The Data Warehouse of Newsgroups

Himanshu Gupta'* and Divesh Srivastava?

! hgupta@db.stanford.edu, Stanford University, Stanford, CA 94305, USA
2 divesh@research.att.com, AT&T Labs — Research, Florham Park, NJ 07932

Abstract. Electronic newsgroups are one of the primary means for the
dissemination, exchange and sharing of information. We argue that the
current newsgroup model is unsatisfactory, especially when posted arti-
cles are relevant to multiple newsgroups. We demonstrate that consid-
erable additional flexibility can be achieved by managing newsgroups in
a data warehouse, where each article is a tuple of attribute-value pairs,
and each newsgroup is a view on the set of all posted articles. Support-
ing this paradigm for a large set of newsgroups makes it imperative to
efficiently support a very large number of views: this is the key difference
between newsgroup data warehouses and conventional data warehouses.
We identify two complementary problems concerning the design of such
a newsgroup data warehouse. An important design decision that the sys-
tem needs to make is which newsgroup views to eagerly maintain (i.e.,
materialize). We demonstrate the intractability of the general newsgroup-
selection problem, consider various natural special cases of the problem,
and present efficient exact/approximation algorithms and complexity
hardness results for them. A second important task concerns the effi-
cient incremental maintenance of the eagerly maintained newsgroups.
The newsgroup-maintenance problem for our model of newsgroup defi-
nitions is a more general version of the classical point-location problem,
and we design an 1/O and CPU efficient algorithm for this problem.

1 Introduction

Electronic newsgroups/discussion groups are one of the primary means for the
dissemination, exchange and sharing of information on a wide variety of top-
ics. For example, comp.databases and comp.lang.c, typically contain arti-
cles relevant to computers and computation, while soc.culture.indian and
soc.culture.mexican typically contain articles relevant to some world cultures.

In the current model of posting articles to electronic newsgroups, it is the
responsibility of the author of an article to determine the newsgroups that are
relevant to the article. Placing such a burden on the author of the article has
many undesirable consequences, especially since there are thousands of news-
groups currently, and the author of an article may not always know all the rel-
evant newsgroups: (a) articles are often cross-posted to irrelevant newsgroups,
resulting in flame wars, and (b) articles that are obviously relevant to multi-
ple newsgroups may not be posted to all of them, missing potentially relevant

* Supported by NSF grant IRI-96-31952.

readers. This unsatisfactory situation will only get worse as the number of news-
groups increase.

In this paper, we present a novel model for managing electronic newsgroups
that does not suffer from the above mentioned problems; we refer to it as the
Data Warehouse of Newsgroups (DaWN) model. In the DaWN model, the au-
thor of an article “posts” the article to the newsgroup management system, not
to any specific newsgroups. Each newsgroup is defined as a view over the set of all
articles posted to the newsgroup management system, and it is the responsibility
of the system to determine all the newsgroups into which a new article must be
inserted. Our newsgroup views allow the flexible combination of selection con-
ditions on structured attributes of the article, such as its author and posting
date, along with selection conditions on unstructured attributes of the article,
such as its subject and body. For example, the newsgroup soc.culture. indian
may be defined to contain all articles posted in the current year, each of whose
bodies is similar to at least one of a set of, say, 100 articles that have been
manually determined to be representative of this newsgroup. Similarly, the def-
inition of the newsgroup att.forsale may require that the organization of the
article’s author be AT&T. The ability to automatically classify posted articles
into newsgroups based on conditions satisfied by multiple structured and un-
structured attributes of the article permits very flexible newsgroup definitions.
Clearly, the DaWN model has the potential of bringing together the author and
targeted readers of an article.

In this paper, we identify and address two complementary problems that
arise when newsgroups are defined as views in the DaWN model.

Newsgroup-selection problem: Given a large set of newsgroups, which of

these newsgroups should be eagerly maintained (materialized), and which
of them should be lazily maintained, in order to conserve system resources
while allowing efficient access to the various newsgroups?
We demonstrate that the general newsgroup-selection problem is intractable,
which motivates a study of special cases that arise in practice. We consider
many natural special cases, based on the DaWN model of articles and news-
groups, and present efficient exact/approximation algorithms for them.

Newsgroup-maintenance problem: Given a new article, in which of the pos-
sibly large number of materialized newsgroups must the article be inserted?
We expect any article to be contained in very few newsgroups, while the
number of newsgroups supported by the data warehouse may be very large.
Thus, an algorithm that iteratively checks whether the new article needs to
be inserted in each of the newsgroups would be extremely inefficient. We
devise an I/O and CPU efficient solution for the newsgroup-maintenance
problem.

Both the above problems arise in any data warehouse that supports materi-
alized views. What distinguishes DaWN from conventional data warehouses are
the following characteristics: (i) the extremely large number of views defined in
DaWN, and (ii) the simple form of individual newsgroup views as selections over

the set of all posted articles. While we focus on the data warehouse of newsgroups
in this paper, our techniques and solutions are more generally applicable to any
data warehouse or multi-dimensional database with the above characteristics,
such as data warehouses of scientific articles, legal resolutions, and corporate
e-mail repositories.

The rest of this paper is organized as follows. In the next section, we briefly
describe the DaWN model. In Section 3, we consider the problem of efficiently
maintaining materialized newsgroup views, when new articles arrive into the
newsgroup system. In Section 4, we discuss the problem of selecting an appro-
priate set of newsgroup views to eagerly maintain. We present related work for
each of the two problems in their respective sections. We end with concluding
remarks in Section 5.

2 The DaWN Model

A data warehouse is a large repository of information available for querying and
analysis [TK93,HGMW*95 Wid95]. It consists of a set of materialized views over
information sources of interest, using which a family of (anticipated) user queries
can be answered efficiently. In this paper, we show the advantages of modeling
the newsgroup management system as a data warehouse.

