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Abstract
In this paper, we consider multi-hop wireless mesh networks,

where each router node is equipped with multiple radio inter-
faces and multiple channels are available for communication.
We address the problem of assigning channels to communica-
tion links in the network with the objective of minimizing over-
all network interference. Since the number of radios on any node
can be less than the number of available channels, the channel
assignment must obey the constraint that the number of different
channels assigned to the links incident on any node is atmost the
number of radio interfaces on that node. The above optimization
problem is known to be NP-hard.

We design centralized and distributed algorithms for the
above channel assignment problem. To evaluate the quality of
the solutions obtained by our algorithms, we develop a linear
program and a semidefinite program formulation of our opti-
mization problem to obtain lower bounds on overall network in-
terference. Empirical evaluations on randomly generated net-
work graphs show that our algorithms perform close to the
above established lower bounds, with the difference diminish-
ing rapidly with increase in number of radios. Also, detailed ns-
2 simulation studies demonstrate the performance potential of
our channel assignment algorithms in 802.11-based multi-radio
mesh networks.

1 Introduction
Wireless mesh networks [2] are multihop networks of wire-

less routers. There is an increasing interest in using wireless
mesh networks as broadband backbone networks to provide
ubiquitousnetwork connectivity in enterprises, campuses, and in
metropolitan areas. An important design goal for wireless mesh
networks is capacity. It is well-known that wireless interfer-
ence severely limits network capacity in multi-hop settings [15].
One common technique used to improve overall network capac-
ity is use of multiple channels [19]. Essentially, wireless inter-
ference can be minimized by using orthogonal (non-interfering)
channels for neighboring wireless transmissions. The current
IEEE 802.11 standard for WLANs (also used for mesh net-
works) indeed provides several orthogonal channels to facilitate
the above. Presence of multiple channels requires us to address
the problem of which channel to use for a particular transmis-
sion; the overall objective of such an assignment strategy is to
minimize the overall network interference.

Dynamic Channel Assignment. One of the channel assignment
approaches is to frequently change the channel on the interface;
for instance, for each packet transmission based on the current
state of the medium. Such dynamic channel assignment ap-
proaches [4, 35, 36, 42] require channel switching at a very fast
time scale (per packet or a handful of packets). The fast-channel
switching requirement makes these approaches unsuitable for
use with commodity hardware, where channel switching delays
itself can be in the order of milliseconds [6] which is an order
of magnitude higher than typical packet transmission times (in
microseconds). Some of the dynamic channel assignment ap-
proaches also require specialized MAC protocols or extensions
of 802.11 MAC layer, making them further unsuitable for use
with commodity 802.11 hardware.

Static or Quasi-static Channel Assignment. Due to the difficulty
of use of above dynamic approach with commodity hardware,

there is need to develop techniques that assign channels stati-
cally [1, 26, 31, 32, 38]. Such static assignments can be changed
whenever there are significant changes to traffic load or network
topology; however, such changes are infrequent enough that the
channel-switching delay and traffic measurement (see Section 2)
overheads are inconsequential. We refer to the above as quasi-
static channel assignments. If there is only one radio interface
per router, then the above channel assignment schemes will have
to assign the same channel to all radios/links in the network to
preserve network connectivity. Thus, such assignment schemes
require use of multiple radio interfaces at each node. Due to
board crosstalk or radio leakage [1, 34], commodity radios on a
node may actually interfere even if they are tuned to different
channels. However, this phenomena can be addressed by pro-
viding some amount of shielding or antenna separation [21, 34],
or increased channel separation (as is the case in 802.11a) [32].

Problem Addressed. In our article, we address the problem
of quasi-static assignment of channels to links in the context
of networks with multi-radio nodes. The objective of the chan-
nel assignment is to minimize the overall network interference.
Channel assignment is done as some variation of a graph col-
oring problem; but it has an interesting twist in the context of
mesh networks. The assignment of channels to links must obey
the interface constraint that the number of different channels as-
signed to the links incident on a node is at most the number
of interfaces on that node. Different variations of this problem
have been shown to be NP-hard [26, 31] before. Thus, efficient
algorithms that run reasonably fast and provide good quality so-
lutions are of interest. Since computing the optimal is intractable
and approximation algorithms are still an open question, we take
the approach of computing a bound on the optimal using math-
ematical programming approaches, and develop heuristics that
perform very close to the obtained bounds on the optimal.

