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In this paper, we design techniques that exploit data correlations in sensor data to minimize
communication costs (and hence, energy costs) incurred during data gathering in a sensor network.

Our proposed approach is to select a small subset of sensor nodes that may be sufficient to
reconstruct data for the entire sensor network. Then, during data gathering only the selected

sensors need to be involved in communication. The selected set of sensors must also be connected,
since they need to relay data to the data-gathering node. We define the problem of selecting such

a set of sensors as the connected correlation-dominating set problem, and formulate it in terms of
an appropriately defined correlation structure that captures general data correlations in a sensor

network.
We developa set of energy-efficientdistributedalgorithms and competitive centralizedheuristics

to select a connected correlation-dominating set of small size. The designed distributed algorithms
can be implemented in an asynchronous communication model, and can tolerate message losses.

We also design an exponential (but non-exhaustive) centralized approximation algorithm that
returns a solution within O(logn) of the optimal size. Based on the approximation algorithm, we

design a class of centralized heuristics that are empirically shown to return near-optimal solutions.
Simulation results over randomly generated sensor networks with both artificially and naturally

generated data sets demonstrate the efficiency of the designed algorithms and the viability of our
technique – even in dynamic conditions.

Categories and Subject Descriptors: C.2.4 [DistributedSystems]: —Distributed Applications

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Correlated Data, Topology Control, Energy Efficiency

1. INTRODUCTION

Advances in embedded processing and wireless networking have made possible cre-
ation of sensor networks [Estrin et al. 2000; Badrinath et al. 2000]. A sensor
network consists of sensor nodes with short-range radios and on-board processing
capability, forming a multi-hop network of irregular topology. Sensor nodes must be
powered by small batteries, making energy efficiency a critical design goal. There
has been a significant interest in designing algorithms, applications, and network
protocols to reduce energy usage of sensors. Examples include energy-aware routing
[Intanagonwiwat et al. 2000], energy-efficient information processing [Estrin et al.
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2000; Chu et al. 2002], and energy-optimal topology construction [Wattenhofer
et al. 2001]. In this article, we focus on designing techniques to conserve energy by
exploiting existing data correlations in the sensor network. The techniques devel-
oped in this paper are orthogonal to some of the other mentioned approaches, and
can be used in combination with them to conserve energy.

The sensors are usually deployed in a redundant fashion as the deployment cost
is high relative to the hardware cost of individual sensor nodes. Redundant de-
ployment also allows sampling of a signal at very fine spatial resolution and/or to
improve fault tolerance and noise immunity. But for ordinary usage, a dense sensor
network simply presents data rich in correlation which we exploit in our techniques.

Our targeted applications are those that need to sense or sample a signal over the
geographic region represented by the sensor network. Such sensor network applica-
tions have two types of nodes: sensing nodes and data-gathering nodes [Chou et al.
2003]. The data-gathering node gathers periodic snapshots of signal data values
measured at the individual sensors and use interpolation to derive the signal value
at all points in the geographic region. We exploit the correlations in the sensor data
by selecting a small subset of sensor nodes called correlation-dominating set whose
signal data values will be sufficient to derive the signal value at all points with
sufficient accuracy. The selected correlation-dominating set of sensors should also
form a connected communication graph, since they need to relay data to the data-
gathering node using a spanning communication tree. In this article, we design a
correlation structure that captures general data correlation relationships among sen-
sor nodes in a sensor network, and formulate the connected correlation-dominating
set problem in terms of a hypergraph describing the correlation structure. We
design various distributed and centralized algorithms for computing a small con-
nected correlation-dominating set. Using extensive simulations on artificially and
naturally generated data, we show that the energy savings achieved by the above
described approach is substantial.

Our work is complementary to the approaches that use compression techniques
to exploit correlation in order to reduce the total amount of data transmitted [Chou
et al. 2003; Marco et al. 2003; Cristescu and Vetterli 2003; Cristescu et al. 2004].
These techniques still require all sensor nodes to transmit their data. Interestingly,
Marco et al [2003] show that compression schemes are of limited use for very dense
sensor networks. In particular, Marco et al [2003] show that any compression
scheme is insufficient to transport required amount of data for a given accuracy,
when the density of the sensor network increases to infinity. A necessary fallout
of this thesis is that “oversampling” beyond network capacity is possible for a
sufficiently dense sensor network, and the only way to prevent this would be to
suppress data transmission by some nodes. This provides credence to approaches
such as ours that select only a subset of sensors for data transmission.

The rest of the paper is organized as follows. In the next section, we motivate
and formally define the problem of connected correlation-dominating set. In the fol-
lowing two sections, we present the designed distributed and centralized algorithms
respectively. Section 5 presents our simulation results. We end with sections on
related work and conclusions.
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2. MOTIVATION AND PROBLEM FORMULATION

In this section, we motivate the problem addressed in the article through an appli-
cation and an example, and give a formal definition of the problem. We start with
presenting our sensor network model.

A sensor network consists of a large number of sensors distributed randomly in
a geographical region. Each sensor has a unique ID, and a radio interface, which
is used to communicate directly with some of the sensors around it. A sensor
s is said to be correlated to a set of sensors S if the data measured by s can be
inferred/computed from the data measured by the sensors of S within an acceptable
error bound as defined by the application. Such correlations can be discovered by
prior data analysis (as described later).

2.1 Motivating Application and Example

In this article, we focus on data-gathering applications [Chou et al. 2003], where
data-gathering nodes are responsible for gathering periodic snapshots of sensor data
of interest. All sensor nodes transmit their measured data of interest to the data-
gathering node upon being queried. The focus of this article is to exploit inherent
data correlations and reduce the number of sensors that need to transmit data. For
example, if a sensor s is correlated to a set of sensors S and each sensor in S is
transmitting its data to the data-gathering node, then s need not transmit its data
to the data-gathering node. Such suppression of transmissions enables gathering
of snapshots with lower communication without compromising much on the data
quality.

Our article addresses the following optimization problem (formally defined later)
that arises in sensor networks with data correlations. Given a sensor network,
select a minimum set of sensors M , called connected correlation-dominating set,
such that (a) each sensor that is not in M is correlated to a subset of sensors in
M , and (b) the selected set of sensors M forms a connected communication graph.
The requirement for connectivity in the communication graph is due to the fact
that the selected sensor set needs to collectively relay data to the data-gathering
node. We choose the set M of smallest set since we assume the communication
cost (number of messages) incurred in gathering data from M is equal to |M | (see
Section 2.2).

It is conceivable that if the sensor data values are rich in correlations, then |M |
could be very small compared to n, the total number of nodes in the sensor network.
To develop a complete technique based on the above idea, we need to first discover
correlations in the sensor data, and then, exploit the data correlations effectively
to select a small set of sensors M that forms a connected communication graph
and is sufficient to infer data of all the n sensors in the sensor network. The data
is relayed to the data-gathering node over a communication tree spanning over M
using one message per node per snapshot. Now, if the application is required to
gather q snapshots, and D is the total communication cost incurred by a distributed
algorithm for computing the set M , then the condition (D + q|M |) < qn would
ensure overall energy cost savings. Moreover, a small D (low communication-cost of
the distributed algorithm), large q (long running data-gathering queries), and n >>
|M | (high degree of data correlation and good solution quality of the algorithm)

ACM Transactions on Sensor Networks, Vol. TBD, No. TBD, TBD 20TBD.



4 ·

1

2
3

4

5

Fig. 1. Connected Correlation-Dominating Set Problem. Here, the set of black nodes form the
connected correlation-dominating set.

will ensure D << q(n − |M |) and hence, significant overall energy savings.

EXAMPLE 1. Consider the sensor network in Figure 1. The sensor network
region has been divided into five regions numbered 1 to 5. Each region is shaded
differently and has highly correlated signal values. Thus, sensors in the same re-
gion are measuring very similar signal data values. Let us assume that the data
correlations between the sensor nodes can be represented by a simple rule: for a
given region, any two sensor data values are sufficient to infer the data values of
all other sensors in the region. This correlation structure could be represented by
a correlation hypergraph where every sensor node s has a hyperedge ((si, sj), s)
incident on it for every pair of sensors nodes si and sj that belong to the same
region as s.