2.1 Article Store: The Information Source

A newsgroup article contains information of two types: header fields, and a body.
The header fields of an article are each identified by a keyword and a value. In
contrast, the body is viewed as unstructured text. For the purpose of this paper,
we model articles as having d attributes, Ay, As,..., Aq. For header fields of
the article, the keyword is the name of the attribute; the body of the article
can be treated as the value of an attribute called Body. The various examples
in this paper use the commonly specified attributes From, Organization, Date,
Subject, and Body of newsgroup articles, with their obvious meanings.

The article store is the set of all posted articles. To facilitate answering
queries over the article store, various indexes can be built over the article at-
tributes. For example, the article store may maintain an inverted index structure
[Fal85] on the Body attribute, and a B-tree on the Date attribute. The article
store along with the index structures is the information source for the data
warehouse of newsgroups.

2.2 Newsgroup Views

An electronic newsgroup contains a set of articles. Current day newsgroup man-
agement systems support only newsgroups that contain articles that have been
explicitly posted to those newsgroups. Here, we focus our attention on news-
groups that are defined as views over the set of all articles stored in the under-
lying article store. The articles in the newsgroups are determined automatically

by the newsgroup management system based on the newsgroup definitions, and
are not explicitly posted to the newsgroups by the authors. Conventional news-
groups can also co-exist with such automatically populated newsgroups.

In this paper, we consider newsgroups that are defined as selection views on
the article attributes. The atomic conditions that are the basis of the newsgroup
definitions are of the forms: (a) “attribute similar-to typical-article-body with-
threshold threshold-value”, (b) “attribute contains value”, and (c) “attribute
{<,>,=,#,<,>} value”.

Given an article attribute A;, an attribute selection condition on A; is an
arbitrary boolean expression of atomic conditions on A;. A newsgroup-view defi-
nition is a conjunction of attribute selection conditions on the article attributes,
i.e., we consider newsgroups V defined using selection conditions of the form

Njer(fi(A5)

where I C {1,2,...,d} is known as the index set of newsgroup V and f;(4;) is
an attribute selection condition on attribute A;. We expect the size of the index
set |I] of typical newsgroups, that are defined as views, to be small compared to
the total number of article attributes.

For example, the newsgroup att.forsale may be defined as “(A (Date > 1
Jan 1998) (Organization = AT&T) (Subject contains Sale))”. A more inter-
esting example defines the newsgroup soc.culture.indian as “(A (Date > 1
Jan 1998) (V (Body similar-to By with-threshold T1) ... (Body similar-to Bigg
with-threshold Tigg)))”, where the various B;’s are the bodies of typical-articles
that are representative of the newsgroup, and the T;’s are the desired cosine
similarity match threshold values [SB88]. Both these examples combine the use
of conditions on structured and text-valued unstructured attributes.

2.3 The Data Warehouse and Design Decisions

The data warehouse of newsgroups, defined over the article store, allows users to
request the set of all articles in any specific newsgroup; this request is referred to
as a newsgroup query and is the only type of user query supported by the data
warehouse. The newsgroup management system may decide to eagerly maintain
(materialize) some of the newsgroups; these newsgroups are the materialized
views in DaWN, and are kept up to date in response to additions to the article
store. Newsgroup queries can be answered using the materialized views stored
in the data warehouse and/or the article store. We use the term newsgroup
management system to refer to the system consisting of the data warehouses
and the article store.

Two of the most important decisions in designing DaWN, the data warehouse
of newsgroups, are the following: (a) the selection of materialized views to be
stored at the warehouse, for a given family of (anticipated) user queries; such a
selection is important given limited amount of resources such as storage space
and/or total view maintenance time, and (b) the efficient incremental mainte-
nance of the materialized views, for a given family of information source data

updates. The warehouse may maintain various indexes for efficient maintenance
of the materialized newsgroups. We further discuss the nature and use of these
index structures in Section 3.

In the following sections, we address the above two key issues in the design of
DaWN, taking into account the special characteristics that distinguish it from
conventional data warehouses: (i) the extremely large number of newsgroup views
defined in DaWN; and (ii) the simple form of individual newsgroup views as
selections over the set of all posted articles.

3 The Newsgroup-Maintenance Problem

In this section, we consider the newsgroup-maintenance problem, i.e., the prob-
lem of efficiently updating a large set of materialized newsgroups, in response to
new articles being added to the article store. We start with a precise definition
of our problem, and present some related work, before describing our I/O and
CPU efficient solution for the problem.

3.1 The Problem Definition

We formally define the newsgroup-maintenance problem as follows. Let Vi, ...,
Vi be the large set of materialized newsgroups in the newsgroup system. Given
a new article m = (b1, ba,...,bq), we wish to output the subset of newsgroups
that are affected by the posting of the article m to the article store, i.e., the set
of newsgroups in which m needs to be inserted.

Given the large number of newsgroups in a typical newsgroup data ware-
house, the brute force method of sequentially checking each of the newsgroup
definitions to determine if the article needs to be inserted into the newsgroup
could be very inefficient. The key challenge here is to devise a solution that takes
advantage of the specific nature of our problem, wherein the size of the index
set of newsgroups is small, compared to the number of attributes of the article.

3.2 Related Work

The work that is most closely related to our problem of newsgroup-maintenance
is that on the classical point-location problem. The point-location problem is to
report all hyper-rectangles from a given set, that contain a given query point. An
equivalent problem that has been examined by the database community is that
of the predicate matching problem in active databases and forward chaining rule
systems [HCKW90]. However, our problem is more general because our problem
combines conditions on ordered domains with conditions on unstructured text
attributes. Also, each attribute selection condition on an ordered domain may
be a general boolean expression of atomic conditions, for example, a union of
interval ranges.

There has been a considerable amount of work on the point-location problem
[EM81,Ede83a,Ede83b,Cha83] on designing optimal main-memory algorithms.

