2
)

= 2m

⎛

⎝w(A)
w(X)

−
(
w(A)
w(X)

)2
⎞

⎠

≤ 2m
w(A)
w(X)

,

(B.7)

where we used the fact that for the 0-1 r.v. Yi, Yi = Y 2
i .

Applying Chebyshev’s inequality

Pr[Y < εm] ≤ Pr
[

Y < m
w(A)
w(X)

]

= Pr
[

Y < 2m
w(A)
w(X)

−mw(A)
w(X)

]

≤ Pr
[

|Y − E[Y]| > mw(A)
w(X)

]

≤
(

1
m

w(X)
w(A)

)2

Var[Y]

≤ 4
m

w(X)
w(A)

≤ 4
εm

≤ 1
2

,

(B.8)

where in the last inequality we used the fact that

m ≥ 4(d + k − 1)
εlog2(4(d + k − 1)/ε)

≥ 8
ε
. (B.9)

Finally we have that

Pr[E2 | E1] ≥ Pr[Y ≥ εm] ≥ 1
2
. (B.10)

Lemma 2. It holds that Pr[E2] ≤ g(d, 2m) (2m)2k−2 2−εm,
where g(d, 2m) = ( n0 ) + ( n1 ) + · · · +

( n
d

) ≤ nd.

Proof. The experiment of picking N and T can be viewed in
an alternative way. Pick a subset Z ⊆ X of size 2m at random
(each subset is picked with probability proportional to the
sum of the weights of its elements). Then, pick N as a subset
of Z of sizem at random (again with probability proportional
to the sum of the weights of its elements). Finally, let T =
Z\N . Note that this view is equivalent because the probability
of picking any subset N is the same as before, (similarly for
T). This can be verified as follow. We are going to compute
the probability of picking a certain subset N in both cases. In
order to do this, we need to compute the sum of all possible
sets of size m. Among all possible sets of size m, each element

appears in exactly
(
n−1
m−1

)
of them (because these are the ways

of putting every other element in the remaining positions).
Now, it is not necessary to know exactly in which set each
element gives its contribution, but it is enough to know that
it appears a total of

(
n−1
m−1

)
times. So, the sum of weight of all

possible sets of size m is
(
n−1
m−1

)
w(X). Then

Pr
[

picking N directly from X
]

= weight of N
∑

weight of all possible subsets of size m

=
w
(
N
)

(
n−1

m−1

)
w(X)

.

(B.11)

Now we are going to compute the probability of picking a
subset Z containingN . This requires to determine the sum of
the weights of all subsets of size 2m that containN .N appears
in ( n−mm ) of them (as these are the number of ways of putting
any other element in the remaining m positions), and it gives
a contribution of w(N) in each of them. Any other element
can appear in any of the remaining m positions, for a total
of
(
n−m−1
m−1

)
times (because fixed any element, the remaining

n − m − 1 elements can be placed in any of the remaining
m− 1 positions). So we get that

Pr
[

picking Z containing N
]

=
∑

weight of all subsets of size 2m containing N
∑

weight of all possible subsets of size 2m

=
( n−m

m

)
w
(
N
)

+
(
n−m−1

m−1

)
w
(
X \N

)

(
n−1

2m−1

)
w(X)

.

(B.12)

We also need to compute the probability of picking N from
Z

Pr
[

picking N from Z | N ⊂ Z
]

= weight of N
∑

weight of all possible subsets of Z of size m

=
w
(
N
)

( 2m−1

m−1

)
w(Z)

.

(B.13)

This requires to know w(Z), which can be computed as

w(Z) =
∑

weight of all subsets of size 2m containing N

number of ways of choosing N

=
( n−m

m

)
w
(
N
)

+
(
n−m−1

m−1

)
w
(
X \N

)

( n−m
m

) .

(B.14)
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So,

Pr
[

picking N from Z | N ⊂ Z
]

=
( n−m

m

)
w
(
N
)

( 2m−1

m−1

)(( n−m
m

)
w
(
N
)

+
(
n−m−1

m−1

)
w
(
X \N

)) .

(B.15)

Finally, it is easy to verify that

Pr
[

picking N directly from X
]

= Pr
[

picking Z containing N
]

· Pr
[

picking N from Z | N ⊂ Z
]
.

