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Abstract—Sensor nodes may be equipped with a “di-
rectional” sensing device (such as a camera) which senses
a physical phenomenon in a certain direction depending
on the chosen orientation. In this article, we address the
problem of selection and orientation of such directional
sensors with the objective of maximizing coverage area.
Prior works on sensor coverage have largely focused
on coverage with sensors that are associated with a
unique sensing region. In contrast, directional sensors have
multiple sensing regions associated with them, and the
orientation of the sensor determines the actual sensing
region. Thus, the coverage problems in the context of
directional sensors entails selection as well as orientation
of sensors needed to activate in order to maximize/ensure
coverage.

In this article, we address the problem of selecting a
minimum number of sensors and assigning orientations
such that the given area (or set of target points) is k-
covered (i.e., each point is covered k times). The above
problem is NP-complete, and even NP-hard to approx-
imate. Thus, we design a simple greedy algorithm that
delivers a solution that k-covers at least half of the target
points using at most M log(k|C|) sensors, where |C| is the
maximum number of target points covered by a sensor
and M is the minimum number of sensor required to
k-cover all the given points. The above result holds for
almost arbitrary sensing regions. We design a distributed
implementation of the above algorithm, and study its
performance through simulations. In addition to the above
problem, we also look at other related coverage problems
in the context of directional sensors, and design similar
approximation algorithms for them.

I. Introduction
Coverage problems have been extensively studied in

the context of sensor networks (see for example [1], [2],
[3], [4]). The objective of sensor coverage problems is
to minimize the number of active sensors, to conserve
energy usage, while ensuring that the required region
is sufficiently monitored by the active sensors. Most

of the prior work has addressed the sensor coverage
problem for single-orientation sensors, wherein each
sensor is associated with a unique sensing region which
is typically modeled as a uniform disk centered at
the sensor’s position. In this paper, we consider the
sensor coverage problem in the context of “directional”
sensors, such as cameras, whose sensing region depends
upon the assigned orientation. Thus, the sensor coverage
problem for directional sensors entails selection as well
as orientation of active sensors to guarantee coverage.

In this article, we address the problem of selecting
and orienting a minimum number of directional sensors
to guarantee k-coverage of a given area or a set of target
points (a point is k-covered if it is covered k times). The
above problem is trivially NP-complete, and we show
that it is actually NP-hard even to approximate it within
any bounded factor. Thus, we design a simple greedy
algorithm that has the following performance guarantee.
If there is a solution of size M sensors that k-covers
all the given target points, then our greedy algorithm
delivers a solution that k-covers at least half of the
target points (on average) using at most M log(k|C|)
sensors, where |C| is the maximum number of target
points covered by a sensor. We also give a distributed
implementation of the above greedy algorithm. In our
experiments over dense random networks and target
points, the greedy algorithm performs very well and
selects only about 25% more sensors than the theoretical
minimum.

In addition to the above problem of selection and ori-
entation of directional sensors, we also present approx-
imation algorithms for the following related problems
on directional sensors: (i) Orient all the given sensors
in order to maximize coverage, (ii) Place and orient a
minimum number of sensors in order to cover the given
area, (iii) Place and orient the given number of sensors
to maximize the area covered.
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Paper Organization. The rest of the paper is organized
as follow. Section II contains detailed discussion about
related work. The k-coverage problem is introduced
in Section III. The greedy algorithm is presented in
Section IV. We discuss related problems in Section V,
and our experimental results in section VI.

II. Related work
In the recent years, there has been a lot of research

done [2], [3], [5], [1] to address the coverage problem in
sensor networks. In particular, Slijepcevic and Potkon-
jakthe [3] design a centralized heuristic to select mu-
tually exclusive sensor covers that independently cover
the network region. In [2], Charkrabarty et al. investigate
linear programming techniques to optimally place a set
of sensors on a sensor field for a complete coverage of
the field. In [6], Shakkottai et al. consider an unreli-
able sensor network, and derive necessary and sufficient
conditions for the coverage of the region and connec-
tivity of the network with high probability. Recently,
Hefeeda and Bagheri [7] extended the well-known ε-
nets technique to solve the problem of k-covering the
given sensor locations. In one of our prior works [1], we
designed a greedy approximation algorithm that delivers
a connected sensor-cover within a logarithmic factor of
the optimal solution; this work was later generalized to
k-coverage in [8].