Let M be the set of dark nodes in the figure. Following the above mentioned
data correlation rule, it is easy to see that the sensors in M are sufficient to infer
the signal data of all the sensors in the sensor network, as M contains at least two
nodes from every region. Since, the set M also forms a connected communication
graph, it is a connected correlation-dominating set. Note that M contains 4 nodes
from region 3 to ensure connectivity even though only 2 are sufficient to infer all
others in the region. In this example, the total number of sensors is 30, while the
size of the connected correlation-dominating set is only 12.

2.2 Formal Problem Definition

We now formally define the connected correlation-dominating set problem ad-
dressed in this article. We start with a few definitions.

Definition 1. (Communication Graph; Communication Distance) Given a sen-
sor network consisting of a set of sensors I, the communication graph for the sensor
network is the undirected graph CG with I as the set of vertices and an edge
between any two sensors if they can communicate directly with each other. The
communication subgraph induced by a set of sensors M is the subgraph of CG
involving only the vertices/sensors in M .

The communication distance between two sensors I1 and I2 is the length of the
shortest path between I1 and I2 in the communication graph.

Definition 2. (Correlation Graph; Correlation Neighbors) Given a sensor net-
work consisting of a set of sensors I, the correlation graph over the sensor nodes is
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a directed hypergraph with I as the set of vertices, and a subset of (P (I) × I) as
the set of directed hyperedges, where P (I) is the power set of I. In other words,
the correlation graph is a hypergraph G(V = I, E ⊆ (P (I) × I)). An edge (S, s)
(where s /∈ S) in the correlation graph signifies that the sensor data of the node
s is correlated to the data of the set of sensors S and hence, the data of s can be
computed (within some1 error bound) from the data of the sensors in S. The corre-
lation graph for the sensor network in Example 1 will have a hyperedge ((si, sj), sk)
for any three sensors si, sj, and sk that belong to the same region (1 to 5).

A hyperedge in the correlation graph is also referred to as correlation edge. In a
correlation edge (S, s), s is the sink node, S is the source set, and for any x ∈ S,
s and x are called correlation neighbors. We assume that in a hyperedge (S, s),
s /∈ S.

Definition 3. (Connected Correlation-Dominating Set) Consider a sensor net-
work consisting of n sensors. Let C be the correlation graph over the sensor nodes
in the network. A set of sensors M is called a connected correlation-dominating set

if the following two conditions hold:

(1) For each sensor node s /∈ M , there is a set of sensors S ⊆ M such that (S, s) is
a correlation edge in C.

(2) The communication subgraph induced by M is connected, and M contains the
data-gathering node.

A set of sensors that satisfies only the first condition is called a correlation-dominating

set in the network.

Cost of Data Gathering. Let M ′ be a correlation-dominating set (not necessarily
connected) in the given network graph G. Gathering of data from M ′ at a data-
gathering node I requires first constructing a data-gathering tree T that spans M ′

and is rooted at I. Once such a tree T is available, each node in T collects data
from all its descendants in T , and then, transmits the collected data to its parent.
The communication cost (number of messages) incurred in the above data gathering
(per snapshot) is equal to the number of nodes in T , since each tree node transmits
exactly once. Here, we assume that the collective size of the data of descendants
at any node is bounded, and can be packaged in one (or a constant number of)
packet(s). We discuss relaxation of the above assumption at the end of Section 3.
Thus, the cost of gathering data from a set of nodes M ′ is equal to the size of a
tree T that spans M ′ and is rooted at the data-gathering node. Note that the set
of nodes of the tree T forms a connected correlation-dominating set. Moreover,
any connected correlation-dominating set M can be used to gather data from its
contained correlation-dominating set at a cost of |M |. Thus, in order to minimize
the cost of data gathering from some correlation-dominating set, we should select
a connected correlation-dominating set of minimum size.

Connected Correlation-Dominating Set Problem. Given a sensor network
and a correlation graph over the sensors, the connected correlation-dominating set

1The choice of error bound depends on the accuracy and energy-efficiency requirements of the
application. If the error bound allowed is higher, the correlation graph will have more number of

correlation edges, which will result in a more energy-efficient solution.
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problem is to find the smallest connected correlation-dominating set.

The connected correlation-dominating set problem is NP-hard as the less general
minimum dominating set problem is well known to be NP-hard [Guha and Khuller
1998]. Constructing a minimum connected correlation-dominating set enables an
energy- efficient gathering of sensor data of interest in a sensor network with data
correlations.

2.3 Distributed Computation of Correlation Graph

In this subsection, we briefly describe how the correlation graph of a sensor network
is constructed by piggybacking additional messages over the normal data-gathering
messages, and adding correlation hyperedges. We start with describing when a
correlation edge is added, and how are the associated correlation parameters com-
puted.

Computing Correlation Hyperedge Parameters. We use the least squares
(LS) approach to determine existence of a hyperedge. In particular, we draw a
hyperedge (S, s) from a set of nodes S to a node s, if the data readings of sensor
s can be inferred from the readings of sensors in S within a certain bound. Let
x[k] and x′[k] denote the actual and predicted values of a sensor x at kth time
instant. Let S = {s1, s2, . . . , sL}. We choose to use a linear predictive model
to model the correlation, i.e., we predict s′[k] to be a fixed linear combination of
s1[k], s2[k], . . ., sL[k] for all k. More formally,

s′[k] =

L
∑

l=1

αlsl[k],

where αl are weighting coefficients. The above equation can be easily generalized
to handle temporal correlations as well. A similar model has been used to model
correlation in prior work [Chou et al. 2003]. We use the LS approach to minimize
the error between the predicted and actual readings, and draw an hyperedge (S, s) if
the minimum error is within a certain application-dependent bound. In particular,
the weighted coefficients are chosen to minimize the least square error

E(α) =

K
∑

k=1

(s[k] − s′[k])2, (1)

where K is the number of samples, and the weighted coefficients are given [Kay
1998; Chou et al. 2003] by

[α1, α2, . . . , αL]T = (STS)−1STs. (2)

Here, s = [s[1], s[2], . . ., s[K]]T are the actual readings of the node s, and S is the
K ×L (K > L) matrix of full rank L representing the actual readings of sensors in
S, over time instants 1 to K. Equation (2) can be executed on an individual sensor
node within affordable energy cost for reasonable values of K and L, and the energy
cost expended in computing Equation (2) is proportional to K2L6. For instance,
for L = 3 and K = 5, some profiling shows that the above matrix equation uses
around 100,000 CPU instructions on Atmel 128L micro-controller used in Berkeley
motes [Hill et al. 2000]. In addition, from power profiling data in [Shnayder et al.
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2004], we can estimate that energy used is transmitting a single default-sized (30
bytes) message on TinyOS [D. Culler et al. 2004] at the maximum power is the
same as that used in computation the above Equation (2) 6 times.

Computing Correlation Graph. Let N (s, d) denote the set of d-hop neighbors of
s in the communication graph of the sensor network. To compute all the correlation
edges a node s is involved in, each node s in the sensor network should collect
sufficient (say, K) samples from each node in N (s, d), where d is sufficiently large to
capture all data correlations. Initially, when the correlation structure is unknown,
all the network nodes are periodically involved in transmitting data to the data-
gathering node using a communication tree. Thus, we can collect samples (K from
each node) from d-hop neighbors at each node by piggybacking over data-gathering
messages for d snapshots as follows. Let us assume that each node has collected
samples from all i-hop neighbors after i snapshots. The inductive step is as follows.
During the (i + 1)st snapshot, when a node v is transmitting the data-gathering
message to its parent, it (a) piggybacks the i-hop neighbors’ samples it has already
collected, and (b) instead of unicast transmission uses a broadcast transmission.
Thus, all of v’s 1-hop neighbors receive v’s i-hop neighbors’ samples. Since, the
above piggybacking is also done by all the 1-hop neighbors of v during the ith

snapshot, the node v would have collected i-hop neighbors’ samples of all its 1-hop
neighbors which is equivalent to samples from all its (i + 1)-hop neighbors.

In the above process, we have implicitly assumed that the collective size of the
i-hop neighbors’ samples is bounded (since, d is expected to be small due to locally
spatial data correlations), and hence, can be packaged/piggybacked in one trans-
mission. In general, if the collective samples (K from each node) from (d− 1)-hop
neighborhood need x packet messages, then we need to use the above piggybacking
strategy for xd snapshots or use additional (at most ndx) messages. The number
of piggybacked snapshots required can be reduced by using the strategy while the
original K samples are being gathered.