(B.16)

LetA ∈ C, withw(A) ≥ ε·w(X), and define EA = {|A∩N| <
k, |A ∩ Z| ≥ εm}. Since N and T are disjoint, |A ∩ Z| =
|A ∩ N| + |A ∩ T|, and then |A ∩ N| < k is equivalent to
|A ∩ Z| < k + |A ∩ T|. If |A ∩ Z| < εm, then EA does not
happen, and it does not happen if |A∩Z| > m+ k− 1 either.
Suppose that |A∩Z| = εm+ j, where 0 ≤ j ≤ m+k−1−εm,
then we can pick N as follow. We select m − k + 1 elements
among the points outside the intersection with A

⎛

⎝
2m− εm− j

m− k + 1

⎞

⎠, (B.17)

and the remaining k − 1 elements anywhere else
⎛

⎝
m + k − 1

k − 1

⎞

⎠. (B.18)

Their product can be bounded in the following way:
⎛

⎝
2m− εm− j

m− k + 1

⎞

⎠

⎛

⎝
m + k − 1

k − 1

⎞

⎠

≤
⎛

⎝
2m− εm
m− k + 1

⎞

⎠

⎛

⎝
m + k − 1

k − 1

⎞

⎠

= (2m− εm)!
(m− k + 1)!(m− εm + k − 1)!

(m + k − 1)!
(k − 1)!m!

= (2m− εm)!
m!(m− εm)!

(m + k − 1)!
(m− k + 1)!

(m− εm)!
(m− εm + k − 1)!

· 1
(k − 1)!

≤ (2m)2k−2

⎛

⎝
2m− εm

m

⎞

⎠,

(B.19)

where in the last inequality we used the fact that

(m + k − 1)!
(m− k + 1)!

(m− εm)!
(m− εm + k − 1)!

1
(k − 1)!

≤ (2m)2k−2

(B.20)

which can be proved by induction. The base case, k = 1, is
trivial. Assuming that the formula is valid for k − 1, we get

(m + k)!
(m− k)!

(m− εm)!
(m− εm + k)!

1
k!

= (m + k) (m + k − 1)!
(m− k + 1)! / (m− k + 1)

·

· (m− εm)!
(m− εm + k) (m− εm + k − 1)!

1
k (k − 1)!

≤ (m + k) (m− k + 1)
k (m− εm + k)

(2m)2k−2

≤ (m + 1 + k)(m + 1− k)
k (m−m + k)

(2m)2k−2

≤ (m + 1)2 (2m)2k−2

≤ (2m)2k.
(B.21)

where in the last inequality we used the fact that m ≥ 1.
Using this fact, we can bound Pr[EA]. Recall that EA

happens only if εm ≤ |A∩ Z| ≤ m + k − 1. So

Pr[EA]

= Pr[|A∩N| < k, |A∩ Z| ≥ εm]

≤ Pr[N chosen s.t.|A∩N|<k | εm≤|A∩ Z| ≤ m + k − 1]

≤ (2m)2k−2

( 2m−εm
m

)

( 2m

m

)

= (2m)2k−2

· (2m− εm) · · · (m + 1) ·m · · · (m− εm + 1)
2m · · · (2m− εm + 1) · (2m− εm) · · · (m + 1)

= (2m)2k−2 m · · · (m− εm + 1)
2m · · · (2m− εm + 1)

≤ (2m)2k−2 2−εm.
(B.22)

For two sets A,A′ ∈ C s.t. w(A),w(A′) ≥ ε w(X) and
A ∩ Z = A′ ∩ Z, the events EA and EA′ are the same.
This is because the occurrence of EA depends only on the
intersection A ∩ Z. The number of sets A ∈ C s.t. A ∩ Z is
unique at most |{A ∩ Z | A ∈ C}| = |C|Z| ≤ g(d, 2m) by
Corollary 1 below. Then

Pr[E2] ≤
⋃

A|A∩Z is unique

Pr[EA]

≤ ∣∣C|Z|
∣
∣ (2m)2k−2 2−εm

≤ g(d, 2m)(2m)2k−2 2−εm.

(B.23)
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Lemma 3. For any set system (X , C), with |X| = n and VC-
dimension d, |C| ≤ g(d,n), where g(d,n) = ( n0 )+( n1 )+· · ·+( n
d

) ≤ nd.

Proof. See [16].

Given a set system (X , C), for any subset of the points
N ⊆ X , let C|N denote the projection of C onto N , that is,
the set {A∩N|A ∈ C}.

Corollary 1. For any set system (X , C), if N ⊆ X , then
(N , C|N ) has VC-dimension ≤ d, which implies |C|N | ≤ |N|d.

Finally, we prove the main theorem.