Two closely related problems to the sensor-coverage
problem are the art-gallery and hitting-set problems.
The art-gallery problem (see [9] for a survey) is to
place a minimum number of guards in a polygon so
that each point in the polygon is visible from at least
one of the guards. Guards may be looked upon as
cameras with infinite range (angular and distance). The
hitting-set problem is a “dual” of the set-cover prob-
lem. In both set-cover and hitting-set problems, we are
given sets and elements. While in set-cover the goal
is to select the minimum number of sets to cover all
elements/points, in hitting-set the goal is to select a
subset of elements/points such that each set is hit. The
classical result for set cover [10] gives a O(log |C|)
approximation, where |C| is the size of the largest set.
Brönnimann and Goodrich [11] were the first to use the
ε-net technique [12] to solve the hitting-set problem and
hence the set-cover with an O(logM) approximation,
where M is the size of the optimal solution.

All of the above works are for single-orientation
sensors, wherein each sensor is associated with a unique
sensing region, typically a uniform disk. In contrast, in
this article, we consider k-coverage of a region using
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Fig. 1. (a) Sensing regions associated with a d-sensor. (b) A selected
selected sensing region corresponding to the orientation β, and given
target points.

directional sensors, wherein each sensor is associated
with a set of sensing regions, among which one is
chosen based on the selected orientation. To the best
of our knowledge, there are only two works, [13] and
[14], that have addressed coverage problems for direc-
tional sensors. In particular, for the specific case of
cameras (with directional-cones as sensing regions), Ai
and Abouzeid [13] propose a greedy heuristic (without
any performance guarantee) to orient the given cameras
in order to maximize 1-coverage (i.e., Problem 2 of
Section V of this article). In another work, Hörster
and Lienhart [14] address a number of camera-coverage
problems, and design heuristics or exponential-time al-
gorithms for each one of them. In this article, we address
similar coverage problems for more general directional-
sensors, and present approximation algorithms for them.

III. Problem Formulation
We start with formally defining a directional-sensor

(d-sensor, in short) and the problem of selection and
orientation of d-sensors to guarantee coverage of a given
area. Informally, a d-sensor is a sensor associated with
multiple sensing regions, out of which only one is active,
depending on the orientation assigned to the d-sensor.
The simplest example of a d-sensor is a camera –
which senses a cone of a certain radius r and angle α,
depending on the angle of orientation β. See Figure 1.
For the sake of simplicity and clarity, we assume the
d-sensors to be like cameras, i.e., the associated sensing
regions to be uniform sized cones (as in [15] and [16]).
Our algorithms and their performance guarantees
generalize to arbitrary sensing regions, as discussed
later.

Definition 1. (Directional Sensor (d-sensor); Orienta-
tion) We model a d-sensor as a sensor associated with
multiple (actually infinite) sensing regions in the given
2D plane. Each associated sensing region is a 2D cone
of uniform radius r and coverage angle α, centered at
the d-sensor’s position/location s. See Figure 1(a). The
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Fig. 2. Illustrating the SODkC problem. Suppose we are given 4
d-sensors of centers s1, . . . , s4 and 20 points as in (a). Each d-sensor
has associated many cone-shaped sensing regions as in Figure 1. The
problem is to select the minimum number of d-sensor and orient them
to k-cover all points. A possible solution for k = 2 is shown in (b),
where 3 sensor suffice to 2-cover all points.

orientation of a d-sensor is an angle used to select one of
its associated sensing region. For instance, in Figure 1(b),
the orientation is β, and the shaded region is the selected
sensing region.