Our Contributions. For the above described channel assign-
ment problem, we develop a centralized and a distributed algo-
rithm. The centralized algorithm is based on a popular heuristic
search technique called Tabu search [16] that has been used in
the past in graph coloring problems. The distributed approach
is motivated by the greedy approximation algorithm for Max
K-cut problem in graphs [10]. To evaluate their performances,
we develop two mathematical programming formulations, us-
ing integer linear programming (ILP) and a semidefinite pro-
gramming (SDP). We obtain bounds on the optimal solution by
relaxing the ILP and SDP formulations to run in polynomial
time. Finally, detailed ns-2 simulation studies demonstrate the
full performance potential of the channel assignment algorithms
in 802.11 based multi-radio mesh networks.

The salient features of our work that set us apart from the ex-
isting channel assignment approaches on multi-radio platforms
are as follows.

• Our approach is “topology preserving,” i.e., all links that
can exist in a single channel network also exist in the multi-
channel network after channel assignment. Thus, our chan-
nel assignment does not have any impact on routing.

• Our approach is suitable for use with commodity 802.11-
based networks without any specific systems support. We
do not require fast channel switching or any form of MAC
layer or scheduling support. While our algorithms indeed



use interference and traffic models as input, such models
can be gathered using experimental methods.

• Our work generalizes to non-orthogonal channels [25], in-
cluding channels that are supposedly orthogonal but inter-
fere because of crosstalk or leakage [34].

• Ours is the first work that establishes good lower bounds
on the optimal network interference, and demonstrates
good performance of the developed heuristics by compar-
ing them with the lower bounds.

Paper Organization. The rest of the paper is organized as fol-
lows. We start with describing the network model and the for-
mulation of our problem in Section 2, and discuss related work
in Section 3. We present our algorithms in Section 4 and Sec-
tion 5 respectively. In Section 6, we obtain lower bounds on the
optimal network interference using linear and semidefinite pro-
gramming. Section 7 presents generalizations of our techniques.
We present our simulation results in Section 8.

2 Problem Formulation
In this section, we first present our network model and for-

mulate of our channel assignment problem.

Network Model. We consider a wireless mesh network with
stationary wireless routers where each router is equipped with a
certain (not necessarily same) number of radio interfaces. We
model the communication graph of the network as a general
undirected graph over the set of network nodes (routers). An
edge (i, j) in the communication graph is referred to as a com-
munication link or link, and signifies that the nodes i and j can
communicate with each other as long as both the nodes have a
radio interface each with a common channel. There are a certain
number of channels available in the network. For clarity of pre-
sentation, we assume for now that the channels are orthogonal
(non-interfering), and extend our techniques for non-orthogonal
channels in Section 7.

Interference Model. Due to the broadcast nature of the wireless
links, transmission along a communication link (between a pair
of wireless nodes) may interfere with transmissions along other
communication links in the network. Two interfering links can-
not engage in successful transmission at the same time if they
transmit on the same channel. The interference model defines
the set of links that can interfere with any given link in the net-
work. There have been various interference models proposed in
the literature, for example, the physical and protocol interference
models [15, 18, 27]. The discussion in this paper is independent
of the specific interference model used as long as the interfer-
ence model is defined on pairs of communication links.

For clarity of presentation, we assume a binary interference
model for now (i.e., two links either interfere or do not inter-
fere), and generalize our techniques to fractional interference in
Section 7. Moreover, in our approach of quasi-static channel as-
signment, the level of interference between two links actually
depends on the traffic on the links. However, for clarity of pre-
sentation, we assume uniform traffic on all links for now, and
generalize our techniques to non-uniform traffic in Section 7.
Conflict Graph. Given an interference model, the set of pairs of
communication links that interfere with each other (assuming
them to be on the same channel) can be represented using a con-
flict graph [18]. To define a conflict graph, we first create a set
of vertices Vc corresponding to the communication links in the
network. In particular,

Vc = {li j | (i, j) is a communication link}.

Now, the conflict graph Gc(Vc,Ec) is defined over the set Vc as
vertices, and a conflict edge (li j, lab) in the conflict graph is used
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Figure 1. Communication graph and corresponding conflict graph.

to signify that the communication links (i, j) and (a,b) interfere
with each other if they are on the same channel. The above con-
cept of a conflict graph can be used to represent any interference
model. As defined above, the conflict graph does not change
with the assignment of channels to vertices in the conflict graph.

We illustrate the concept of conflict graph in Figure 1. The
wireless network represented in Figure 1 has five network nodes
A,B, . . .,E and four communication links as shown in the com-
munication graph (see Figure 1(a)). The conflict graph (see
Figure 1(b)) has four nodes each representing a communica-
tion link in the network. In this figure, we assume an 802.11
like interference model where the transmission range and inter-
ference range are equal. When RTS/CTS control messages are
used links within two hops interfere. Thus, the communication
link (A,B) interferes with the communication links (B,C) and
(C,D), and not with (D,E).