3. ENERGY-EFFICIENT DISTRIBUTED ALGORITHM

In this section, we present a set of energy-efficient distributed algorithms to select
a connected correlation-dominating set in a sensor network. We start with a
description of the basic distributed algorithm. In the later paragraphs, we will
optimize the basic algorithm further to develop two distributed algorithms viz.
2-Rounds and Handshake algorithms.

Basic Distributed Algorithm. The basic distributed algorithm works as fol-
lows. Initially, each node assigns itself a priority, which could be its own ID or an
appropriately chosen number (as described later). Next, each node collects k-hop

neighborhood information, i.e., information about communication neighbors of all
nodes that are within a communication distance of k − 1. Here, k is a small con-
stant; we chose k = 3 for our simulations. The neighborhood information can be
gathered during the data-gathering process using the piggyback strategy described
in the previous section. In the remaining part of the algorithm, each node periodi-
cally tests for a set of conditions to be satisfied. If the conditions are satisfied, the
node marks itself deleted and instructs some of its correlation neighbors to mark
themselves selected. The selected marking on a node signifies that it is being
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Fig. 2. Condition for marking deleted of a node s. The condition C2 involves communication
edges, while C3 and C4 involve correlation edges.

used to infer another node and hence, should not be marked deleted in future.
The deleted or selected marking of a node is permanent and in the end, some of
the nodes may be left unmarked. If the communication graph of the initial sensor
network is connected, the set of nodes that have not been marked deleted at any
stage form a connected correlation-dominating set. The data-gathering node of
the sensor network marks itself as selected initially, since it must be part of the
connected correlation-dominating set.

Conditions for marking deleted. Informally, a node is marked deleted if: (i)
it can be inferred (using a correlation edge) from a set of non-deleted nodes, and
(ii) its deletion preserves the connectivity of the communication subgraph induced
over the non-deleted nodes. Priorities are used to avoid cyclic dependency of
conditions. More formally, a node s with priority p(s) is marked deleted if the
following conditions are satisfied (see Figure 2):

C1:. The node s has not been marked selected.

C2:. In the communication subgraph induced over the set of non-deleted nodes
and using only the k-hop neighborhood information, every pair of neighbors (u, v) of
s are connected by a communication path wherein all the intermediate nodes have
a priority less than p(s). This condition ensures that deletion of s will preserve
the connectivity of the communication subgraph induced by the set of nodes not
marked deleted.2

C3:. There is a correlation edge (S, s) in the correlation graph, such that every
node in the set S is either marked selected or has a priority less than p(s).3 This
condition selects a set of nodes (S) that can be used to infer s through a correlation
edge.

C4:. For every correlation edge (R, r) where s ∈ R, either r is marked deleted

or is marked selected or has a priority less than p(s). This condition is to ensure
that the set of nodes in R are not being chosen for selected markings by the node
r at the same time.

2Wu et al. [2003] use a similar condition for computing a connected dominating set.
3Note that by virtue of the next C4 condition, no node in S could be marked deleted.
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When a node s is marked deleted, the nodes in a source set S that satisfy the
C3 condition are instructed by s to mark themselves selected. A node already
marked selected can be used to infer other nodes without comparison of priorities.

Termination. The selected or deleted markings of a node are permanent,
and hence, the distributed algorithms discussed in this section are guaranteed to
terminate. At any intermediate stage of the algorithm, the set of non-deleted nodes
forms a connected correlation-dominating set. Thus, any intermediate solution is
usable by an application, and it may not be critical to explicitly detect termination
of the algorithm. If required, the algorithm can be considered terminated after
sufficient time (message latency times the upper bound on the number of messages)
has elapsed. The upper bound on the number of messages is derived later.

Communication Messages. Let d be the maximum communication distance
between two correlation neighbors. Initially, each node needs to gather k-hop
neighborhood information and priorities of its correlation neighbors, where k is
the constant in condition C2. After the initial accumulation of information from
close neighbors, additional communication is incurred by the algorithm whenever
a node marks itself deleted or selected. In particular, when a node s is marked
deleted or selected, the following communication steps are executed.

(1) Node s informs its correlation neighbors of its deleted status, so that they
could retest their C4 condition. In the same4 message, node s also instructs
nodes of a source set S that satisfies C3 condition to mark themselves selected.

(2) Node s informs its communication neighbors of its deleted status, so that they
could retest their C2 condition.5

(3) Node s informs its correlation neighbors of its selected status, so that they
could retest their C3 and C4 conditions.

In the following theorem, we prove the correctness of the basic distributed algo-
rithm, which is unaffected by message losses. Also, the distributed algorithms
designed in this section do not require any synchrony in the underlying communi-
cation model and can be easily implemented in an asynchronous system.

Theorem 1. The above described basic distributed algorithm correctly computes

a connected correlation-dominating set, even if there are message losses.

Proof: We start with observing that a node s marks itself deleted based upon
its condition C1-C4 being true at some point of time. Below, we will show that
irrespective of any additional messages being received, the set of such deleted

nodes do not disconnect the sensor network, and that each such deleted node
s can always be inferred by a set of non-deleted nodes S. Thus, proving the
correctness of the algorithm even in the presence of message losses.

4If we use different messages, then we need to worry about the possibility of only the deleted

message reaching a node in S. See proof of Theorem 1.
5Note that an unsatisfied C2 condition of a node can become true only by deleted marking of

one of its neighbors. In addition, it can be shown (Wu et al. [2003]) that once the C2 condition
is satisfied for a node s, the deletion of s will always preserve connectivity in the communication

subgraph induced by the non-deleted nodes, even if other nodes get marked as deleted.
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First, we show that the removal of nodes that are marked deleted does not
disconnect the original communication graph of the sensor network. It is easy to
see that removal of any single node s that satisfies the C2 condition will definitely
maintain the connectivity of the sensor network’s communication graph. Now, note
that the satisfaction of C2 condition of s is based upon existence of alternate paths
involving nodes with lower priority than that of s. Deleted marking of a node u in
any of the alternate paths of s will result in another alternate path consisting of even
lower priority nodes. This is because the node u will also satisfy the C2 condition
due to nodes having lower priority than that of u and hence, that of s. Thus, if s
satisfies the C2 condition, then there will always exist an alternate path connecting
every pair of its neighbors. Thus, removal of s maintains the connectivity of the
original communication graph of the sensor network.

Now, we show that the set of nodes that are not marked deleted form a corre-
lation dominating set. It is sufficient to show that if a node s is marked deleted,
then there will always exist a correlation hyperedge (S, s) such that no node in
S has been marked deleted. Since, the node s satisfied condition C3, there is a
hyperedge (S, s) such that each node x ∈ S is either marked selected (and hence,
would never be marked deleted in future due to condition C1) or has a priority
lower than that of s. In the latter case, the node x could mark itself deleted only

when it receives a message about s’s deleted marking (see condition C4). How-
ever, as mentioned before, in the same message the node x is also instructed by s to
mark itself selected. Hence, the node x will never mark itself deleted. Thus, no
node in S is ever marked deleted and the node s can always be inferred using the
nodes in S. Since the above is true for any node s that has been marked deleted,
the set of non-deleted nodes form a correlation dominating set.

We now present the 2-Rounds, Handshake and Delayed-Connection distributed
algorithms, which optimize the basic distributed algorithm further.

2-Rounds Distributed Algorithm. The above described basic algorithm could
be improved (in terms of increasing the number of deleted nodes) by compar-
ing priorities only between nodes that are contending with each other for marking
themselves deleted. The 2-Rounds algorithm consists of an initial round before
executing the basic algorithm. In the initial round, the priority comparisons in
conditions C3 and C4 are made only for nodes that satisfy the C2 condition. More
precisely, for the initial round, the conditions C3 and C4 are replaced by the fol-
lowing modified C33 and C34 conditions.

C33:. There is a correlation edge (S, s) in the correlation graph, such that no
node in the set S is marked deleted. In addition, each node in S is either marked
selected or doesn’t satisfy the C2 condition or has a priority less than p(s).

C44:. If there is a correlation edge (R, r) where s ∈ R, then either r is marked
deleted or marked selected or doesn’t satisfy the C2 condition or has a priority
less than p(s).