B.1. Proof of Theorem 2. Combining Lemmas 1, 2, and 3

Pr[E1] ≤ 2Pr[E2] ≤ 2g(d, 2m)m2k−22−εm

≤ 2(2m)d+2k−22−εm,
(B.24)

so we need to show that

2 (2m)d+2k−2 2−εm ≤ δ (B.25)

which can be written as

2
δ

(2m)d+2k−2 ≤ 2εm. (B.26)

or equivalently

εm ≥ log
2
δ

+ (d + 2k − 2) log(2m). (B.27)

Now we consider each part of the sum separately. From (1),
it follows that

1
2
εm ≥ log

2
δ

, (B.28)

so it suffice to show that

1
2
εm ≥ (d + 2k − 2) log(2m). (B.29)

If this inequality is valid for some value of m, then it is for
any valid for any bigger value of m. So we just need to verify
it for m = 4(d+ 2k− 2)/ε log(4(d+ 2k− 2)/ε). Plugging in m
we get

2(d + 2k − 2) log
4(d + 2k − 2)

ε

≥ (d + 2k − 2) log
(

8(d + 2k − 2)
ε

log
4(d + 2k − 2)

ε

)

(B.30)

and this is equivalent to

2(d + 2k − 2)
ε

≥ log
4(d + 2k − 2)

ε
(B.31)

which is definitely true.
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Figure 3: Colored disks, corridors, and halls. Note that points are
not necessarily on the boundaries of the disks, but they are drawn
this way to make the picture clearer

C. Computing Small Weighted (k, ε)-Nets
for Disks

In this appendix we present a simple extension of [12]
to build small weighted (k, ε)-nets for disks. The original
construction in [12] easily extends to (k, ε)-nets by replacing
δ = ε/6 with δ = ε/(6k). The proof presented here is
simplified respect to the original one, because we consider
only disks, instead of pseudodisks.

The underlining idea is to pick points that are spaced
apart, which hit all large enough disks. The strategy that
we are going to use is to draw “colored” disks that contain
a fixed number of points, and select points only on the
border of the colored disks. The position and the size of
colored disks depend on the input points, but not on the
input disks. All colored disks, but one, will have exactly �δn�
input points, where δ = ε/(6k). Each input point gets the
color of the colored disks that covers it or remains uncolored
if uncovered. After placing the colored disks, we compute
a Dealaunay triangulation (DT) of the colored points. DT
will have uni-colored, bi-colored, and tri-colored triangles.
Triangles will have uni-colored and bi-colored edges. Let us
define some terminology (see Figure 3).

Definition 7 (corridor; hall; sides; ends; corners). (i) Let a
corridor be a maximal connected chain of bi-colored triangles
in DT sharing bi-colored edges. In our construction, corri-
dors are between two colored disks.

(ii) Let a hall be a maximal group of adjacent tri-colored
triangles (this is a generalization of the degenerate-corridors
of [12]). In our construction, halls are between 3 or more
disks, attached to the end of the corridors.

(iii) Corridors are bounded by two chains of uni-colored
edges, which we call sides, and two bi-colored edges, which
we call ends.

(iv) We call the endpoints of the sides the corners of the
subcorridor. Note that one of the sides can degenerate in a
single point, in which case there are 3 corners, instead of 4.
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1 Let δ = ε/(6k);
2 Let X1, . . . ,Xj be disjoints subsets of X with the following properties:

− conv(X) ⊆ ⋃1≤i≤ j Xi (where conv is the convex hull)
− each Xi is representable as X ∩Hi for some halfplane
Hi (or equivalently, Xi = X ∩Di for some (large enough) This construction of subsets of X can be done by
disk Di, and to simplify the proof we can think that Di is bigger than any input disk)
− |Xi| = �δn� for 1 ≤ i < j, and |Xj| ≤ �δn�

repeatedly “biting off” subsets of X with halfplanes
3 Let Xi+1, . . . ,Xr be a maximal collection of disjoint subsets of X \⋃1≤i≤ j Xi satisfying:

− Xi = X ∩Di for some disk Di

− |Xi| = �δn� for j < i ≤ r;
4 For each i, 1 ≤ i ≤ r, color the points of Xi with color i, and call Di the disk defining color i, or colored disk i.

Let X be the set of colored points, and call the points in X \ Xcolorless;
5 Let DT be the Dealaunay triangulation of the set of colored points X ;
6 Break each corridor C into a minim number of subcorridors, i.e. subchains of the chain of triangles

that form C, so that each subcorridor contains at most �δn� colorless points
7 Let N be the set of the corners of all subcorridors. Clearly N ⊂ X ;
8 Return N has the (k, ε)-net for D ;

Algorithm 2: Small (k, ε)-nets for disks.