Notations. Here, we introduce some notations that we use
throughout this paper.

• N , the set of nodes in the network.

• Ri, the number of radio interfaces on node i ∈ N .

• K = {1,2, . . .,K}, the set of K channels.

• Vc = {li j | (i, j) is a communication link}.

• Gc(Vc,Ec), the conflict graph of the network.

• For i ∈ N , E(i) = {li j ∈Vc}, i.e., E(i) is set of vertices in Vc
that represent the communication links incident on node i.

In addition, throughout this paper, we use variables u,v to
refer to vertices in Vc, variables i, j,a,b to refer to nodes in N ,
and the variable k to refer to a channel. Since assigning channel
can be thought of as coloring vertices, we use the terms channel
and colors interchangeably throughout our paper.

Channel Assignment Problem. The problem of channel as-
signment in a multi-radio wireless mesh network can be infor-
mally described as follows. Given a mesh network of router
nodes with multiple radio interfaces, we wish to assign a unique
channel to each communication link1 in the network such that
the number of different channels assigned to the links incident
on any node is atmost the number of radios on that node. Since
we assume uniform traffic on all links for now, we assign chan-
nels to all links, and define the total network interference as the
number of pairs of communication links that are interfering (i.e.,
are assigned the same channel and are connected by an edge in
the conflict graph). The objective of our problem is to minimize
the above defined total network interference, as it results in im-
proving overall network capacity [15].

More formally, consider a wireless mesh network over a set
N of network nodes. The channel assignment problem is to com-
pute a function f : Vc → K to minimize the overall network in-

1Note that merely assigning channels to radios is not sufficient to
measure network interference/capacity, since a link still can use one of
many channels for transmission.



terference I( f ) defined below while satisfying the below inter-
face constraint.
Interface Constraint.

∀i ∈ N, |{k | f (e) = k for some e ∈ E(i)}| ≤ Ri.

Network Interference I( f ).

I( f ) = |{(u,v)∈ Ec | f (u) = f (v)}|. (1)

If we look at assignment of channels to vertices as coloring
of vertices, then the network interference is just the number of
monochromatic edges in the vertex-colored conflict graph. The
channel assignment problem is NP-hard since it reduces to Max
K-cut (as discussed below).

Input Parameters – Measuring Interference and Traffic.
Note that, under the simplying assumption of uniform traffic,
the only input to our channel assignment problem is the network
conflict graph. The conflict graph (along with the edge weights
for fractional interference; see Section 7) can be computed using
methods similar to recently reported measurement-based tech-
niques in [29, 33]. These techniques are localized, , due to the
localized nature of interference, and hence, can be easily run in
a distributed manner. Also, in most cases (for static network
topologies), the above measurements need to be done only one-
time. For the case of non-uniform traffic, we need to measure
average (over the time scale of channel assignment) traffic (i.e.,
the function t(.) of Section 7) on each link. Such traffic mea-
surements can be easily done using existing software tools (e.g.,
COMO [39]).

Relationship with Max K-cut. Given a graph G, the Max K-
cut problem [10] is to partition the vertices of G into K partitions
in order to maximize the number of edges whose endpoints lie
in different partitions. In our channel assignment problem, if
we view vertices of the conflict graph assigned to a particular
channel as belonging to one partition, then the network interfer-
ence is actually the number of edges in the conflict graph that
have endpoints in same partition. Thus, our channel assignment
problem is basically the Max K-cut problem with the added in-
terface constraint. Since Max K-cut is known to be NP-hard, our
channel assignment problem is also NP-hard.

3 Related Work
Following our discussion in Section 1, we classify the related

work in two major classes.

Fast Switching of Channels. In MMAC protocol [36], the au-
thors augment the 802.11 MAC protocol such that the nodes
meet at a common channel periodically to negotiate the chan-
nels to use for transmission in the next phase. In SSCH [4], the
authors propose dynamic switching of channels using pseudo-
random sequences. The idea is to randomly switch channels
such that the neighboring nodes meet periodically at a common
channel to communicate. In DCA [42], the authors use two ra-
dios - one for the control packets (RTS/CTS packets) and another
for data packets. The channel to send the data packet is nego-
tiated using the control packets and the data packets are sent in
the negotiated channels. In AMCP [35], the authors uses similar
notion of a control channel, but a single radio and focus on star-
vation mitigation. In [13] the authors use a channel assignment
approach using a routing protocol and then use these channels
to transmit data. For coordination, control channels are used. In
[22] two radio and single radio multichannel protocols are pro-
posed, but separate control channels are not needed.