However, there hasn’t been any work reported on designing secondary memory
algorithms for the point-location problem, that have optimal worst-case bounds.
In contrast, there has been some recent work [KRVV93,RS95VV96] reported
for the dual problem of range-searching. The secondary memory data struc-
tures developed for the point-location problem like various R-trees, cell-trees,
hB-trees have good average-case behavior for common spatial database prob-
lems, but do not have any theoretical worst-case bounds. We refer the reader
to [Sam89a,Sam89b] for a survey. We note that none of the previously proposed
algorithms can take advantage of small index sets of newsgroup views, i.e., all
of them treat unspecified selection conditions as intervals covering the entire
dimension.

3.3 Independent Search Trees Algorithm

In this subsection, we present our I/O and CPU efficient approach called the In-
dependent Search Trees Algorithm for solving the newsgroup-maintenance prob-
lem. For ease of understanding, we start with a description of the algorithm for
newsgroup definitions where each attribute is an ordered domain, and each se-
lection condition is an atomic condition. Thus, each attribute value is restricted
to be in a single interval, i.e., each newsgroup is a hyper-rectangle. Later, we
will extend it to handling unstructured text attributes and general boolean ex-
pressions in the attribute selection conditions.

Newsgroup-Maintenance of Hyper-Rectangles: Consider n newsgroups Vi, ...,
Vi, where each newsgroup V; is defined as

Vi= Njer,(£ij)

and each f;; is of the form (A4; € ¢;;) for some interval ¢;; on the respective
ordered domain D;. The data structure we use consists of d external segment
tree structures [RS94] 71,75, . .., Ty, such that tree Tj stores the intervals {c;; |
je,1<i<n}.

We compute the set of affected newsgroups (views) as follows. We keep an
array I of size n, where I[i] is initialized to |I;|, the size of the index set of
newsgroup V;. When an article m = (b1, ba, ..., bg) arrives, we search for intervals
in the external segment trees 7; that contain b;, for all 1 < j < d. While
searching in the segment tree 7j for b;, when an interval ¢;; gets hit (which
happens when b; € ¢;;), the entry I[i] is decremented by 1. If an entry I[i] drops
to zero, then the corresponding newsgroup V; is reported as one of the affected
newsgroups. These are precisely the newsgroups in which the article m will have
to be inserted.

Handling the “contains” operator: We now extend our Independent Search Trees
Algorithm to handle the “contains” operator for unstructured text-valued at-
tributes such as Subject. Thus, the newsgroup definitions may now use the
contains operator, i.e., fj; can be (A; contains s;;) for some string s;; and a

text-valued attribute A;. To incorporate the contains operator in our newsgroup
definitions, we use trie data structures [Fre60] instead of segment trees for text-
valued attributes. The question we wish to answer is the following. Given a set of
strings S; = {si; | j € I;} (from the newsgroup definitions) and a query string b;
(the value of the article attribute A;), output the set of strings s;,;, sij, - - -, Siyj
such that b; contains s;,; for all p < [. The matching algorithm used in con-
junction with the trie data structure can be easily modified to answer the above
problem. We build a trie on the set S; of data strings. On a query b;, we search
the trie data structure for superstring matches for each suffix of b;. The search
can be completed in (|b;|>+1) character comparisons, where |b;| is the size of the
query string b; and [is the number of strings reported. The space requirements
of the trie data structure is k|X| characters for storing k strings, where |X| is
the size of the alphabet. Note that the trie yields itself to an efficient secondary
memory implementation, as it is just a special form of a B-tree.

Handling Selection Conditions on Body Attribute: We extend our techniques to
general newsgroup definitions that may also use similar-to with-threshold predi-
cates on the Body attribute, say A4. In particular, for a view V;, we consider

fia(Aa) = Vi (C(Ag, Bix, Tix)),

where C(Aq, Big, Tik) is used to represent the predicate (Aq similar-to By with-
threshold T;1,). Each By, here is the body of a typical-article that is representative
of the V; newsgroup.

To handle maintenance of such newsgroup definitions, we build inverted lists
Li,Ls, ..., Ly, where p is the size of the dictionary (set of relevant words). Each
typical-article body B is represented by a similarity-vector By = (wiga, - - -,
Wikp), where w;g; is the weight of the It" word in Bji. Let the set of all distinct
similarity-vectors used in the view definitions be Wy, W,, ..., W,,. An inverted
list L; keeps a list of all similarity-vectors W;’s that have a non-zero weight
of the I** word. Also, with each similarity-vector W;, we keep a list, R;, of all
view definitions that use the similarity-vector W; along with the corresponding
threshold. In other words, R; = {(i,T;x)|W; = Bix}, stored as an ordered list
in increasing order of the thresholds. We also keep a dot-product integer P;
(initialized to zero).

Let m = (b1, ba,...,bq) be a new article posted to the article store, whose
Body attribute value by = (Wm1, Wm2, . .., Wmp) is the word-vector representing
the article body. Each b; for j < d is searched in the external segment tree or
trie T}, as before, with entries in I decremented appropriately. To compute f;q,
we sequentially scan the inverted list L;, for each non-zero value wy,; in the new
article’s word-vector b4. For each W; in L;, we increment the dot-product value
P; associated with W; by (wji * wmi)/|bal|W;|. After all required inverted lists
have been scanned, for each W;, we scan its list R; and for each (¢, Tjz) € R;,
such that T;; < P;, we decrement the value of I[{] by 1, making sure that each
I[i] is decremented at most once.