We start by describing the algorithm for the unweighted
case, and we will show how to add weights afterwords. We
are given 0 < ε ≤ 1, a family D of disks, and a set X of n > 2
points in the plane. For simplicity assume that the points are
in general position (i.e., no three points are collinear, and
no four points are cocircular). Let define δ = ε/(6k) (the
reason for this will be clear soon). Let X1, . . . ,Xj be disjoints
subsets of X constructed in the following manner. From the
boundary of X , “bite off” subsets of X of size �δn� with the
following properties.

(i) The union of all the Xi subsets contains the boundary
points of X : conv(X) ⊆ ⋃

1≤i≤ j Xi (where conv is the
convex hull).

(ii) Each Xi is representable as X∩Hi for some half-plane
Hi (or equivalently, Xi = X ∩ Di for some (large
enough) disk Di, and to simplify the proof we can
think that Di is bigger than any input disk).

(iii) |Xi| = �δn� for 1 ≤ i < j, and |Xj| ≤ �δn�.

Now, consider the internal points of X , that are not part
of any disk Xi. We are going to draw the largest number of
disks of size �δn� to cover the internal points. Specifically,
let Xi+1, . . . ,Xr be a maximal collection of disjoint subsets of
X \⋃1≤i≤ j Xi satisfying

(i) Xi = X ∩Di for some disk Di,

(ii) |Xi| = �δn� for j < i ≤ r.

At this point, we have a total of r disks Xi. For each i, 1 ≤
i ≤ r, color the points of Xi with color i, and call Di the disk
defining color i, or colored disk i. Let X be the set of colored
points, and call the points in X \ Xcolorless. Let DT be the
Dealaunay triangulation of the set of colored points X . Break
each corridor C into a minim number of subcorridors, that is,
subchains of the chain of triangles that form C, so that each
subcorridor contains at most �δn� colorless points. Let N be

the set of the corners of all subcorridors. Clearly N ⊂ X . We
are going to show that N is a the (k, ε)-net for D that is, any
disk of D that contains εn points of X also contains k points
of N . This construction is summarized in Algorithm 2.

First of all note that colorless points can only be
in corridors and halls (because unicolored triangles are
contained in the corresponding color-defining disks). Also,
we can observe that any disk D ∈ D containing no colored
points contains less than �δn� points of X . In fact, from
the maximality of the construction, there cannot be colorless
disks with �δn� points. Than we claim what follows.

Claim. There are at most 3r − 6 corridors in DT, and r ≤
�1/δ� + 1.

Proof. See [12]. Note that, since all Xi are disjoint, and all but
maybe one contain �δn� points, so r ≤ �1/δ� + 1.

We now prove the (k, ε)-net theorem for disks.

Theorem 5 ((k, ε)-net theorem for disks). Algorithm 2 cre-
ates a (k, ε)-net of size O(k/ε) for (X , D), where X is a set of
points (|X| > 2) in non-D-degenerate position (i.e., no three
points are collinear, and no four points are cocircular), and D is
a family of disks.

Proof. By claim C we have that the size of N is O(k/ε). So we
only need to show that N contains at least k points in each
input disk of size at least εn.

First of all, the case k = 1 is already proved in [12], so we
focus on the case of k ≥ 2.

For a generic input disk of size at least εn, we are going
to compute the minimum number of corners contributed by
each intersecting region (colored disk, subcorridor, or hall),
while assuming that it has the largest possible intersection.
Also, we will pay attention not to count the same corner
multiple times. If a colored disk is completely contained
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in an input disk, it will contribute for the biggest number
of corners. So we should only consider colored disks that
intersect the boundary of the input disk. We claim that the
minimum contribution is given when the boundary of an
input disk intersects an alternation of colored disks and
corridors. In this case we should count 1 corner, for each
colored disk/corridor. The only case in which (a part of) the
boundary of the input disk does not intersect any colored
disk is when it is contained inside a corridor. But this can only
happen if there is a colored disk inside the input disk, but we
already argued that this will give a higher contribution. The
following is an upper bound on the number of intersecting
points. There can be δn points for the colored disk, plus
another δn points for the subcorridor on the side of the
corner that we are counting, plus another δn points for the
hall adjacent to them. This means that for 3δn points there is
at least 1 corner. We are considering input disks of size at least
εn = 6kδn, and this implies that there are at least k points in
each disk.

Finally, we consider the weighted case. The construction
is similar to the unweighted one, with the only difference that
the colored disks contain �δw(X)� points, where w(X) is the
sum of the weights of all points. It is easy to see that the proof
follows through.
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