All the above protocols require a small channel switching de-
lay (of the order of hundred microseconds or less), since chan-
nels are switched at a fast time scale (possibly, on a per-packet

basis). But, the commodity 802.11 wireless cards incur a a chan-
nel switching delay of the order of milliseconds (based on our
observations), as channel switching requires a firmware reset
and execution of an associated procedure. Similar experiences
were reported in [6]. In addition, the above approaches require
changes to the MAC layer. Thus, the above approaches are not
suitable with currently available commodity hardware.

Static/Quasi-Static Channel Assignment in Multiradio Net-
works. There have been many works that circumvent fast
channel switching by assigning channels at a much larger time
scale in a multiradio setting. In particular, [32] assume a tree-
based communication pattern to ease coordination for optimiz-
ing channel assignment. Similar tree-based communication pat-
terns have been used in [43]. The above schemes do not quantify
the performance of their solutions with respect to the optimal. In
addition, [38] considers minimum-interference channel assign-
ments that preserve k-connectivity. None of the above schemes
preserve the original network topology, and hence, may lead to
inefficient assignments and routing in a more general peer-to-
peer communication.

To facilitate independent routing protocols, our work fo-
cusses on developing quasi-static channel assignment strategies
that preserve the original network topology. Prior works on
topology preserving channel assignment strategies are as fol-
lows. Adya et al. [1] propose a strategy wherein they assume
a hard-coded assignment of channels to interfaces, and then de-
termine which channel/interface to use for communication via
a measurement-based approach. They do not discuss how the
channels are assigned to interfaces. In [31], Raniwala et al.
propose a centralized load-aware channel assignment algorithm;
however, they require that source-destination pairs with associ-
ated traffic demands and routing paths be known a priori. In [8],
Das et al. present a couple of optimization models for the static
channel assignment problem in a multi-radio mesh network.
However, they do not present any practical (polynomial time) al-
gorithm. In [30], a purely measurement-based approach is taken
for channel assignment to radios (instead of links). Here, one
radio at each node is tuned to a common channel to preserve
the original topology; however, this can be wasteful when only
a few interfaces are available. Moreover, assignment of chan-
nels to radios still leaves the problem of which channel to use
for a transmission/link. In the most closely related work to ours,
Marina and Das in [26] address the channel assignment to com-
munication links in a network with multiple radios per node.
They propose a centralized heuristic for minimizing the network
interference. We compare the performance of our proposed al-
gorithm with this heuristic, and show a significant improvement.

Other Related Works. In other related works, [20] proposes a
hybrid channel assignment strategy: some interfaces on a node
have a fixed assignment, and the rest can switch channels as
needed. To put things in perspective, our work presents algo-
rithms for making these fixed assignments. Authors in [23, 27]
address joint channel assignment, routing and scheduling prob-
lems. Both these papers makes an assumption of synchronized
time-slotted channel model as scheduling is integrated in their
methods. This makes these approaches somewhat impractical
with commodity radios. Finally, [19] derives upper bounds on
capacity of wireless multihop networks with multiple channels.

4 Centralized Tabu-based Algorithm
In this section, we describe one of our algorithms for the

channel assignment problem, based on the Tabu search [16]
technique for coloring vertices in graphs. Our Tabu-based al-
gorithm is centralized. Centralized algorithms are quite practi-
cal in “managed” mesh networks where there is already a cen-



tral entity. Moreover, they are amenable to a higher degree of
optimization, easier to upgrade, and use of “thin” clients. Cen-
tralized approaches have indeed been proposed in various recent
works [26, 31, 38], and have also become prevalent in the indus-
try (e.g., WLAN and mesh products from Meru Networks [24],
Tropos [41], Strix Systems [37], Firetide [9]).

Algorithm Overview. Recall that our channel assignment prob-
lem is to color the vertices Vc of the conflict graph Gc using K
colors while maintaining the interface constraint and minimiz-
ing the number of monochromatic edges in the conflict graph.
In other words, the channel assignment problem is to find a so-
lution/function f : Vc → K with minimum network interference
I( f ) such that f satisfies the interference constraint. Our Tabu-
based algorithm consists of two phases. In the first phase, we
use Tabu search based technique [16] to find a good solution
f without worrying about the interface constraint. In the second
phase, we remove interface constraint violations to get a feasible
channel assignment function f .

First Phase. In the first phase, we start with a random initial
solution f0 wherein each vertex in Vc is assigned to a random
color in K . Starting from such a random solution f0, we create a
sequence of solutions f0, f1, f2, . . ., f j, . . ., in an attempt to reach
a solution with minimum network interference. In the jth itera-
tion ( j ≥ 0) of this phase, we create the next solution f j+1 in the
sequence (from f j) as follows.