Newsgroup-Maintenance of Boolean Ezpressions: When f;;, the attribute selec-
tion condition involving an ordered attribute A;, is A; ¢ d;; for some interval
d;; on domain Dj;, we still store d;; in the segment tree T;. But, whenever d;; is
hit (which happens when b; € d;;), we increase I[i] to d (instead of decrement-
ing by one), guaranteeing that newsgroup V; is not output. Similarly, we handle
fij’s of the form —(A; contains s;;) or (=(C(A;, Bk, Tix))) for an unstructured
text-valued attribute A;. Also, in an entry I[7] of array I, we store the size of
positive index set of V; instead of the size of V;’s index set. The positive index
set I;" of a view V; is defined as {j | (j € I;) A (fi; is either of the form (A; €
cij) or (A; contains s;;) or (C(A;, Big, Tix)))}. Similarly, the negative index set
I is defined as {j | (j € I;) A (fij is of the form (A4; ¢ di;) or ~(A; contains

sij) or =(C(Aj, Bir, Tix))) }-

The generalization to arbitrary boolean expressions for ordered domain at-
tributes is achieved as follows. An arbitrary boolean expression f;; for an arith-
metic attribute A; can be represented as \/, (A; € cijr) or as A, (A; € diji),
for some set of intervals ¢;;5 or di;r on D;. A segment tree T}, corresponding
to the attribute A;, is constructed as including all the intervals c;;r or d;;x
and corresponding entries in I are decreased by 1, or increased to d on hits to
intervals appropriately. If A; is an unstructured text-valued attribute, we can
easily handle boolean expressions of the type fi; = (V,(A; contains sij))
or fi; = (Ax—(4; contains s;ji)) for a set of strings s;;;. For the Body at-
tribute Aq, we can handle expressions of the type fia = V. (C (44, Bix, Tix)),
or fia = Ng(—(C(Aq, Bik, Tix))). Arbitrary boolean expressions in conjunctive
normal form (CNF) for unstructured text attributes using contains or similar-to
with-threshold predicate can also be handled by creating a duplicate attribute for
each clause in the CNF boolean expression. We note that \/, (C(Aq4, Bi, Tix)) is
the only type of boolean expression involving the Body attribute, that we expect
in practice.

For general boolean expressions, the definitions of IZ»+ and I; are appropri-
ately extended to {j | (j € I;) A (fi; is either of the form \/,(A4; € ¢;5x) or
Vi (4; contains siji) or \/(C(Aq, Bik, Tix)))} and {j | (7 € Li) A (fi; is either
of the form A, (A; € d;ji) or A\, —(A; contains s;;1) or A\, —(C(Aqg, Bix, Tix))))}

respectively.?!

Handling Unspecified Article Attributes: An article m is inserted into a view V;
based on the values of only those article attributes that belong to V;’s index
set [;. However, an attribute selection condition f;; can be defined to accept
or reject an unspecified attribute value. For example, it is reasonable for the
selection condition (Organization = “AT&T”) to reject articles that have the
attribute Organization unspecified, while an unspecified attribute value should
probably pass the selection condition Organization # “AOL”.

To handle such cases of unspecified attribute values in articles, we maintain
two disjoint integer sets P; and F; for each attribute A;, in addition to its index

! We assume that |I| > 0 for each i. Else, we will need to keep a list of views with
zero |I7| and report them if the entry I[i] = || remains unchanged.

structure. The pass list P; is defined as {i | (j € I;") A (fi; accepts unspecified
values) }. Similarly, faillist F; is defined as {1 | (j € I;") A (fij rejects unspecified
values)}. Thus, if an arriving article m has its A; attribute’s value unspecified,
we decrement the entry I[i] by one for each ¢ € P; and increment I[i] to d for
each ¢ € F}, instead of searching in the index structure of A;.

CPU Efficient Initialization of Array I: Whenever a new article arrives in the
newsgroup management system, we need to initialize each entry I[i] of the array
I to |IZ+ |, the size of the positive index set of V;. A simple scheme is to explicitly
store (in persistent memory) |I;f| for each V; and initialize each of the n entries
of I every time a new article arrives. However, since the article is expected to
affect only a few newsgroups, initializing all n elements of the array I can be
very inefficient. Below, we present an efficient scheme to find the initial values
in I, only for potentially relevant newsgroups.

We number the views in such a way that |IJ+| < |I:| forall1<j<k<n.
We define d — 1 numbers ¢q,%s,...,¢4-1, where ¢; is such that |I;|J'| < |It'|;+1|,
i.e., these d — 1 numbers define the transition points for the initial values in the
array I. If no such ¢; exists for some j < d, thent;, = n+1forall j <1 < d.
We create a persistent memory array 7' of size d, where T[0] = 0 and T[i] = t;
for 1 <7 < d. Since the array T contains only d elements, it is quite small and
hence can be maintained in main memory. To find the initial value of I[3], |I;"|,
we find a number z such that T[z — 1] < ¢ < T[z] in O(logd) main-memory
time. Tt is easy to see that |I;| = 2.

When we have to decrement the value of I[:] for the first time, we initialize
I[i] to & — 1, else we reduce the current value of I[i] by 1. How do we find
out if I[i] has been decremented before or not? We do this by keeping a bit
vector H of size n, where H[i] = 1 iff I[i] has been decremented before. Both
arrays H and I can reside in main-memory, even when thousands of newsgroups
are maintained as materialized views. For each new article that arrives into the
newsgroup management system, only the bit vector H needs to be reset to 0,
which can be done very efficiently in most systems.

I/0 Efficiency: We now analyze the time taken by the above algorithm to output
the newsgroups affected, when a new article arrives in the newsgroup manage-
ment system.

Let B be the I/O block size. We define K; as the number of intervals in the
various newsgroup definitions involving an ordered-domain attribute A; (equiv-
alently, the number of entries in the segment tree 7}), and m; as the maximum
number of intervals in tree 7; that overlap. Using the optimal external seg-
ment tree structure of [RS94], we can perform a search in a segment tree 7' in
logg (p) + 2(¢/B) number of 1/O accesses, where p is the number of entries in
T, and t is the number of intervals output. Let s; be the number of similarity-
vectors that have a non-zero weight in the j** word, where j < p. Thus, the scan
of the j** inverted list L; takes s; /B disk accesses. Therefore, the overall query

time complexity of the above algorithm is O(Zj;i logp (K;) —}—'Z(Z;i;i m;)/B+

(?:1 s;)/B), assuming that there are no conditions involving the contains op-
erator. An unspecified value in the attribute A; of a new article m results in
only (|P;| + |F;|)/B disk accesses.