To test the above C33 and C44 conditions, each node should be able to evaluate
the C2 condition of its correlation neighbors. Thus, the 2-Rounds algorithms begins
with gathering (d + k)-hop neighborhood information, where d is the maximum
communication distance between correlation neighbors. After the initial round,
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the 2-Rounds algorithms behaves exactly as the basic distributed algorithm. In
our experiment results, we observed that 2-Rounds algorithm yielded significant
improvement in the solution size over the basic distributed algorithm.

Handshake Algorithm. Handshake algorithm is essentially the basic distributed
algorithm with the conditions C3 and C4 replaced by the modified conditions C33
and C44, where we compare priorities between only those nodes that satisfy the C2
condition. Thus, we require each node to transmit a “C2-satisfied” message when
its C2 condition is satisfied. However, loss of “C2-satisfied” messages may result in
neighboring nodes s and ŝ both marking themselves deleted with s depending on
ŝ for inference. Thus, to ensure correctness in event of message losses, we need to
incorporate additional “handshake” messages. The addition communication steps
required in the Handshake Algorithm are:

(1) Whenever a node’s C2 condition is satisfied, it transmits a ‘C2-satisfied’ mes-
sage to all its correlation neighbors, so that they have complete information to
test their C33 and C44 conditions.

(2) Before node s marks itself deleted (due to satisfaction of conditions C1, C2,
C33, and C44), it makes a “handshake” with the nodes in S of condition C33.
The handshake involves the node s sending a handshake message to the nodes
in S and the nodes in S responding positively or negatively. The node s marks
itself deleted only if it receives a positive response from all the nodes in S. A
node in S sends a positive response only if it is not marked deleted and if it
either doesn’t satisfy C1 or doesn’t satisfy C2 condition or its priority is less
than that of s.

(3) A node in S of condition C33 marks itself selected only after the corresponding
node s has conclusively (after positive acknowledgment from all nodes in S)
marked itself deleted.

Handshake algorithm is expected to select a smaller connected correlation-dominating
set compared to the 2-Rounds algorithm. However, the better performance comes
at the cost of additional messages for ‘C2-satisfied’ and handshake messages. We
note here that the distributed algorithms presented in this section do not have a
provable bound on the quality of the solution delivered. However, in Section 5, we
conduct extensive simulations to compare the performance of these algorithms with
the centralized algorithms that has a provable bound on the solution quality.

Delayed-Connection Versions of Algorithms. Each of the above two algo-
rithms viz. 2-Rounds, and Handshake algorithms can be modified to yield algo-
rithms that first select a correlation-dominating set and then, connect the selected
nodes using a communication Steiner tree. Selection of correlation-dominating set
can be done by executing the original algorithms with the assumption that each
node satisfies the C2 condition. After sufficient time has elapsed to guarantee termi-
nation of the first phase, a communication Steiner tree connecting the correlation-
dominating set can be computed using a simple breadth-first search. In our simu-
lations, we observed that the delayed-connection versions always performed worse
than their counterparts, in terms of both the solution size returned as well as the
communication costs incurred.

Number of Communication Messages. Let d be the maximum communication
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distance between correlation neighbors. As mentioned before, the 2-Rounds algo-
rithm needs to gather (d + k)-hop neighborhood information, while the Handshake
algorithm collects k-hop neighborhood information. If n is the total number of sen-
sor nodes in the network, l-hop neighborhood information can be gathered using
ln messages. However, since the neighborhood information can also be gathered
during the normal data-gathering process (using piggybacking strategy as described
in Section 2.3), we ignore the communication cost incurred.

Let δ be the average6 size of a connected dominating set of the communication
subgraph induced by a sensor node and its correlation neighbors. Also, let |D| be the
number of nodes that get marked deleted and |S| be the number of nodes that get
marked selected during the entire course of the algorithm. Note that (|D| + |S|)
is bounded by n, the size of the sensor network. The total communication cost
incurred in each of the distributed algorithms is as follows.

(1) 2-Rounds Algorithm: δ(|D| + |S|) ≤ nδ.

(2) Handshake Algorithm: δ(|D| + |S|) + ‘C2-satisfied’ messages + handshake
messages ≤ n(δ + δ + 2δ) ≤ 4nδ.

For the Delayed-Connection version of the algorithm, the first term reduces to nδ.
However, they incur additional (n + size of the Steiner tree) messages to construct
the communication Steiner tree that connects the correlation-dominating set. Note
that in the above formulae, we have assumed that the initial gathering of d + k
or d neighborhood information and data samples from d-hop neighborhood (for
computation of correlation edges) is achieved using the piggybacking strategy, and
hence, do not incur any additional messages. See Section 2.3.

Assignment of Priorities. Note that we can use different priorities for condition
C2 and condition C3-C4. For the C2 condition, we use the inverse of the node’s de-
gree as the priority [Wu and Dai 2003]. For the C3-C4 conditions, we assign priority
p(s) for a node s as follows. Let S be a source set containing s. If node s satisfies C2
condition initially, we use p(s) = 1/(

∑

S 1/|S|) (since our algorithms favors deletion
of higher priority nodes), else we use p(s) = 1/(30 ∗ NodeDegree(s)

∑

S 1/|S|) so
that comparison of priorities (in C3, C4) is relevant only for nodes that satisfy the
C2 condition.

Handling Dynamic Changes to Correlation Graph. Change in data corre-
lations may result in changes to the correlation graph. Thus, each deleted node
s periodically checks for validity of the hyperedge (S, s) used in its C3 condition
by gathering data from the nodes in S (using the piggyback strategy over normal
data-gathering process as described in Section 2.3), recomputing the α parameters
(Equation (2)), and checking if the least square error (Equation (1)) is within the
given bound. If the least square error is more than the acceptable bound, the hyper-
edge (S, s) is invalidated, and the node s searches for a still valid hyperedge (S ′, s)
that satisfies its C3 condition and consists of only non-deleted nodes in S ′. If such
a hyperedge exists, the nodes in S′ are instructed to mark themselves selected.
If a node r in S′ had to be un-deleted, it informs its communication neighbors.
If no such hyperedge exists, then the node s marks itself un-deleted7 itself, and

6Average is across all instances when a node has to send a message.
7By “un-delete,” we mean that it removes its deleted marking.
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informs its communication neighbors. If a deleted neighbor v of either s or r fails
to satisfy the C2 condition now due to un-deletion of s or r respectively, the node
v un-deletes itself and informs all its neighbors. The above process continues, and
ensures that the connectivity of the non-deleted nodes is maintained. To conserve
energy, we do not un-select a node as it does not affect correctness.

Generalizations. We now discuss certain generalizations of our techniques.

Partial-Inference Hyperedges. Throughout this article, we have modeled correlation
as complete inference of a node from a set of other nodes. However, our distributed
and centralized algorithm (next section) can be easily generalized to model the
case when a hyperedge (S, s) with a weight b signifies that the node s can save on
transmission of b bits, if the data from nodes in S is available. Such a model has
been used in [Chou et al. 2003]. In the above model, higher-weighted hyperedges
are preferred for use in C3 condition for distributed algorithms. Moreover, unless
the transmission of s is being completely suppressed, there is no need to check for
C2 condition.

Generalizing Data Gathering Cost. In our problem formulation, we assumed the
communication cost of data-gathering from a set of nodes M to be equal to |M |,
based on the premise that the collective size of data from descendants at any node
in the data-gathering tree is bounded and can be packaged in a constant number
of message packets. If transmission of one data unit (data from one sensor node)
requires one message, then the minimum number of messages required to gather
data from a set of nodes M (not necessarily connected) is the sum of the shortest
paths from each node in M to the data-gathering node. Here, the shortest paths
may involve any node in the network. Thus, we can associate with each node a
weight equal to the length of the shortest path to the data-gathering node, and
formulate the problem as selecting the correlation-dominating set with minimum
weight. Note that we don’t need the selected set to be connected since other nodes
in the network can be used as relay nodes (without incurring additional cost beyond
the sum of shortest paths). Our distributed algorithms can be easily generalized
to solve the above node-weighted version of the problem by ignoring condition C2,
and preferring hyperedges with higher-weighted sinks and lower-weighted source
nodes in condition C3. In a similar way, non-uniform battery energies can also be
handled by preferring hyperedges with lower-energy sinks and higher-energy source
nodes in condition C3.

Centralized algorithms developed in the next section use a notion of benefit of
a set of selected nodes – which can also be easily adapted to handle the above
generalizations.