Definition 2. (Target Points) Target points are given
points in the 2D plane that we wish to cover using the
d-sensors.

Problem 1. (Selecting and Orienting d-sensors for k-
coverage (SODkC)) Given a set of d-sensors with fixed
positions and a set of target points, select the minimum
number of d-sensors and their assigned orientations, such
that each target point is covered (is contained in the
selected sensing region) by at least k of the selected
d-sensors.

For simplicity, we have defined the above SODkC
problem’s objective as coverage of a set of given target
points. However, as discussed later, our designed algo-
rithms and techniques easily generalize to the problem
of covering a given area.

Example 1. Suppose we are given 4 sensors and 20
points as in Figure 2(a), and we want to select the
minimum number of d-sensor and orient them to 2-cover
all points. In this particular example, 2 sensors are not
enough to 2-cover all points. Instead, 3 sensors suffices,
as shown in Figure 2(b).

NP-Hardness of Approximating the SODkC Problem.
We now show that it is NP-hard to approximate the above
SODkC problem, by first showing the NP-completeness
of the corresonding decision problem: Given a set of d-
sensors with fixed locations, is there a way to orient the
d-sensors so as to cover the given target points? This
decision problem is NP-complete, as shown below using
a reduction from 3-SAT.

Algorithm 1: Greedy Algorithm (GA) —
Selecting and orienting d-sensors for k-coverage

while there are targets not k-covered yet and1
there are d-sensors not yet oriented

Select a d-sensor (that has not been selected yet) and2
an orientation pair that covers the most number of
target points not yet k-covered;

Reducing 3-SAT to the Decision Problem of SODkC.
Given an instance of 3-SAT, i.e., a disjunction of
conjunctive 3-literal clauses, we create a target point
for each clause, a d-sensor for each variable, and two
sensing regions (called positive and negative) for each
sensor. The positive sensing region covers all the target
points corresponding to clauses that contain the positive
literal of the variable, and the negative sensing region
covers all the target points corresponding to clauses that
contain the negative literal of the variable. It is easy to
see that the above reduction is a valid Karp-reduction
from 3-SAT to our decision problem. Thus, the decision
problem of SODkC is NP-complete.

Now, if it were possible to approximate (within any
bounded factor) the SODkC problem in polynomial time,
then we can solve the decision problem by just using
the approximation algorithm. Note that the approximate
algorithm returns a bounded solution iff there is some
way (an optimal solution) to orient the d-sensors to cover
the target points. Thus, it is NP-hard to approximate the
SODkC problem.

IV. GA: Greedy Algorithm

In this section, we present our Greedy Algorithm, for
the SODkC problem. We present the performance guar-
antee of the algorithm, and discuss its generalizations.

Greedy Algorithm (GA). Greedy Algorithm works in
iterations. At each iteration, it considers all d-sensors
that have not been yet selected in previous iterations.
For each such d-sensor, it considers all its possible
orientations, and picks the (d-sensor, orientation) pair
that covers the largest number of target points that
have not been yet k-covered (by previously selected d-
sensors). The algorithm terminates when all the target
points are k-covered (i.e., covered by at least k selected
d-sensors). See Algorithm 1. Note that in the above
algorithm, the selection of a d-sensor and the assignment
of its orientation is permanent (i.e., not altered in later
iterations). Morever, not all d-sensors are selected; the
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Fig. 3. Counterexample that GA may not find the optimal solution.
GA might orient sensor s1 towards the target point in the middle
leaving the other point uncovered as in (a), while it is possible to
cover both points as in (b).

d-sensors not selected by the algorithm are essentially
kept inactive to save energy.

GA on the Running Example. Consider the example
in Figure 2. GA selects and orients s4 first, because it
can cover the highest number of points (20 in this case).
Then it selects and orients s3 because it can cover 15
points for the 2nd time (note that s2 could also cover
15 points, but ties are resolved arbitrarily). Finally, s1 is
selected to 2-cover the remaining 5 points.