Theorem 1. Consider n newsgroup views whose definitions are conjunctions
of arithmetic attribute selection and unstructured attribute selection conditions.
Fach attribute selection condition on an ordered-domain attribute A; is a boolean
expression of atomic conditions on A;.

The Independent Search Trees Algorithm for newsgroup-maintenance s cor-
rect and has a maintenance time of O(Zj;ilogB(Kj) + Z(Zf;i m;)/B) +
(Z?Il s;)/B) disk accesses, where Kj, m;, and s; are defined as above.

If an attribute selection condition for a text attribute A; uses the contains
operator, the maintenance time required to search the index structure (trie) of
Ay 15 (|bj|? +mj)/ B, where |b;| is the length of b;, the Ay attribute string value
wn the arrwving article, and m; s the number of newsgroups that match.

The update time of the data structure due to an insertion of a new view s
O(X:;i:1 logp(K;)) + s disk accesses, where s is the number of non-zero weights

in the typical-article bodies of the added view.?

One of main features of the above described algorithm is that the time-
complexity directly depends upon the total number of specified attribute atomic
selection conditions, unlike any of the previously proposed algorithms for similar
problems.

4 The Newsgroup-Selection Problem

An important decision in the design of the newsgroup system is to select an
appropriate set of newsgroups to be eagerly maintained (materialized). The rest
of the newsgroups are computed whenever queried, using the other materialized
newsgroups and/or the article store. A natural optimization criterion is to mini-
mize the storage space and/or newsgroup maintenance time, while guaranteeing
that each newsgroup query can be answered within some threshold.

The query threshold of a newsgroup query is essentially the query-time a user
request for the newsgroup can tolerate. Heavily accessed important newsgroups
would have low query thresholds, while newsgroups with very low query fre-
quencies could tolerate higher query times. The newsgroup-selection problem is
to select the most “beneficial” newsgroups to materialize, so that all newsgroup
queries can be answered within their respective query-time thresholds. Often,
materializing only a small subset of newsgroups will be sufficient to answer each
newsgroup query within its query-time thresholds. This conserves system re-
sources and facilitates efficient maintenance of materialized newsgroups.

In this section, we first formulate the general problem of selecting newsgroups
to be eagerly maintained (materialized), and show that it is, unfortunately, in-
tractable. We then take advantage of our specific model of newsgroup definitions

2 The array T can be maintained periodically.

as selection views, and present some efficient exact/approximation algorithms
and complexity hardness results for the problems.

As with the previous problem of newsgroup-maintenance, the problems ad-
dressed here are more generally applicable to the selection of views to materialize
in a data warehouse, when the queries are restricted to selections and unions over
the underlying sources of information.

4.1 General Problem of Newsgroup-Selection

Consider a labeled bipartite hypergraph G = (Q UV, E), where @ is the set of
newsgroup queries and V is a set of candidate newsgroups (views) considered
for materialization. The set E is the set of hyperedges, where each hyperedge is
of the form (¢, {vi,va,...,u}), ¢ € @Q, and vy, vs,..., v € V. Each hyperedge
is labeled with a query-cost of ¢, signifying that query ¢ can be answered using
the set of views {vy, vy, ..., v} incurring a cost of ¢ units. With each query node
q € @, there is a query-cost threshold T} associated, and with each view node
v € V, there is a weight (space cost) S(v) associated. We refer to such a graph
as a query-view graph. This notion of a query-view graph is similar to that used
in [GHRU97], but more general. We now define the newsgroup-selection problem.

Newsgroup-Selection Problem: Given a bipartite query-view hypergraph G
defined as above, select a minimum weighted set of views M C V' to materialize
such that for each query q € @Q there exists a hyperedge (q,{v1,v2,...,v}) in G,
where views vy, vs, ..., v € M and the query-cost associated with the hyperedge
w5 less than Ty.

The above problem is trivially in NP. As there is a straightforward reduction
from minimum set cover to a special case of the newsgroup-selection problem
when G has only simple edges, the newsgroup-selection problem is also NP-hard.
The newsgroup-selection problem is exactly the problem of minimizing the num-
ber of leaves scheduled in a 3-level AND/OR scheduling problem with internal-
tree precedence constraints [GM97]. The 2-level version of the AND/OR schedul-
ing problem with internal-tree precedence constraints is equivalent to minimum
set cover, while the 4-level AND/OR scheduling problem with internal-tree
constraints is as hard as the LABEL-COVER [ABSS93,GM97] problem making it
quasi-NP-hard® to approximate within a factor of 210871 for any v > 0. To
the best of our knowledge, nothing is known about the 3-level version of the
AND/OR scheduling problem with internal tree constraints.

The intractability of the general problem leads us to look at some natural
special cases that arise in practice in the context of newsgroup management,
and we present efficient algorithms for each of them. Recall that, in Section 2,
we allowed newsgroups to be defined only as selection views of a specified form.
In such cases, a newsgroup needs only the union (U) and selection (o) relational
operators to be computed from a set of other newsgroups. However, the above
formulation of the newsgroup-selection problem is much more general.

% That is, this would imply NP C DTIME(nPOly(lOg")). “A proof of quasi-NP-hardness is
good evidence that the problem has no polynomial-time algorithm” [AT.95].

In the next subsection, we restrict the computation of a newsgroup from
other newsgroups to just using the selection operator. We handle the case of
using both the union and the selection operators in the subsequent subsection.