4. CENTRALIZED APPROXIMATION ALGORITHM

In this section, we present a centralized approximation algorithm that returns a
connected correlation-dominating set that is within an O(log n) factor of the optimal
size. Based on the approximation algorithm, we design a class of polynomial-time
heuristics that perform well empirically. In Section 5 (Figure 4), we will show
that even the lower order polynomial-time heuristics deliver near-optimal solutions
for spatial sensor networks. The centralized heuristics developed in this section
also allow us to ascertain the quality of the solution sizes of the energy-efficient

ACM Transactions on Sensor Networks, Vol. TBD, No. TBD, TBD 20TBD.



14 ·

{a4}{a3}{a2}a1 a4a3a2

b1 b4b3b2 b5

{a1}

{b1} {b4}{b3}{b2} {b5}

S1 S4S3S2
S1 S4S3S2

Fig. 3. Correlation graph and its intersection graph of source sets.

distributed algorithms of previous section by comparing them with the near-optimal
centralized heuristics. The centralized heuristics can be implemented in a sensor
network by executing the heuristic on one of the special-purpose computationally
powerful sensor nodes in the network, after gathering required information from
all the nodes in the sensor network. We start with some definitions for a sensor
network with a correlation graph.

Definition 4. (Intersection Graph of Source Sets) Let I be the set of nodes in
the network, and I = {{s}|s ∈ I}. Let S be the set of source sets in the correlation
graph of the network. The intersection graph of source sets is the simple graph
G(V = S ∪ I, E = {(v1, v2)|(v1 ∩ v2) 6= φ}).8

See Figure 3.

Definition 5. (Connected Subgraph of Sources; Connected Source Set) A con-
nected subgraph in the intersection graph of source sets is called a connected sub-

graph of sources.9 A connected source set is a set of nodes corresponding to some
connected subgraph of sources, i.e., the union of the sets corresponding to the ver-
tices of a connected subgraph of sources. For example, in Figure 3, S1, S2, and S3
form a connected subgraph of sources and the corresponding connected source set
is {b1, b2, b3, b4}.

Definition 6. (Inferred Nodes) Given a set of nodes S, the set of inferred nodes
for S is denoted by I(S) and is defined as

I(S) = S ∪ {x|(Y, x) is a correlation edge and Y ⊆ S}.

Definition 7. (Benefit of a Set of Nodes) Benefit of a set S with respect to a
set M of nodes M is denoted by B(S, M ) and is defined as B(S, M ) = |(I(S) −
I(M )|/|S − M |, where I(S) and I(M ) are the set of inferred nodes for S and M
respectively.

8We include the elements of I in the vertices of graph G, since a node trivially infers itself. Hence,

the correlation graph can be thought of to have trivial hyperedges ({s}, s) for each node s in the
network, but we have precluded presence of these hyperedges in a correlation graph for sake of

clarity.
9The notion of “connected” here is in context of the intersection graph of source sets and has

nothing to do with the communication graph.
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Approximation Algorithm. Our proposed approximation algorithm consists
of two phases. The first phase is a greedy phase that constructs a near-optimal
correlation dominating set. The second phase runs a Steiner tree approximation
algorithm [Berman and Ramaiyer 1994] to connect the correlation-dominating set
constructed in the first phase. The first greedy phase of the algorithm works as
follows. Let M denote the set of already selected nodes at any stage. Initially
M contains the data-gathering node. At each stage, the algorithm adds to M the
connected source set that has the maximum benefit with respect to M at that stage.
The phase of the algorithm terminates when M becomes a correlation-dominating
set. The second phase of the algorithm builds a communication Steiner tree over
the set of nodes in M by adding additional nodes. We build the communication
Steiner tree by iteratively connecting the closest pair of connected components, i.e.,
the pair of components that can be connected by addition of minimum number of
nodes.

Theorem 2. The size of the connected correlation-dominating set returned by

the above described centralized algorithm is at most 2d(1+log n)|OPT |, where OPT
is the optimal correlation-dominating set, d is the maximum communication dis-

tance between two correlation neighbors, and n is the number of nodes in the sensor

network.

Proof: Whenever a connected source set S is added to M by the greedy first phase
of the algorithm, we charge the newly inferred nodes I(S)− I(M ) with the number
of unselected (not in M ) nodes in S, i.e. |S − M |. The charge |S − M | is evenly
distributed on each of the newly inferred I(S) − I(M ) nodes giving each newly
inferred node a charge of |S − M |/|I(S) − I(M )|.

Let OPT be an optimal correlation-dominating set (not necessarily connected).
Consider the subgraph ζ of the intersection graph of source sets induced by the
source sets and nodes contained in OPT . Let ζ1, ζ2, . . . , ζl be the connected com-
ponents in the induced subgraph ζ. Let Sζi

be the connected source set corre-
sponding to the component ζi. Also, let Ti be the charge accumulated by I(Sζi

),
the set of inferred nodes for Sζi

, during the entire course of the algorithm. Since,
Sζi

is also considered for selection by the greedy algorithm at each stage, it can be
shown ([Cormen et al. 2001]) that Ti is at most |Sζi

|(1 + log |I(Sζi
)|). Thus, the

total charge T accumulated by I(OPT ), the set of all nodes inferred by optimal
solution OPT , during the course of the algorithm can be bounded as follows.

T ≤

l
∑

i=1

(1 + log |I(Sζi
)|)|Sζi

|

T ≤ (1 + logn)

l
∑

i=1

(|Sζi
|)

T ≤ (1 + logn)|OPT |.

The last equation follows from the fact that the sets of nodes Sζ1
, Sζ2

, . . . , Sζl
are

connected components of the graph ζ, and hence, form a mutually-disjoint partition
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of the optimal set of nodes OPT .10 Now, since I(OPT ) is the set of all nodes in the
network, the total charge T accumulated by I(OPT ) is the size of the correlation
dominating set M returned by the first phase of the algorithm. Thus, we get
|M | ≤ (1 + logn)|OPT |.

We now show that the second phase of the algorithm adds at most (2d − 1)|M |
additional nodes. Consider the connected components M1, M2, . . . , Mp in the com-
munication subgraph induced by M . It can be shown by contradiction that there
exist two nodes in different connected components Mi and Mj such that the nodes
are connected by a communication path of length at most 2d − 1. Since the above
is true for any correlation dominating set, and as p ≤ |M |, all the connected com-
ponents of M can be connected together using at most (2d − 1)|M | additional
nodes. Thus, the size of the connected correlation-dominating set returned by our
approximation algorithm is at most 2d(1 + log n)|OPT |.

Gupta [1997; 1999] has used similar techniques to construct approximation algo-
rithms for a related dual problem of selection of views to materialize in a general
data warehouse. The time complexity of the above proposed approximation al-
gorithm is exponential in n, the total number of nodes in the network, since the
number of connected source sets considered at each stage of the first phase can
be exponential. However, the approximation algorithm is non-exhaustive and may
perform better for sensor networks whose intersection graph of source sets has few
edges. More importantly, the approximation algorithm gives us an insight and a
basis to design polynomial-time greedy heuristics that restrict the search space by
considering only a polynomial number of connected sources sets at each stage. Note
that locality of data correlations (within a certain d-hop neighborhood) does not
help improve the approximation ratio or the complexity of the above described
approximation algorithm.

Polynomial-time Heuristics. Based on the above approximation algorithm, we
design the following class of l-hop polynomial-time heuristics (without any provable
performance guarantee). For a given l, the l-hop heuristic works as follows. At each
stage, the l-hop heuristic constructs, for each source set S, the connected source set
fl(S) (defined in the next paragraph). Then, the algorithm picks the fl(S) that has
the maximum benefit and adds it to the already selected set of nodes M . After M
has become a correlation-dominating set, additional nodes are added to construct
a communication Steiner tree spanning over M .

The connected source set fl(S) for a given S is constructed in a greedy manner
by merging with S the best source set that is within a distance of at most l from
S in the intersection graph of source sets. The greedy construction of fl(S) stops
when its benefit cannot be improved further.

Example. For the correlation graph in Figure 3, in the first stage (when M = φ)
of the 1-hop heuristic, f1(S1) = S1 ∪ S2 and f1(S2) = S1 ∪ S2 ∪ S3. Since, the
benefit of f1(S2), B(f1(S2), M ), is the maximum for all f1(Si), the 1-hop heuristic
sets M = S2 ∪ S1 ∪ S3 in the first stage.