Performance Guarantee of GA. Note that GA’s solu-
tion may not k-cover all the given target points, even if
there is some solution that does it. See Figure 3. The
problem to determine whether there is a solution (i.e.,
a way to orient a set of given d-sensors) that k-covers
the given target points is NP-complete as shown above.
In the below theorem, we prove that if there is some
solution that k-covers the set of given target points, then
GA yields a solution which has a “benefit” of half the
optimal and uses at most O(log |C|) times the optimal
number of d-sensors.

We now define a concept of benefit of an arbitrary set
of sensing regions, at a given stage of GA, which will be
used in stating and proving the performance guarantee
of GA.

Definition 3. (Benefit of a Set of Sensing Regions)
Consider a given stage of GA, wherein GA has already
selected and oriented some set of d-sensors. Informally,
the benefit of a sensing region is the number of target
points that it covers that are not yet k-covered by GA.
Similarly, the benefit of a set Q of sensing regions is
the “additional number of times” the set Q covers the
uncovered (not yet k-covered by GA) target points. More
formally, let G be the set of sensing regions already
selected by the greedy algorithm. Also, let T ′ denote
the set of yet uncovered (by GA) target points, i.e.,

T ′ = {x | number of sensing regions selected by GA
that cover x is less than k}.

The benefit of Q is defined as∑
x∈T ′

min
{
(number of sensing regions in Q that cover x),

k − (number of sensing regions in G that cover x)
}
.

Theorem 1. Consider a given instance of SODkC prob-
lem. If there exists a solution that provides k-coverage to
the given set of target points, then GA returns a solution
that has a benefit of at least k|T |/2 and uses at most
O(ln k|C|) times the number of d-sensors used by an
optimal algorithm. Here, n is the total number of d-
sensors, |T | is the number of target points, and |C|
is the maximum number of target points covered by a
sensing region. Also, GA can be implemented to run in
O(kn|T |2 log n|T |) time.

Proof: Let ng be the number of d-sensors selected
(and oriented) by GA; let us number these d-sensors as
1, 2, . . . , ng in the order they were selected by GA. Also,
let gi be the benefit of the sensing region chosen in the
ith step of GA.

Consider the stage when GA has selected (and ori-
ented) 1, 2, . . . , j d-sensors. In the next paragraph, we
will prove the claim that at this stage (when GA has
already selected and oriented 1 to j d-sensors), there is
an orientation of some unselected d-sensor that covers
at least (k|T | − 2

∑j
i=1 gi)/nopt uncovered (not yet k-

covered) target points, where nopt is the number of d-
sensors selected by an optimal algorithm. Since GA
picks the best (d-sensor, orientation) pair in the following
iteration, the above claim implies that

gj+1 ≥
1
nopt

k|T | − 2
j∑
i=1

gi

 .
Now, we can show by induction that

(k|T | − 2
j∑
i=1

gi) ≤ k|T |
(

1− 2
nopt

)j
.

Thus, when j = nopt/2 ln(k|T |/nopt), we have (k|T | −
2
∑j
i=1 gi) < nopt. Finally, observing that nopt|C| ≥

k|T | and that GA will continue until (k|T | − 2
∑j
i=1 gi)

is zero, we see that when GA terminates, it has a benefit
of at least k|T |/2 and uses at most O(ln k|C|) d-sensors.

Proving the Claim. Consider the stage when GA has
selected (and oriented) 1, 2, . . . , j d-sensors. Let us
consider the sensing regions selected by the optimal
algorithm at this stage. Note that some of these sensing
regions may belong to the 1 to j d-sensors already
selected by GA, and may even be same as the one



5

j2

1 ... ...3
(a)

j21
... ...3

(b)

Fig. 4. The dotted cones are sensing regions picked by the
optimal algorithm, and the shaded ones are those picked by GA.
(a) The optimal sensing regions at the stage when GA has selected
and oriented 1, 2, . . . , j d-sensors. (b) The optimal sensing regions
excluding the ones that belong to 1, 2, . . . , j d-sensors.

selected by GA. See Figure 4(a). We make the following
two observations about the benefit of sensing regions
selected by the optimal algorithm.
• The benefit of the nopt optimal sensing regions is

at least (k|T | −
∑j
i=1 gi) at this stage of GA.