4.2 Queries as Selections over Views

In this subsection, we focus on the restricted newsgroup-selection problem where
newsgroup queries are computed using only selections, either on some material-
ized newsgroup in the data warehouse or the article store. For example, if the
data warehouse eagerly maintains comp.databases, then answering the news-
group query comp.databases.object requires only a selection over the news-
group comp.databases. Being a special case of the general newsgroup-selection
problem, the above restricted version of the problem helps in better understand-
ing of the general problem. Moreover, in some domains, the union operation may
be very expensive or not feasible. For example, let the newsgroup V; contain all
articles whose Subject contains “computer”, and the newsgroup Va be the set
of all articles whose Subject contains “compute”. Though, Vo can be computed
using Vi and the article store using the selection condition (A (Subject contains
“computer”) (—(Subject contains “compute”))) on the article store, it may be
more efficient to compute V5 using a simple selection over just the article store.

In the above restricted newsgroup-selection problem where newsgroup queries
are computed using only the selection operator, a query uses exactly one view
for its computation. Hence, the query-view graph defined earlier will have only
simple edges. The restricted newsgroup-problem has a natural reduction from
the minimum set cover problem and hence is also NP-complete. However, there
exists a polynomial-time greedy algorithm that delivers a competitive solution
that is within O(logn) factor of an optimal solution, where n is the number of
newsgroup queries. The greedy algorithm used is almost the same as that used
to approximate the weighted set cover problem [Chv79]. It can be shown that
the solution delivered by the greedy algorithm is within O(logn) of the optimal
solution.

So far, we have not taken any advantage of the specific nature of the atomic
conditions used in the newsgroup definitions. We now do so, and restrict ourselves
to newsgroups defined using arithmetic operators on the article attributes. As
the arithmetic operators used in an atomic condition assume an order on the
domain, all defined newsgroups form some sort of “orthogonal objects” in the
multidimensional space of the article attributes. We take advantage of this fact
and formulate a series of problems, presenting exact or approximate algorithms.

Newsgroup-Selection with Ordered Domains Consider an ordered domain
D. Consider newsgroups (views or queries) that are ranges over D. In other
words, views and queries can be represented as intervals over D. As we restrict
our attention to using only the selection operator for computing a query, a query
interval ¢ can be computed using a view interval v only if v completely covers
q. With each pair (¢,v), where v completely covers ¢, there is a query-cost
associated, which is the cost incurred in computing ¢ from v.

We observe here that the techniques used to solve the various problems of
one-dimensional queries/views addressed in this section can also be applied to
the more general case when the queries involve intervals (ranges) along one
dimension and equality selections over other dimensions.

Problem (One-dimensional Selection Queries) Given interval views V and
winterval queries @ over an ordered domain D, select a minimum weighted set of
interval views M such that each query q € () has a view v € M that completely
contains q and answers the query q within its query-cost threshold Ty.

Let n be the number of query and view intervals. There is an O(n?) exact
dynamic programming algorithm that delivers an optimal solution to the above
problem. The algorithm appears in the full version of the paper.

The restricted version of the newsgroup-selection problem considered above is
a special case of the view-selection problem in OR view graphs defined in [Gup97]
with different optimization criteria and constraints. Gupta [Gup97] presents a
simple greedy approach to deliver a solution that is within a constant factor of
an optimal solution. In effect, we have taken advantage of the restricted model
of the newsgroup definitions and shown that for this special case of the view-
selection problem in OR graphs there exists a polynomial-time algorithm that
delivers an optimal solution.

Multi-dimension Selection Queries The generalization of the above newsgroup-
selection problem to d-dimensional selection queries, where each query and view
is a d-dimensional hyper-rectangle, doesn’t have any better than the O(logn)
approximation algorithm. The newsgroup-selection problem for d-dimensional
selection queries can be shown to be NP-complete through a reduction from
3-SAT. In fact, the problem is a more general version of the classical age-old
problem of covering points using rectangles in a 2-D plane [FPT81], for which
nothing better than an O(logn) approximation algorithm is known.

Selection over Body Attribute Conditions Consider newsgroups defined
by selection conditions of the form fiq = V,(C(Aq, Bix,Tix)) over the Body
attribute of the articles. So, an article m belongs to a newsgroup if m is similar-
to one of the representative typical-article’s body B;; with a minimum threshold.
A newsgroup query () can be answered using another materialized newsgroup
view V if the set of typical-article bodies of @) is a subset of the set of typical-
article bodies of V. The newsgroup-selection problem in this setting can be
shown to be exactly the same problem as the NP-complete set cover problem.
Thus, allowing selections over the Body attribute makes the newsgroup-selection
problem as difficult as the general newsgroup-selection problem with simple edges
in the query-view graph.

4.3 Queries as Selections + Unions over Views

In this section, we look at some special cases of the general newsgroup-selection
problem, while allowing both selection and union operators for computation of a

newsgroup query from other materialized newsgroups. The use of both operators
introduces hyperedges in the query-view graph. As mentioned before, the gen-
eral newsgroup-selection problem involving hyperedges is intractable, hence we
take advantage of the restricted model of our newsgroup definitions in designing
approximation algorithms.

The newsgroup-selection problem with union and selection operators is a
special case of the view-selection problem in AND-OR, view graphs considered
in [Gup97], with different optimization criteria and constraints. Gupta [Gup97]
fails to give any approximation algorithms for the general view-selection problem
in AND-OR graphs. We take advantage of the special nature of our problem,
and present some polynomial-time approximation algorithms.

One-dimensional Selection/Union Queries Consider an ordered domain
D, and let newsgroups be interval ranges over D. In other words, newsgroup
views and queries can be represented as intervals over D and a newsgroup query
interval can be answered using views vy, ..., v; if the union of the view intervals
covers the query interval completely. There is a query-cost associated with each
such pair, which is the cost incurred in computing ¢ from vy, vs, ..., v;.