10It is for this reason that the approximation algorithm considers all possible connected source

sets at each stage.
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Algorithm 1. l-hop Centralized Heuristic

Input: A sensor network with a correlation graph.
Output: A connected correlation-dominating set M .
BEGIN

Let ζ denote the intersection graph of the source sets
in the correlation graph.
M = {v}, where v is the data-gathering node;
while (1)

MaxB = 0;

BestŜ = φ;
for all source sets S such that B(S, M ) > 0

/∗ Construct Ŝ = fl(S) ∗/

Ŝ = S;
Let S1, S2, . . . , Sp be the source sets that are at
a distance of at most l from S in the graph ζ.

while (∃Si | B(Ŝ ∪ Si, M ) > B(Ŝ, M ))

Pick Si for which B(Ŝ ∪ Si, M ) is maximum

Ŝ = Ŝ ∪ Si

end while;

if (B(Ŝ, M ) > MaxB) BestŜ = Ŝ;
end for;

M = M ∪ BestŜ ;

if (BestŜ = φ) break;
end while;

Add any remaining un-inferred nodes to M .
Connect M using a 2-approximation Steiner tree
algorithm over the communication graph of the network.
RETURN M .

END. �

In the above described l-hop heuristic, the number of iterations of the outer while

loop as well as the for loops is bounded by the total number of source nodes (the
number of vertices in the intersection graph of source sets). Also, the number of
iterations of the inner while loop is bounded by gl, where g is the maximum degree of
a vertex in the intersection graph of source nodes. Thus, the overall time complexity
of the above described l-hop heuristic is O(nm2gl), since computation of B(S, M )
may incur O(n) cost where n is the total number of nodes in the network. If the
size of source sets is bounded by a constant L, then the worst-case time complexity
of the above l-hop heuristic is O(n3L+1) since number of iterations of each of the
three loops is bounded by nL (the maximum number of source nodes). We expect
1-hop or 2-hop heuristics to perform very well for ad-hoc wireless networks with
spatial data correlations where the size of source sets is expected to be small. In
fact, using extensive simulations on random sensor networks, we demonstrate that
1-hop heuristic yields a near-optimal connected correlation-dominating set. Thus,
the near-optimal 1-hop heuristic helps us ascertain the quality of the solution sizes
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of the distributed algorithms developed in the previous section by comparison of
solution sizes as shown in the next section.

5. PERFORMANCE RESULTS

In this section, we present our simulation results that demonstrate the performance
and effectiveness of our proposed approach and algorithms. In particular, we com-
pare the size of the connected correlation-dominating set returned by our proposed
distributed and centralized algorithms viz. 2-Rounds, Handshake, 0-hop, 1-hop, and
2-hop centralized heuristics. Note that 0-hop is essentially a naive greedy central-
ized approach. In addition, we compare the communication costs incurred by the
two distributed algorithms. We ignore the communication cost incurred in gath-
ering neighborhood information and data samples (for computation of correlation
edges), since they can be gathered using the piggybacking strategy or will incur
almost same cost for all distributed approaches. Note that due to the small values
of d, k, and K (2, 2, and 3 respectively) used in our simulations, the piggybacking
strategy is needed over only a small number of snapshots.

We present results from four sets of experiments that elicit various interesting
properties of our approaches. The four cases differ in how the sensor network
and sensor data are generated. In the first case, the sensor network as well as the
correlation graph are generated randomly. In the second set, records of temperature
data from 100 US cities is used as the sensor data set, and the selected cities form the
sensor network. In the third set, the sensor network is generated randomly, while
the data is generated by simulating the behavior of hypothetical signal sources.
Finally, in the fourth set, we use data from a real sensor network deployed at [James
Reserve Data Management Systems ].

Computation Cost Model. In all our experiments, we estimate energy consumed in
computing hyperedge parameters as follows. Using the calculations in Section 2.3,
the computation of Equation 2 (for K=3 and L=5) consumes roughly about 1/25
fraction of energy required to transmit one message on Berkeley motes. Here,
we assume message size of 1K bits. Initial computation of the correlation graph
requires each node computing the Equation 2 about 1000 times (number of possible
hyperedges in a 2-hop neighborhood size of around 20) for the first (synthetic data)
and third (time-varying signals) sets of experiments, and around 100 times (2-hop
neighborhood size of around 10) for the temperature data. We have assumed
computation of hyperedge parameters at individual nodes, but depending on the
resources available the computation could also be done at a powerful central node.

5.1 Random Sensor Networks with Synthetic Correlations

We generated data for random sensor networks as follows. First, we randomly
place 1000 sensors in an area of 40 × 40 units. Two sensors can communicate
with each other if they are located within each other’s transmission radius. Since
varying the number of sensors is tantamount to varying the transmission radius
for the purposes of evaluating our algorithms, we fix the number of sensors to be
1000 and vary the transmission radius. We generate the correlation graph over
the sensor network as follows. For each node s and a set of nodes S consisting of
1 to 3 sensor nodes that are within a communication distance of at most d = 2
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Fig. 4. Comparison of centralized heuristics with optimal algorithm for small sensor
networks (100 sensors in a 7 × 7 area with synthetically generated correlations).

from s, we add the hyperedge (S, s) with a probability of P/100, where P is a
constant less than 100 and is referred to as the correlation percentage. Based
on the above parameters, the expected number of 2-hop neighbors of a node is
1000π(2r)2/1600, where r is the transmission radius. Thus, for a given correlation
percentage P , the expected number of hyperedges (S, s) for a node s for r = 2 is
about (

(

32
1

)

+
(

32
2

)

+
(

32
3

)

)P/100 = 55P , and about 3500P for r = 4. Below, we
analyze the performance of our algorithms for a sufficiently wide range of P values
and r equal to 2 and 4.

Centralized Heuristics’ Solution Sizes. In Figure 4, we compare the quality of some
of the centralized heuristics with the optimal (exhaustive search) algorithm for small
size sensor networks (100 sensors placed randomly in a 7 × 7 area) for transmis-
sion radius 2 and 4. We notice that the 0-hop, 1-hop, as well as 2-hop centralized
heuristic perform quite close to the optimal solution. We observe that the 1-hop
heuristic performs quite better than the 0-hop heuristic, while there is no noticeable
difference in the solution sizes of 1-hop and 2-hop centralized heuristics. Since, the
l-hop heuristics are based on the approximation algorithm that provably returns a
near-optimal solution, and increase in l results in increasingly better performance,
we conjecture that 1-hop heuristic returns a near-optimal solution for dense sensor
networks with rich spatial data correlations involving small source sets. For larger
sensor networks (see Figures 5 (a) and (b)), we report the solution sizes returned
by 0-hop and 1-hop heuristics, and compare them with the solution sizes of the
distributed algorithms. In each of the above experiments, we increased the cor-
relation percentage P until the solution size reaches a saturation point (i.e., stops
decreasing). Further increase in P does not result in much decrease in solution size,
and hence, not shown.

Distributed Algorithms’ Solution Sizes. We observe that the Handshake algorithm
returns a smaller solution size than the 2-Rounds algorithm (see Figures 5 (a)
and (b)). However, the solution size returned by the Handshake algorithm is only
marginally better than the 2-Rounds algorithm, which demonstrates the effective-
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(c) Number of messages with r=3
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(d) Number of messages with r=5
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Fig. 5. Comparison of different centralized and distributed algorithms for large and
dense (1000 nodes in 40×40 units square area) randomly generated sensor networks
with synthetically generated correlations. Transmission radius is 3 or 5 units.
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ness of the initial round and the strategy of subsequent assignment of lower prior-
ities to nodes that don’t satisfy the C2 condition in the 2-Rounds algorithm. We
also evaluated the delayed-connection versions of the Handshake and 2-Round al-
gorithms wherein the algorithms first select a correlation-dominating set and then,
connect the selected nodes using a communication Steiner tree. We observed that
the delayed-connection versions always performed worse than their counterparts,
in terms of both the solution size returned as well as the communication costs
incurred.