• The benefit of the optimal sensing regions excluding
the ones that belong to the 1 to j d-sensors (which
have been already selected by GA at this stage) is
at least

(k|T | −
j∑
i=1

2gi).

Note that number of sensing regions constituting
the above benefit is at most (n opt − j). See Fig-
ure 4(b). The above observation is true because the
benefit of an optimal sensing region oi associated
with an i d-sensor at this stage is at most the benefit
of oi at the stage when i d-sensor was selected
by GA. The latter is at most gi, the benefit of the
sensing region chosen by GA in the ith iteration.

Finally, by the pigeon-hole principle, there must be at
least one unselected d-sensor whose benefit at this stage
is at least (k|T | − 2

∑j
i=1 gi)/(nopt − j) > (k|T | −

2
∑j
i=1 gi)/nopt.

Running Time. The algorithm can be implemented ef-
ficiently by keeping a priority queue of d-sensors’ ori-
entations based on the number of uncovered (not yet
k-covered) targets that each d-sensor’s orientation can
cover. Note that the total number “relevant” orientations
for a d-sensor is at most |T |, and thus, the size of the
priority queue is at most n|T |. The loop is executed
at most k|T | times. In each iteration, extracting the
best (d-sensor, orientation) pair from the queue requires
O(log n|T |) time and updating the priorities of elements
takes at most O(n|T | log n|T |) time (since there are
at most n|T | elements and each update takes at most
O(log n|T |) time).

Algorithm 2: Distributed GA (algorithm of each d-sensor) —
Selecting and orienting d-sensors for k-coverage

status = unselected;1
while there are owned target points that are not2
k-covered

pick one such owned target point t;3
send a benefit-enquiry message to neighboring4
unselected d-sensors that cover t, asking their
maximum benefit if selected and oriented to cover t;
if there are no answers, return failure;5
else select the d-sensor with maximum benefit and6
send it a selection-request;

while (true) /* receive benefit-enquiry */7
if (status == unselected)8

for each benefit-enquiry9
determine the best orientation to cover the10
given t, and inform the requesting d-sender
of the benefit;

while (true) /* receive selection-requests */11
if (status == unselected) and12

(there is at least one selection-request)
satisfy the request that will result in maximum13
benefit;
status = selected;14
Inform the near-by d-sensors (that cover a15
common target point) of the selection and
orientation;

Generalizations to Arbitrary Sensing Regions, and
Coverage of an Area. The Greedy Algorithm (GA)
easily extends (along with its performance guarantee)
to d-sensors with sensing regions of arbitrary shape, as
long as the the sensing regions are compact.1 For such
d-sensors with arbitrary sensing regions, the concept of
orientation may be defined as some way of identifying
the different sensing regions. Note that the proof of the
above Theorem 1 is independent of the shapes of the
sensing regions.

Similarly, GA can also be used to k-cover a given
area, rather than a given set of target points (as required
by the formulation of SODkC problem). Essentially,
coverage of an area requires dividing the given area into
“subregions” as in our previous work [1]; a subregion is
defined as a set of points in the plane that are covered
by the same set of sensing regions. The number of such
subregions can be shown to be polynomial in the total
number of cone-shaped sensing regions in the system.

1A region is compact if it is closed and connected. In particular,
this is true if each region covers a finite number of points.
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Based on the above, we define the benefit of a sensing-
region as the number of number of uncovered subregions
contained in the sensing-region. The Greedy Algorithm
can then be used without any other modification, and the
performance guarantees still hold.