Problem (One-dimensional Selection/Union Queries) Given a set of in-
terval views V' and interval queries Q) wn an ordered domain D, select a minimum
weighted set of interval views M such that each query q € @ has a set of views
vy, Va,...,0 € M that completely cover q and the query-cost associated is less
than Tj,.

Consider the following cost model. In addition to a weight associated with
each view, let there also be a cost C'(v) associated with each view. Let the cost
of computing a query q using a set of views {vy,vs,..., v} that cover the query
¢ be defined as Zi-:l C(v;), i.e., the sum of the costs of the views used. The
above cost model is general enough for all practical purposes.

The problem of one-dimensional selection/union queries with the above cost
model can be shown to be NP-complete through a reduction from the NP-complete
Partition [GJ79] problem. See the full version of the paper for the reduction.
However, if we restrict our attention to the index cost model where the cost
incurred in computing a query covered by [views is [units (a special case of the
general cost model above, where each C'(v) = 1), we show that there exists an
O(m*~1n?) dynamic programming solution, where m is the maximum overlap
between the given queries and k is the maximum individual query-cost threshold
(which we expect to be small). The details of the algorithm can be found in the
full version of the paper.

The index cost model, where the cost of answering a query ¢ using [views
is [units, is based on the following very reasonable implementation. If all the
materialized views are indexed along the dimension D, then the cost incurred
in computing the query is proportional to {, the total number of index look-ups.
Note that the query-costs associated with the edges may not be the actual query
costs but could be the normalized query-cost “overheads”.

Average Query Cost Constraint A relatively easier problem in the context of
the above cost model is when the constraint is on the total (or, average) query
cost instead of having a threshold on each individual query. For such a case,
there exists an O(kn3) time dynamic programming algorithm that delivers a
minimum-weighted solution, where k(< n) is the average query-cost constraint.
The dynamic approach here works by maintaining for each interval [1, 4] a list of
k solutions, where the j** solution corresponds to the minimum-weighted set of
views that covers the queries in [1,7] under the constraint that the total query
cost incurred is less than j.

Multi-dimensional Selection /Union Queries Consider next the newsgroup-
selection problem where newsgroup queries and views are d-dimensional ranges.
In other words, views and queries can be represented as hyper-rectangles in a d-
dimensional space and a query hyper-rectangle can be answered using views
v1,...,U; if the union of the view hyper-rectangles covers the query hyper-
rectangle completely. We wish to select a minimum-weighted set of views such
that all queries are covered. The simplest version of the problem has no thresh-
old constraints and it is only required to cover all the query rectangles using the
materialized views.

The above problem is NP-complete even for the case of two dimensions. We
present here a polynomial-time (in n) O(dlogn) approximation algorithm. The
space of hyper-rectangular queries can be broken down into O((2n)?) elemen-
tary hyper-rectangles. Thus, the problem of covering the query hyper-rectangles
can be reduced to covering the elementary hyper-rectangles with minimum-
weighted set of views, which is equivalent to a weighted set cover instance
having O((2n)?) elements; this has an O(dlogn) approximation algorithm.

Selection/Union on Body Attribute Conditions In this subsection, we con-
sider the case where newsgroup queries, having selection conditions of the form
Jia = Vi (C(Aq4, Bir, Tir)), can be computed using only selection and union over
the Body attribute predicates of the materialized newsgroup views. Due to the
same similarity-vector occurring in the definition of many newsgroups, a news-
group V can be computed from the materialized newsgroups V1, Va, ..., Vi if each
similarity-vector of V is included in one of the materialized newsgroups.* The
computation involves computing a selection over each of the relevant newsgroups
followed by a union. If some of the similarity-vectors of a non-materialized view
V are not covered by the other materialized views, then to answer the newsgroup
query V', the article store needs to be accessed to select all articles whose bodies
match (using cosine similarity function with the specified threshold) one of the
uncovered similarity-vectors.

The cost of accessing a materialized view V', based on a selection over ordered
domains, is proportional to the logarithm of the size of V', as it involves searching

* Here, for simplicity, we assume that the threshold corresponding to a particular
similarity-vector is the same across different newsgroup views it is used in.

through efficient data structures like B-trees. In contrast, accessing V based on a
selection over an unstructured attribute involves searching through the inverted
index data structure. Therefore, when a query is computed as selection and
union over the Body attribute using some materialized views and the article
store, the cost incurred in accessing the article store is the dominant factor in
the total query time. Since each similarity-vector is compared with the inverted
index independently, the query cost is proportional to the number of similarity-
vectors sent to the article store.

Thus, in the context of newsgroup queries computed as selection/union over
the Body attribute, the natural optimization problem is to select a minimum
weighted set of newsgroup views to materialize, such that the total number of
uncovered similarity-vectors summed over all newsgroup queries is less than a
given threshold. From the discussion in the previous paragraph, the threshold
on the total number of similarity-vectors summed over all queries translates to
a threshold on the average query-cost of a newsgroup query.

The above optimization problem has a greedy O(logn) approximation algo-
rithm, that at each stage selects the newsgroup that decreases the total number
of uncovered body articles (summed over all queries) by most. We omit the
details of the proof here.

4.4 Related Work

The newsgroup-selection problem is similar to the view-selection problem defined
in [Gup97]. The view-selection problem considered there was to select a set of
views for materialization to minimize the query response time under the disk-
space constraint. The key differences between the two problems are the different
constraint and the minimization goal used.

Previous work on the view selection problem is as follows. Harinarayan et
al. [HRU96] provide algorithms to select views to materialize for the case of data
cubes, which is a special case of OR-graphs, where a query uses exactly one view
to compute itself. The authors in [HRU96] show that the proposed polynomial-
time greedy algorithm delivers a solution that is within a constant factor of the
optimal solution. Gupta et al. [GHRU97] extend their results to selection of views
and indexes in data cubes. Gupta [Gup97] presents a theoretical formulation
of the general view-selection problem in a data warehouse and generalizes the
previous results to general OR view graphs, AND view graphs, OR view graphs
with indexes, and AND view graphs with indexes.