The jth Iteration. Given a solution f j, we create f j+1 as follows.
First, we generate a certain number (say, r) of random neigh-
boring solutions of f j. A random neighboring solution of f j is
generated by picking a random vertex u and reassigning it to a
random color in (K − { f j(u)}). Thus, a neighboring solution
of f j differs from f j in the color assignment of only one vertex.
Among the set of such randomly generated neighboring solu-
tions of f j, we pick the neighboring solution with the lowest
network interference as the next solution f j+1. Note that we do
not require I( f j+1) to be less than I( f j), so as to allow escaping
from local minima.

Tabu List. To achieve fast convergence, we avoid reassigning the
same color to a vertex more than once by maintaining a tabu list
τ of limited size. In particular, if f j+1 was created from f j by
assigning a new color to a vertex u, then we add (u, f j(u)) to the
tabu list τ. Now, when generating random neighboring solutions,
we ignore neighboring solutions that assign the color k to u if
(u,k) is in τ.
Termination. We keep track of the best (i.e., with lowest interfer-
ence) solution fbest seen so far by the algorithm. The first phase
terminates when maximum number (say, imax) of allowed itera-
tions have passed without any improvement in I( fbest). In our
simulations, we set imax to |Vc|. Since network interference I( f )
takes integral values and is at most (|Vc|)

2, the value I( fbest) is
guaranteed to decrease by at least 1 in imax = |Vc| iterations (or
else, the first phase terminates). Thus, the time complexity of
the first phase is bounded by O(rd|Vc|

3), since each iteration can
be completed in O(rd) time where r is the number of random
neighboring functions generated and d is the maximum degree
of a vertex in the conflict graph. Note that network interference
of a neighboring solution can be computed in O(d) time. A for-
mal description of the first phase follows.

Second Phase. Note that the solution f returned by the first
phase may violate interface constraints. Thus, in the second
phase, we eliminate the interface constraints by repeated ap-
plication of the following “merge” procedure. Given a chan-
nel/color assignment solution f , we pick a network node for
the merge operation as follows. Among all the network nodes

Input : Conflict Graph Gc(Vc,Ec); Set of channels K .
Output: Channel Assignment Function fbest : Vc → K .

Start with a random assignment function f0;
fbest = f0; Ibest = I( f0); τ = null; j = 0; i = 0;
while I( fi) > 0 and i ≤ imax do

Generate r random neighbors of f j;
Each neighbor is generated by randomly picking
a u in Vc and k ∈ K s.t. k 6= f j(u) and (u,k) /∈ τ,
and changing f j(u) to k

Let f j+1 be the neighbor with lowest interference.
Add (u, f j(u)) to τ.
If τ is full, delete its oldest entry;
if (I( f j+1) < Ibest)

then Ibest = I( f j+1); fbest = f j+1; i = 0;
else i = i+1;

endif;
j = j +1;

end while
RETURN fbest ;

Algorithm 1: First Phase of Tabu-based Algorithm.
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Figure 2. Merge operation of second phase. The two fig-
ures are the communication graphs of the network before
and after the merge operation. Labels on the links denote
the color/channel. Here, the merge operation is started at
node i by changing all its 1-colored links to color 2.

wherein the interface constraint is violated, i.e, whose number
of radios is less than the number of distinct colors assigned to
the incident communication links, we pick the node wherein the
difference between the above two terms is the maximum. Let i
be the node picked as above for the merge operation. We reduce
the number of colors incident on i by picking (as described later)
two colors k1 and k2 incident on i, and changing the color of all
k1-colored links to k2 . In order to ensure that such a change does
not create interface constraint violations at other nodes, we iter-
atively “propagate” such a change to all k1 − colored links that
are “connected” to the links whose color has been just changed
from k1 to k2 . Here, two links are said to be connected if they are
incident on a common node. Essentially the above propagation
of color-change ensures that for any node j, either all or none
of the k1-colored links incident on j are changed to color k2 .
See Figure 2. Completion of the above described color-change
propagation marks the completion of one merge procedure. The
above described merge procedure reduce the number of distinct
colors incident on i by one, and does not increase the number of
distinct colors incident on any other node (due to the all or none
property). Thus, repeated application of such a merge opera-
tion is guaranteed to resolve all interface constraints. Note that
a merge operation probably will result in increase in network in-
terference. Thus, for a given node i, we pick those two color k1
and k2 for the merge operation that cause the least increase in
the network interference due to the complete merge operation.