Distributed GA. In a distributed environment, con-
ceptually, each yet-uncovered target point increases its
coverage by selecting and orienting a d-sensor that
covers it and has the highest benefit at that stage. The
above process continues until all target points are k-
covered. To facilitate the above, a target point (or a
subregion) is “owned” by the highest-ID d-sensor that
can cover it using one of its sensing regions. Thus, each
d-sensor ensures coverage of the target points owned by
it, through selection and orientation of near-by d-sensors.
See Algorithm 2, for a pseudo-code of the distributed
algorithm.

V. Related problems
In this section, we address problems similar to our

SODkC problem that were presented in [14], in the
context of coverage by placing and/or orienting cameras.
We show that our GA can be modified to yield approx-
imation algorithms for each of these related problems.

Problem 2. (Orienting all d-sensors for Maximizing
Coverage) Given a set of d-sensors with fixed positions
and a set of target points, orient all d-sensors so as to
cover the maximum number of target points.

The above problem is also addressed in [13], wherein
the authors present a greedy heuristic (different than
ours) without a provable performance guarantee. In
contrast, we present below a greedy approach with a
constant-factor approximation.

Greedy Approach for Problem 2. The above problem
can be solved using greedy approach similar to the
GA, with the only difference that we continue to select
and orient d-sensors until all the d-sensors have been
oriented. At each stage, we pick a (d-sensor, orientation)
pair that has the maximum benefit at that stage. See
Algorithm 3. The running time of the algorithm is same
as GA, i.e., O(kn|T |2 log n|T |), but in this case, we get
constant-factor approximation as shown in the following
theorem.

Theorem 2. The greedy approach (as described above)
yields a 0.43-approximate solution to Problem 2.

Proof: Let M be the number of target points cov-
ered by the optimal solution. This proof proceeds in a

Algorithm 3: Orienting all d-sensors for max-coverage

while there are d-sensors not oriented yet1
Select a d-sensor (that has not been selected yet) and2
an orientation pair that covers the most number of
target points not yet covered;

similar way as the proof of Theorem 1, and yields the
below equation.

gj+1 ≥
1
n

M − 2
j∑
i=1

gi


Above, gj+1 is the benefit of the sensing-region chosen
in the jth step of the greedy approach. By induction, we
can show that

(M − 2
∑
i

gj+1) ≤M
(

1− 2
n

)j
,

which yields∑n
i=1 gi
M

≥ 1
2

(
1−

(
1− 2

n

)n)
≥ 1

2

(
1− 1

e2

)
= 0.43.

Problem 3. (Placing and Orienting d-sensors for Min-
Cost Coverage) Given a polygon P and a set of d-sensors
along with their costs and associated sensing regions.
Cover a given percentage p of the area of the polygon
P , by placing and orienting a minimum cost subset of
given d-sensors.

Problem 4. (Placing and Orienting d-sensors for Max-
Coverage) Given a polygon P and a set of d-sensors
along with their costs and associated sensing regions.
Cover a maximum percentage of P ’s area, by placing
and orienting a subset of given d-sensors whose cost is
less than the given budget B.

Greedy Approaches for Problems 3 and 4. We use
greedy approaches similar to GA to solve Problems 3
and 4. Essentially, at each stage, we pick the best (d-
sensor, position, orientation) triplet that gives the highest
ratio of area-covered/cost. See Algorithms 4 and 5. For
a given d-sensor and orientation, we can find its best
placement using the algorithm in [17]. The result in [17]
is for placement of “360-degree guards,” but their result
can be easily extended for arbitrary closed and connected
sensing-regions, provided that VC-dimension (defined
below) remains bounded. The use of their approach
allows us to finds a position for a given d-sensor and
orientation that covers (1 − δ) times the optimal area
possible in O((n2l2/δ4) log3(l/δ)) time, where l is the
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Algorithm 4: Placing and orienting d-sensors for min-cost
coverage

while P is not covered for at least p percent1
best d sensor = null;2
for each d-sensor type3

for each discretized orientation4
run the algorithm in [17] to find the best5
position for this d-sensor type and
orientation;
if this combination gives a higher ratio of6

(area covered/d-sensor cost) than
best d sensor

store this combination in7
best d sensor;

keep best d sensor;8
remove the area covered by best d sensor9
from the polygon to cover;

size of the given polygon. We start by stating the time
complexity, and then we will prove the approximation
factors of the above greedy approaches.