The case of one-dimensional selection queries considered here is a special
case of the view-selection problem in OR view graphs for which we provided
a polynomial time algorithm that delivers an optimal solution. Similarly, the
case of one-dimensional selection/union queries is a special case of the view-
selection problem in AND-OR view graphs ([Gup97]), which we observe can be
solved optimally in polynomial-time for a reasonable cost model. The case of
selection/union queries on newsgroups defined using similarity-vectors is also a
special case of the general view-selection problem in AND-OR graphs, for which
we have designed a provably good approximation algorithm.

In the computational geometry research community, to the best of our knowl-
edge, the specific problems mentioned here haven’t been addressed except for the
preliminary work done on rectangular covers [FPT81].

5 Conclusions

We have proposed a novel paradigm for newsgroups, the DaWN model, where
newsgroups are defined as selection views over the article store. The success of
the DaWN model clearly depends on the efficiency with which news readers
can continue to access newsgroups. In this paper, we have looked at the two
complementary problems that are critical for this efficiency. The first problem
is the efficient incremental maintenance of eagerly maintained newsgroups. We
have designed an I/O and CPU efficient algorithm for this problem, based on
external segment trees, tries, and inverted lists. The second problem is the choice
of eagerly maintained (materialized) newsgroups. We have demonstrated the
intractability of the general problem, and discussed various special natural cases
of the general problem in the context of the DaWN model.

The success of the DaWN model also depends on the precision with which an
article can be automatically classified into appropriate newsgroups. This preci-
sion will be determined by the newsgroup definitions, in particular by the choice
of representative typical-articles. The problem of a good choice of typical-articles
for a given newsgroup is orthogonal to the problems/issues addressed in this pa-
per, and is an interesting open problem, where techniques from data mining and
data clustering can play a significant role.

We believe that the DaWN model can also serve as the foundation for al-
lowing individual users to enhance the standard newsgroups by defining their
personal newsgroups. Such personal newsgroups can be specified using “pro-
files” of the users that are matched against the article store, and techniques and
solutions from dissemination-based systems can be used to advantage here.

References

[ABSS93] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approxi-
mate optima in lattices, codes, and systems of linear equations. In Pro-
ceedings of the Foundations of Computer Science, 1993.

[AL95] S. Arora and C. Lund. Hardness of approximations. Technical Report
TR-504-95, Princeton University, Computer Science Department, 1995.

[Cha83] B. Chazelle. Filtering search: A new approach to query-answering. In
Proceeding of the Foundations of Computer Science, 1983.

[Chv79] V. Chvatal. A greedy heuristic for the set covering problem. Mathematics

of Operations Research, 4(3):233-235, 1979.
[Fde83a] H. Edelsbrunner. A new approach to rectangle intersections, Part I.
International Journal of Computer Mathematics, 13:209-219, 1983.
[Ede83b] H. Edelsbrunner. A new approach to rectangle intersections, Part II.
International Journal of Computer Mathematics, 13:221-229, 1983.

[EMS81]

[Fal85]
[FPTS1]

[Fre60]
[GI79]

[GHRU97]

[GM97]

[Gup97]

[HCKW90]

H. Edelsbrunner and H.A. Maurer. On the intersection of orthogonal

objects. Information Processing Letters, 13(4):177-180, 1981.
C. Faloutsos. Access methods for text. ACM Comp. Surveys, 17(1), 1985.

R. J. Fowler, M. S. Paterson, and S. L.. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Info. Proc. Letters, 12(3), 1981.
E. Fredkin. Trie memory. Communications of the ACM, 3(9), 1960.

M. R. Garey, D. J. Johnson. Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, San Francisco, 1979.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection
in OLAP. In Proceedings of the ICDE, 1997.

M. Goldwasser and R. Motwani. Intractability of assembly sequencing:
Unit disks in the plane. In Proceeding of the Workshop on Algorithms
and Data Structures, August 1997.

H. Gupta. Selection of views to materialize in a data warehouse. In
Proceedings of the ICDT, Delphi, Greece., January 1997.

E. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predicate
matching algorithm for database rule systems. In PODS, 1990.

[HGMW*95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The

[HRU96]
[TK93]

[KRVV93]

[Per94]
[RS94]

[RS95]

[SBss]
[Sam89al
[Sam89b]
[VV96]

[Wid9s5]

Stanford Data Warehousing Project. IEEE Data Engineering Bulletin,
Special Issue on Materialized Views and Data Warehousing, 18(2), 1995.
V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes
efficiently. In SIGMOD, 1996.

W.H. Inmon and C. Kelley. Rdb/VMS: Developing the Data Warehouse.
QED Publishing Group, Boston, Massachusetts, 1993.

P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff, and J.S. Vitter. Indexing

for data models with constraints and classes. In PODS, 1993.
M. Persin. Document filtering for fast ranking. Proc. ACM SIGIR Conf.,

Dublin, Ireland, 1994.

S. Ramaswamy and S. Subramanian. Path caching: A technique in opti-
mal external searching. In PODS, 1994.

S. Ramaswamy and S. Subramanian. The p-range tree: A new data

structure for range searching in secondary memory. In SODA, 1995.
G. Salton and C. Buckley. Term-weighting approaches in automatic text

retrieval. Information Processing & Management, 24(5), 1988.

Hanan Samet. Applications of Spatial Data Structures: Computer Graph-
ics, Image Processing, and GIS. Addison-Wesley, 1989.

Hanan Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1989.

D.E. Vengroff and J.S. Vitter. Efficient 3-D searching in external memory.
In Proceeding of the STOC, 1996.

J. Widom. Research problems in data warehousing. In Proceedings of the
Conference on Info. and Knowledge Management, 1995.