Distributed vs. Centralized Solution Sizes. As expected, the solution sizes returned
by the centralized heuristics is always better than the solution sizes returned by the
distributed algorithms (see Figures 5 (a) and (b)). This is hardly surprising, since,
the centralized heuristics have global information of the sensor network and have
time complexities in high order polynomials. In contrast, the distributed algorithms
are localized and incur only a linear number of messages. However, we should note
that the distributed algorithms still perform impressively close to the near-optimal
centralized heuristics.

Number of Messages. The communication cost incurred by the 2-Rounds algorithm
is much less than that incurred by the Handshake algorithm (see Figures 5 (c)
and (d)).11 Since, the solution size returned by the Handshake algorithm is only
marginally better than the 2-Rounds algorithm, we can conclusively say that the
2-Rounds algorithm is the best performing distributed algorithm.

Let D be the the total communication cost incurred by a given distributed al-
gorithm and n be the total number of sensors in the network. As discussed in
Section 2.1, as long as the data-gathering query requires more than qθ = D

(n−|M |)

snapshots the overall communication cost for the data-gathering query using the
given distributed algorithm is lower than that incurred using the naive approach,
wherein all sensor nodes are involved in transmitting data to the data-gathering
node. We plot the qθ value in Figure 5 (e) and (f). As estimated before, we have
added 40 message transmissions per node for about 1000 computations of Equa-
tion 2. We can see that the value of qθ for the best performing 2-Rounds distributed
algorithm is around 50, which is encouraging since data-gathering queries typically
gather a much larger number of snapshots.

5.2 Sensor Networks with Time Varying Data

We ran three sets of experiments to evaluate the performance of our distributed
algorithms under dynamic conditions, i.e., when the sensor data and hence, correla-
tion graph changes, and sensor nodes may die after battery depletion. For the first
set of experiments, we used real temperature data of US cities; for the second set,
we generated synthetic time varying data; for the third set, we used data from a real
sensor network. We start with describing inference of correlation hyperedges, mod-
eling of node battery power, a new 2-Rounds-Multiple algorithm (based on using
multiple correlation dominating sets), and quantifying error in gathered data.

11Note that for very low correlation percentages, the 2-Rounds algorithm incurs zero number of

messages, because the nodes marked deleted/selected in the initial round do not need to transmit
as their correlation neighbors can deduce their markings using the (d + k)-hop neighborhood

information.

ACM Transactions on Sensor Networks, Vol. TBD, No. TBD, TBD 20TBD.



22 ·

Correlation Graph. A correlation hyperedge (S, s) is created for a node s and a set
of nodes S, where S consists of 1 to 3 nodes in the 2-hop neighborhood of s, if the
least square error (Equation 1) calculated for optimal α parameters (Equation 2)
is within a certain error threshold. We run experiments for various error threshold
values. Initially, the correlation graph is constructed, and the distributed algorithm
executed to compute the connected correlation-dominating set. Over time, invali-
dation of used hyperedges is detected, and the solution incrementally maintained as
described in Section 3. Also, just before a sensor node dies, it informs its correlation
neighbors who rerun the distributed algorithm.

Battery Power. The sensor network is tasked to gather snapshots of the sensor data
values in the entire region. Each sensor is initialized with a battery power chosen
randomly between 750-1250 units, where 1 unit of battery power is consumed by
every message transmission. Messages are transmitted to compute the hyperedge
parameters, to execute the distributed algorithm, and to gather snapshots from the
connected correlation-dominating set. As estimated before, each node consumes
about 40 units of battery energy for about 1000 computations of Equation 2. Note
that, in absolute terms, the energy consumption at each node for initial computation
of correlation edges is of the order of a few millijoules, which is negligible compared
to the total energy (a few Joules) in a normal battery.

2-Rounds-Multiple Algorithm. We also evaluate a load balancing scheme (2-Rounds-
Multiple) where multiple disjoint dominating sets share the task of data gathering
in a round robin schedule. The goal is to balance the energy usage among all nodes
in the network. In the simulations, the 2-Rounds distributed algorithm is run twice
at the start to construct two correlation dominating sets. For the second run, node
priorities are changed in order for the algorithm to pick a different selected set.
In particular, the priority of nodes that were marked selected in the first run is
increased, while the priority of nodes that were marked deleted is decreased. As
a result, the nodes not selected in the first run have a higher chances of marking
themselves selected in the second run. Next, the data gathering task is period-
ically rotated between the two selected correlation dominating sets thus selected.
For our experiments, we rotate after every data gathering.

Quantifying Error in Gathered Data. We compare the performance of our distributed
algorithms with a Naive approach, wherein all sensors in the network report data
for each data gathering snapshot. We use the root mean square (RMS) approach
to quantify the error in the gathered data. Note that the gathered data may have
inaccuracies because of the following two reasons. In our approach of gathering
data only from a connected correlation-dominating set, bounded errors are intro-
duced when data for other sensors is inferred. Also, for both approaches (Naive
and ours), data for dead sensors is “recovered” at the data-gathering node by using
an available hyperedge involving alive source nodes. If no such hyperedge exists,
then we take an average of the data from 2 of its nearest alive neighbors.

Simulations on Temperature Data. We gathered daily average temperature
data of 100 US cities [National Climatic Data Center ] for the last decade. We
consider a sensor network formed by placing a sensor node at each of the 100 city
locations. We chose a transmission radius of 150 miles for each sensor node, so that
each sensor has a good number of communication neighbors. We choose an error
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Fig. 6. Simulation experiments with real temperature data. Sensor nodes with
transmission radius of 150 miles are located at 100 US cities in a 400× 1000 square
miles area.
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threshold of 5% for creating correlation hyperedges, since lower error thresholds
resulted in a large correlation dominating set, and higher error thresholds had too
many hyperedges resulting in a large computation overhead. We will present a
performance comparison due to various choices of error thresholds in the next set
of experiments (on light signal data).

Figure 6(a) depicts the connectivity graph of the sensor network created, while
Figure 6(b) and (c) plot the number of dead sensors and the RMS error respectively
in the gathered data for the 2-Rounds algorithm, 2-Rounds-Multiple algorithm, and
Naive approach. We have only shown 2-Rounds algorithm in the figure, as 2-Rounds
consistently outperformed Handshake for the used parameter values. Note that
there is no error in the beginning for the Naive approach. However, there is a very
sharp rise in the error when the nodes start dying, and the nodes are all dead soon
after 600 days. In contrast, both 2-Rounds and 2-Rounds-Multiple algorithms incur
some error throughout and the error gradually increases when the nodes start dying.
The 2-Rounds and 2-Rounds-Multiple algorithms have similar performance until
750 days, after which the performance of 2-Rounds-Multiple algorithm deteriorates
in comparison.

If we define network lifetime as the time span uptil which the RMS error remains
below 15%, then the lifetime of Naive approach is only 700 days while that of 2-
Rounds-Multiple and 2-Rounds is 1200 and 1500 days respectively. Thus, these
simulations demonstrate the effectiveness of our approach in increasing the useful
lifetime of a sensor network.

Simulations on Synthetic Time Varying Data. For this experiment, we ran-
domly place 100 sensor nodes, each having a transmission radius of 3 units, in an
area of 10× 15 square units. We also place a number of signal sources12 at random
locations in this region. The signal intensity at a distance d from the source is
assumed to be inversely proportional to d2, and the intensity at any point is the
sum of the intensities from individual light sources. The sources generate a signal
with an intensity chosen randomly between 100 and 200 units. At random inter-
vals (with a mean period of 2000 time units), the signal sources either increase or
decrease their intensity by 5% or remain unchanged with equal probability. We
ran simulations for error threshold values of 0.1, 1, and 3 percentages. The sensor
network is tasked to gather snapshots of the signal intensity levels in the entire
region at regular intervals of 100 time units.

Figure 7(a) and (b) plot the number of dead sensors and the RMS error in
the gathered data for the Naive and 2-Rounds algorithms, for various choices of
error threshold values. Here, we do not show results for Handshake and 2-Rounds-
Multiple, since they performed consistently worse than the 2-Rounds algorithm (as
in the previous sets of experiments). We notice better performance for higher error
thresholds. In particular, we observe that the RMS error remains at a reasonable
level for upto 600,000 time units for 3% error threshold. Figure 7(c) plots the
effect of the error threshold (used in creating correlation hyperedges) used by 2-
Rounds algorithm on energy consumption and network lifetime. In particular, for
a particular time instant (at 60,000 simulation time), Figure 7(c) plots the total

12The exact nature of the signal is not important for our purposes.
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energy consumed in the entire network as well as RMS error, for different error
thresholds of 2-Rounds algorithm. We can see that use of a higher error threshold
results in a smaller solution (connected correlation-dominating set) and thus lower
total energy cost, but yields a higher RMS error.
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Fig. 8. Simulation experiments with real sensor data from James Reserve, CA.
Network is formed of 19 sensor nodes with transmission radius of 200 meters each.