Theorem 3. The above described greedy approaches for
Problems 3 and 4 run in time O(τnuR) time, where τ is
the number of different d-sensors types, u is the number
of discretized d-sensor’s orientations, n is the total num-
ber of d-sensor, and R is the running time of the algo-
rithm in [17]. In particular, R = O((n2l2/δ4) log3(l/δ))
where l is the number of edges of the polygon P and
δ > 0 is the parameter that affects the precision of the
result.

Before proving the approximation factors, we need
to introduce the concept of Vapnik-C̆ervonenkis (VC)
dimension. The VC-dimension is defined in terms of set
shattering, as follows.

Definition 4. (VC dimension) A set X is shattered by
C if for each Y ⊆ X , there exists a set S ∈ C such that
X ∩ S = Y . The VC dimension is the cardinality of the
largest set that can be shattered by C.

In our case, the VC dimension of the set of d-sensor’s
sensing regions is at most 23, as given by Valtr theorem
[18]:

Theorem 4. If X ⊂ R2 is compact and simply con-
nected, then VC-dimension of the system V (X) =
{V (x) | x ∈ X} is at most 23.

We now prove the approximation factors of Algo-
rithms 4 and 5.

Algorithm 5: Placing and orienting d-sensors for max-coverage

while there is some budged available1
best d sensor = 0;2
for each d-sensor type whose cost is within the3
budged

for each discretized orientation4
run the algorithm in [17] to find the best5
position for this d-sensor type and
orientation;
if this combination gives a higher ratio of6

(area covered/d-sensor cost) than
best d sensor

store this combination in7
best d sensor;

keep best d sensor;8
reduce the budget by the cost of9
best d sensor;
remove the area covered by best d sensor10
from the polygon to cover;

Theorem 5. Consider an instance of Problem 3. If there
exists a solution that covers p percentage of the polygon
area, then our greedy approach for Problem 3 gives a
solution that covers at least p/2 percentage of the given
polygon using a cost of at most O(1/(1− δ) · ln p

100 |C|)
times the optimal cost. Here, |C| is the maximum number
of target points covered by a sensing regions and δ is
the precision parameter.

Proof: Let denote with |P | the area of the input
polygon P . This proof proceeds in a similar way as the
proof of Theorem 1, and yields the following equation.

gj+1 ≥
1− δ
nopt

 p

100
|P | − 2

j∑
i=1

gi


where gj+1 is the benefit of the sensing-region chosen
in the jth step of the greedy approach, and nopt is the
number of d-sensors selected by an optimal algorithm..
Note that the (1 − δ) factor is given by the use of the
algorithm in [17]. Also note that after placing each d-
sensor, the area that it covers should be removed from the
polygon. The way to handle this situation is discussed in
paragraph 2.4 of [17], and it applies to our case because
the VC dimension remains 23 at each iteration of the
algorithm.

By induction we can show that p

100
|P | − 2

j∑
i=1

gi

 ≤ p

100
|P |

(
1− 2

1− δ
nopt

)j
.
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Fig. 5. Solution size of 4-cover varying network size.
Communication radius = 4 units.

Thus, when j = nopt/(2(1 − δ)) ln( p
100 |P |/nopt), we

have ( p
100 |P |−2(1−δ)

∑j
i=1 gi) < nopt. Finally, observ-

ing that nopt|C| ≥ |P | and that GA will continue until
( p
100 |P | − 2(1 − δ)

∑j
i=1 gi) is zero, we see that when

GA terminates, it has a benefit of at least p
100 |P |/2 and

uses at most O(1/(1− δ) · ln p
100 |C|) d-sensors.