5 Distributed Greedy Algorithm (DGA)
In this section, we describe our Distributed Greedy Algo-

rithm (DGA) for the channel assignment problem. Our choice of
greedy approach is motivated by the following two observations.
Here, Gn,p graphs are defined as random graph over n vertices
where each edge exists with a uniform probability of p.

• In [7], the authors consider the Max K-cut problem in
Gn,p graphs, and show that the greedy heuristic that greed-
ily decides the partition of one vertex at a time delivers a
(1− 1

Kx )-approximate solution with very high probability
where x > 1.

• We can show that the conflict graph corresponding to a ran-
dom network is a Gn,p graph, under the protocol interfer-
ence model [15]).

Centralized Version. The above observations motivate use of a
greedy approach for our channel assignment problem. We start
with presenting the centralized version, which yields a natural
distributed implementation. In the initialization phase of our
greedy approach, each vertex of Vc is colored with the color 1.
Then, in each iteration of the algorithm, we try to change the
color of some vertex in a greedy manner without violating the in-
terface constraint. This strategy is different from the Tabu-based
algorithm, where we resolve interface constraint violations in the
second phase while not worrying about introducing them in the
first phase. In each iteration of the greedy approach, we try to
change the color of some vertex u ∈Vc to a color k. We look at
all possible pairs of u and k, considering only those that do not
result in the violation of any interface constraint, and pick the
pair (u,k) that results in the largest decrease in network interfer-
ence. The algorithm iterates over the above process, until there
is no pair of u and k that decreases the network interference any
further. Note that a vertex in Vc may be picked multiple times
in different iterations. However, we are guaranteed to terminate
because each iteration monotonically decreases the network in-
terference. In particular, as noted in previous section, since the
network interference takes integral values and is at most (|Vc|)

2,
the number of iterations of the greedy algorithm is bounded by
(|Vc|)

2. Since each iteration can be completed in O(dK|Vc|),
where K is the total number of colors and d is the maximum de-
gree of a vertex in the conflict graph, the total time complexity
of the greedy algorithm is O(dK|Vc|

3).

Distributed Greedy Algorithm (DGA). The above described
greedy approach can also be easily distributed by using a lo-
calized greedy strategy. The distributed implementation differs
from the centralized implementation in the following aspects.
Firstly, in the distributed setting, multiple link-color pairs may
be picked simultaneously across the network by different nodes.
Secondly, the decision of which pair is picked is based on the lo-
cal information. Lastly, to guarantee termination in a distributed
setting, we impose additional restriction that each pair (u,k) is
picked at most once (i.e., each vertex u ∈Vc is assigned a partic-
ular color k at most once) in the entire duration of the algorithm.

In the distributed implementation, each vertex u = li j ∈ Vc
corresponding to the link (i, j) is owned by i or j, whichever has
the higher node ID. This is done to ensure consistency of color
information across the network. Initially, each vertex in Vc is
assumed to colored 1. Let m ≥ 1 be the parameter defining the
local neighborhood of a node. Based on the information avail-
able about the colors of links in the m-hop neighborhood of i,
each network node i selects (after waiting for a certain random
delay) a (u,k) combination such that (i) u = li j is owned by i,
(ii) changing the color of u to k does not violate the interface
constraint at node i or j, (iii) the pair (u,k) has not been se-
lected before by i, and (iv) the pair (u,k) results in the largest

decrease in the “local” network interference. Then, the node
i sends a ColorRequest message to node j. The node j re-
sponds with the ColorReply message, if and only if changing
the color of u to k still does not violate the interface constraint
at node j. On responding with the ColorReply message, the
node j assumes2 that the color of u has been changed to k. On
receiving the ColorReply message for j, the node i sends a
ColorUpdate(u,k) message to all its m-hop neighbors. If a
ColorReply message is not received within a certain time pe-
riod, the node i abandons the choice of (u,k) for now, and starts
a fresh iteration. Since each pair (u,k) is picked at most once,
then the total number of iterations (over all nodes) in the above
algorithm is at most O(|Vc|K). The above Distributed Greedy
algorithm is localized, and can be made to work in dynamic
topologies. Our simulation results showed that the above dis-
tributed algorithm performs almost same as the centralized ver-
sion, due to the localized nature of the network interference ob-
jective function. The input network parameters of traffic and
interference are measured as discussed in Section 2.

6 Bounds on Optimal Network Interference
In this section, we derive lower bounds on the minimum net-

work interference using linear and semidefinite programming
approaches. These lower bounds will aid in understanding the
quality of the solutions obtained from the algorithms presented
in previous two sections.
6.1 Linear Programming Formulation

Here, we formulate our channel assignment problem as an in-
teger linear program (ILP), and use the relaxed linear program-
ming with additional constraints to estimate the lower bound on
the optimal network interference.