Simulation on Real Sensor Data. Finally, we ran simulations using real tem-
perature data collected from 19 sensor motes that are currently deployed in James
Reserve National Forest in California. We used hourly temperature readings for
these sensors available at [James Reserve Data Management Systems ]. To derive
the network topology, we used the actual latitude and longitude information for
these sensor nodes and a transmission radius of 200 meters. See Figure 8(a). We
initialized the battery power of each node to a random value between 0 to 350
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units, and evaluated the performance of Naive and 2-Rounds algorithms. For the
2-Rounds algorithm, we used an error threshold of 5% to compute the hyperedges.
Figure 8(b) shows the performance of the algorithms. We see that 2-Rounds algo-
rithm extends the lifetime of the network by 60% as compared to Naive algorithm.
Moreover, the RMS error remains below 10% until about 450 hours, when majority
of the sensor nodes die.

5.3 Summary of Simulation Results

Based on the above described simulation results, we can conclude that the 2-Rounds
algorithm is the best performing algorithm among all the designed distributed al-
gorithms, in terms of the size of the connected correlation-dominating set selected,
the number of messages incurred, and RMS error introduced in the gathering data.
Also, 2-Rounds algorithms returns a solution whose size is quite close to that re-
turned by the 1-hop heuristic, which seems to return a near-optimal solution for
spatially correlated dense sensor networks. Based on the total number of messages
incurred and the savings achieved, we conclude that the approach of constructing
a connected correlation-dominating set using the 2-Rounds algorithm will result in
substantial energy savings.

6. RELATED WORK

The problem of efficient gathering of correlated data in a sensor network has been
recently addressed by Rickenbach et al. [2004], Chou et al. [2003], and Crist-
escu et al. [2003; 2004], where the focus is on reducing the total number of bits
transmitted to the data-gathering node using coding techniques. In particular,
Rickenbach et al. [2004] focus on single-input coding strategies (i.e., simple correla-
tion edges). They consider two coding schemes viz. foreign-coding and self-coding,
and present algorithms to construct optimal (minimum weighted number of bit
transmissions) and near-optimal data-gathering trees for foreign-coding and self-
coding respectively. In [Chou et al. 2003], the savings are achieved by having the
data-gathering node track the correlation structure among nodes and then, use
this information to inform the sensor nodes the number of bits they should use for
encoding their measurements. However, they assume a fixed correlation structure
and a “star” topology, and do not address the optimization problem of minimizing
the number of bit transmissions. Lastly, Cristescu et al. [2004] consider a coding
strategy based upon Slepian-Wolf model and design efficient distributed approxi-
mation algorithms optimizing the transmission structure and the rate allocation at
the nodes. In all of the above methods, all sensors are engaged in data transmission
albeit with reduced number of bit transmissions. As noted before, the model and
techniques developed in this article can also be extended to optimize total number
of bit transmissions.

Similar to the idea proposed in our paper, Yoon and Shahabi [2005] propose a
mechanism (called CAG) that reduces the number of transmissions and provides
approximate results to aggregate queries by utilizing the spatial correlation of sen-
sor data. Like our approach, they also select only a select of nodes for transmission
of data to the sink node. However, their formulation of the problem is a sim-
pler version of our problem wherein correlation graph consists of only simple edges
(connecting a node to its ancestor in the data gathering tree). They select a set of
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clusterheads (which actually form a correlation dominating set in our terminology)
using a simple localized scheme during the query propagation phase. Due to con-
nectivity requirement, each node that has at least one descendant as clusterhead is
involved in transmission. The main shortcomings of the above approach is that it
uses a very simple notion of correlation, and uses only the edges of the forwarding
tree (typically the shortest path tree) for selection of clusterheads and connecting
nodes. In other closely related works, [Vuran and Akyildiz 2006] exploits spatial
correlation at the MAC level, and [Doherty and Pister 2004] evaluates various sim-
ple localized selection strategies in terms of various cost metrics and error in the
reconstructed field.

The problem of constructing an efficient aggregation tree to reduce the total bits
of transmitted in the network have also been addressed recently [Goel and Estrin
2003; Enachescu et al. 2004]. In particular, Goel et al. [2003] look at the problem
of finding efficient trees to send aggregated information to a sink, where informa-
tion can be aggregated at intermediate nodes. They present a randomized tree
construction algorithm, which is a good approximation simultaneously for all con-
cave non-decreasing aggregate functions. Authors Enachescu et al. [2004] analyze
a simple randomized tree construction algorithm that achieves a constant factor
approximation of the optimal tree for grid network topologies. Both of the above
works assume data compression models specific to aggregation, wherein any k data
values can be compressed into a data value of appropriately defined size. In con-
trast, the correlation model considered in our article is more general, wherein only
the given set (which can be arbitrary) of data values can be compressed depending
on the correlation structure present in the network.

Recently, Marco et al. [2003] analyzed the data transport capacity of a dense
sensor network in data-gathering applications. In their model, all sensors in the
network encode/compress their measured samples and transmit them to a single
data-gathering node. They show that as the density of a sensor network increases
to infinity, then the total number of bits required to attain a given quality of
reconstructed field also increases to infinity under any compressing scheme. Thus,
the only way to limit the total amount of data transmitted below the network’s
transport capacity would be to suppress transmission from some sensors to prevent
“oversampling.” Authors Scaglione and Servetto [2002] show that if data can be
encoded en route – for example, at the tree nodes – then the capability of the
dense sensor network and the correlation structure of a typical random field are
sufficient to permit data gathering by any nodes within any given distortion value.
However, an appropriate routing technique must still be devised, which remains
an open question. Our work proposes an alternate efficient approach to reduce
data communication in data-gathering applications by minimizing the number of
sensors that are involved transmitting their data to the data-gathering node. In
other related work, Pattem et al. [2004] analyze the performance of various routing
with lossless compression schemes, and show that near-optimal performance can be
achieved using a static clustering scheme for the case of 1D and 2D array of sensor
nodes for a wide range of spatial correlations.

There has been a significant amount of work on the related problem of computing
a minimum connected dominating set [Guha and Khuller 1998; Dubhashi et al. 2003]
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in a distributed manner. A connected dominating set (CDS) is used for efficient
broadcasting of a message in a mobile ad hoc network, since only the nodes in CDS
need to forward the message to its neighbors. The work in wireless network research
community ([Das et al. 1997; Laouiti et al. 2002; Wu and Li 2001; Alzoubi et al.
2002; Chen and Liestman 2002; Wu and Dai 2003; Deb et al. 2003]) has primarily
focussed on developing energy-efficient distributed algorithms to construct a good
connected dominating set. The connected dominating set problem is a special case
of the connected correlation-dominating set problem wherein the correlation graph
consists of undirected simple edges and is the same as the communication graph.

In other related works, GAF [Xu et al. 2001], SPAN [Chen et al. 2001], PEAS [Ye
et al. 2003], and ASCENT [Cerpa and Estrin 2002] develop distributed algorithms
to identify nodes that are similar in routing perspectives so that other nodes can
be turned off to conserve energy. None of these works use any notion of a data
correlation structure.

7. CONCLUSIONS

In this article, we have considered the connected correlation-dominating set prob-
lem that helps in minimizing communication costs in data-gathering sensor network
applications. Taking advantage of the existing data correlations in the sensor net-
work, our proposed approach is to select a small set of sensors called the connected
correlation-dominating set that form a connected communication graph and are
sufficient to infer data of the remaining unselected sensors. The problem is defined
in terms of a correlation structure (hypergraph) that captures general data cor-
relations. To select a connected correlation-dominating set of small size, we have
designed a set of energy-efficient distributed algorithms, and a class of centralized
heuristics that are based on a provably competitive approximation algorithm. Our
simulation results show that the designed distributed algorithms and the centralized
heuristics return small size solutions and the communication cost incurred by the
best performing distributed algorithm (2-Rounds) is small enough to considerably
increase the useful lifetime of a sensor network.
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