Theorem 6. Our greedy approach for the Problem 4
gives a solution which covers at least (1− e−2(1−δ))/2
times the area covered by an optimal solution, for a given
parameter δ > 0.

Proof: Let M be the number of target points cov-
ered by the optimal solution. This proof proceeds in a
similar way as the proof of Theorem 1, and yields the
following equation.

gj+1 ≥
1− δ
n

M − 2
j∑
i=1

gi


where, gj+1 is the benefit of the sensing-region chosen
in the jth step of the greedy approach. Note that the
(1− δ) factor comes form the use of the approximation
method of [17]. By induction, we can show that

gj ≥
1− δ
n
·M ·

(
1− 2

1− δ
n

)j−1

Summing all equations we get
n∑
j=1

gj ≥
1− δ
n
·M ·

n∑
j=1

(
1− 2

1− δ
n

)j−1

which gives

G

M
≥ 1

2

(
1−

(
1− 2

1− δ
n

)n)
≥ 1

2

(
1− 1

e2(1−δ)

)
where G =

∑n
j=1 gj is the total benefit of the greedy

algorithm.
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Fig. 6. Solution size of 4-cover varying communication radius.
Sensor network size = 3000 sensors.

VI. Experimental results
In this section we present experimental results about

the execution of GA and Distributed GA. The setup is
similar to the one of [8]. Sensors are placed randomly in
a square of 40×40 units. The visibility radius is set to 8,
the d-sensor’s cone spans an angle of 60 degrees, and we
discretize the orientations by shifts of 30 degrees. In all
our experiments, k is set to 4. Note that each d-sensor’s
cone has an area of 82π/6, so to 4-cover the square we
need at least 4 · 402 · 6/(82π) ≥ 190 d-sensors.

Communication in Distributed Algorithms. In dis-
tributed algorithms, d-sensors need to communicate with
near-by d-sensors (those that cover a common target
point). To reach a near-by d-sensor, a sensor broadcasts
a message up to a distance `. A safe choice for ` is
the link radius, which is the maximum communication
distance between any two sensors whose sensing regions
intersect. We use the same methodology of [1] and [8]
to compute the link radius ` of a sensor network. In
particular, we define dense networks as networks with
more than r/t sensors within a distance 2r, where r and t
are the sensing and transmission radii respectively. For a
40×40 area, a dense network should have at least (80/t)2

sensors, and this is the case of all our experiments.
For dense networks the link radius is estimated to be
` = (2r/t+ 1).

Experiments. In all our experiment, both GA and dis-
tributed GA were able to attain k-coverage (even if
theoretically it is not guaranteed).

Figure 5 shows the solution size for densities that vary
from 1000 to 4000, and Figure 6 shows the solution
size for different communication radii. Note that 1000
sensors are barely enough to obtain 4-coverage. As the
plot shows, the solution size of the greedy algorithm
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does not increase as the network size increases. This
implies that the solution obtained for n = 1000 is already
quite close to the optimal one. Also, note that the greedy
solution is only 25% higher than the theoretical lower
bound on the optimal solution Moreover, the solution of
Distributed GA is very close to the one of Centralized
GA. This means that the method used to distribute the
algorithm does not compromise much the accuracy of
the solution.

Figure 7 shows how the communication cost varies
for different network sizes.

VII. Conclusions
In this paper, we studied the problem of selecting

and orienting a minimum number of direction sensor
for k-coverage problem. The problem is NP-hard to
approximate; however, we designed a greedy algorithm
with certain performance guarantees. We designed a
distributed version, and through experiments showed
that the distributed implementation does not compromise
much on the performance of the solution. We also
addressed three other related problems that arise in the
context of coverage using direction sensors, and analyze
the performance of appropriate greedy approximation
schemes for them.
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