Integer Linear Programming. We use the following set of bi-
nary integer (taking values 0 or 1) variables and constraints in
our ILP formulation.

• Variables Yuk ∈ {0,1}, for each u ∈ Vc and k ∈ K ; Yuk is 1
iff u ∈Vc is assigned the channel k.

• Variables Xuv ∈ {0,1}, for each edge (u,v)∈ Ec; Xuv is 1 iff
u,v ∈Vc are assigned the same channel.3

• Variables Zik ∈ {0,1}, for each node i ∈ N and channel k ∈
K ; Zik is 1 iff some u ∈ E(i) is assigned a channel k.

∑
k∈K

Yuk = 1, ∀ u ∈Vc (2)

Xuv ≥ Yuk +Yvk −1, ∀ (u,v) ∈ Ec,∀k ∈ K (3)

Zik ≥ Yuk, ∀ u ∈ E(i), ∀ i ∈ N, ∀ k ∈ K (4)

Zik ≤ ∑
u∈E(i)

Yuk, ∀ i ∈ N, ∀ k ∈ K (5)

k

∑
f =1

Zi f ≤ Ri ∀ i ∈ N (6)

Objective Function. Our objective function for the above ILP
is to Minimize ∑(u,v)∈Ec

Xuv.

Linear Programming. Solving the above ILP (due to its NP-
hardness) is intractable for reasonably sized problem instances.
Thus, we relax the above ILP to a linear program (LP), i.e., we

2Such an assumption may need to be later corrected through com-
munication with i if the ColorUpdate(u,k) message is not received
from i within a certain amount of time.

3If u and v are assigned different channels, then Xuv is not con-
strained by Equation 3. However, it will be chosen to be 0 to minimize
the objective function.



allow Xuv,Yuk,Zik to be any real value between 0 and 1. The
solution to the LP gives only a lower bound on the ILP’s opti-
mal solution. We observed that the lower bound obtained by the
above LP formulation was very loose; thus, we add additional
constraints as follows.

Clique Constraint. For each vertex u∈Vc, let Su be the set of ver-
tices in a maximal clique containing u. It can be shown [28] that
the number of monochromatic edges in the complete subgraph
of size |Su| when colored by K colors is at least:

σ(Su,K) =
βα(α+1)+ (K−β)α(α−1)

2
, (7)

where α = b
|Su |
K c and β = |Su| mod K. The above observation

yields the following additional constraint.

∑
v,w∈Su

Xvw ≥ σ(Su,K) ∀u ∈Vc (8)

Since the set of vertices E(i) in Vc forms a clique in Gc and uses
at most Ri colors (due to the interface constraint on node i), we
also have the following constraint.

∑
(u,v)∈E(i)

Xuv ≥ σ(E(i),Ri) ∀i ∈ N (9)

6.2 Semidefinite Programming Formulation
In this section, we model our channel assignment problem in

terms of a semidefinite program (SDP). In our simulations, we
observed that the semidefinite programming formulation yielded
a much tighter bound on the optimal network interference. How-
ever, solving the SDP formulation of channel assignment prob-
lem takes much more time (12 hours vs. 1 hour on a 2.4 GHz
Intel Xeon machine with 2GB RAM for a 50 node network) and
memory than the LP formulation, and hence, is not feasible for
very large network sizes. Note that the SDP and LP formulations
are used only to demonstrate the performance of our Tabu-based
and Greedy algorithms.

Semidefinite Programs. A semidefinite program [12] is a tech-
nique to optimize a linear function of a symmetric positive-
semidefinite matrix4 subject to linear equality constraints.
Semidefinite programs can be solved in polynomial time using
various techniques [14]. The reader is referred to [3, 12] for fur-
ther details on semidefinite programming and its application to
combinatorial optimization. The standard form of semidefinite
program is as follows.

Minimize C.X

such that Ai.X = bi, 1 ≤ i ≤ m, and

X � 0

where C,Ai(∀i), and X are all symmetric n×n matrices, and bi
is a scalar vector. The constraint X � 0 implies that the variable
(to be computed) matrix X must lie in the closed, convex cone of
a positive semidefinite matrix. Also, Ai.X refers to the standard
inner product of two symmetric matrices.

Below, we start with presenting the SDP for the Max K-cut
problem from [10]. We then extend it to our channel assignment
problem by adding the interface constraint.

SDP for Max K-cut. Let yu be a variable that represent the
color of a vertex u ∈ Vc. Instead of allowing yu to take 1 to K
integer values, we define yu to be a vector in {a1,a2, ...,aK},
where the ai vectors are defined as follows [10]. We take an
equilateral simplex ΣK in RK−1 with vertices b1,b2, ...,bK. Let

4A matrix is said to be positive semidefinite if all its eigen values are
nonnegative.

cK = (b1+b2+...+bK)
K be the centroid of ΣK , and let ai = bi − cK

for 1 ≤ i ≤ K. Also, assume |ai| = 1 for 1 ≤ i ≤ K. The integer
quadratic program for the Max K-cut problem can now be rep-
resented as follows [10].
IPMax−K:

Maximize
K −1

K ∑
(u,v)∈Ec

(1− yu.yv)

such that yu ∈ {a1,a2, ....,aK}

Note that since ai.a j = −1
K−1 for i 6= j, we have:

1− yu.yv =

{

0 if yu = yv
K

K−1 if yu 6= yv.

Interface Constraint. We now add the interface constraint to
the above SDP formulation for Max K-cut. For each i ∈ N , let

Φi = σ(E(i),Ri)− (

(

|E(i)|
2

)

−σ(E(i),Ri))/(K −1),

where σ(E(i),Ri) is as defined as in Equation 7. Now, we add
the following constraint to represent the interface constraint.

∑
u,v∈E(i)

yu.yv ≥ Φi ∀i ∈ N (10)

The above equation follows from the same observations as Equa-
tion 9. In particular, recall that vertices in E(i) form a clique in
the conflict graph, and cannot be partitioned into more than Ri
partitions to satisfy our interface constraint. Now, σ(E(i),Ri))
gives a lower bound on the number of monochromatic edges in
this clique (E(i)) [28], and thus,

(|E(i)|
2

)

−σ(E(i),Ri)) is an up-
per bound on the number of non-monochromatic edges. Since
we know that yu.yv = 1 for any monochromatic edge (u,v) and
yu.yv = −1

K−1 for any non-monochromatic edge, we have con-
straint in the above Equation 10.

Note that even though Equation 10 is a valid constraint, it
does not necessarily restrict the number of colors assigned to
vertices of E(i) to Ri. Thus, the IPMax−K augmented by the
above Equation 10 only gives an upper bound on the number
of non-monochromatic edges.

Relaxed SDP for Channel Assignment. Since we cannot solve
the integer quadratic program IPMax−K for problems of reason-
able size, we relax it by allowing the variables yu to take any
unit vector in R|Vc |. Since yu.yv can now take any value between
1 and −1, we add an additional constraint to restrict yu.yv to be
greater than −1

K−1 . The relaxed SDP for the channel assignment
is as follows.

Maximize
K −1

K ∑
(u,v)∈Ec

(1− yu.yv)

such that yu ∈ R|Vc | and |yu|= 1

yu.yv ≥
−1

K −1
, ∀u 6= v, and

∑
u,v∈E(i)

yu.yv ≥ Φi, ∀i ∈ N.

The solution to the above SDP program gives an upper bound
on the number of non-monochromatic edges, and the lower
bound on the optimal network interference can be obtained by
subtracting it from |Ec|. The above relaxed version can be easily
converted into the standard SDP formulation for use by a stan-
dard SDP solver such as DSDP 5.0 [5]. We omit the details due
to lack of space.



7 Generalizations
In the previous sections, for sake of clarity, we made various

assumptions, viz., uniform traffic on all communication links, a
binary interference model, and orthogonal channels. In this sec-
tion, we generalize our techniques to relax these assumptions.
These generalizations are quite useful in practical deployments.
For example, the links in the network communication graph may
carry different amounts of traffic. Thus, the average interference
must be weighted by traffic as interfering traffic is not the same
for all interfering link pairs. Also, channels – even when they
are orthogonal in theory – do interfere due to device imperfec-
tions (e.g., radio leakage, improper shielding, etc.) [34]. Thus,
modeling of non-orthogonal (i.e., interfering) channels is a good
idea. In addition, this also allows us to explicitly utilize non-
orthogonal channels [25]. Finally, regardless of traffic and use
of different channels, path loss effects can influence the degree
of interference between two links – and thus, result in fractional
interference between two links.

Non-uniform Traffic and Fractional Interference. Let u and
v be two vertices in the conflict graph, r(u,v) (a real number be-
tween 0 and 1) be the level of interference between two links
corresponding to the vertices u and v, and t(u) and t(v) denote
the normalized traffic on the links corresponding to the vertex
u and v respectively. Note that in our network model, we as-
sume that the traffic is known a priori. Measurements of these
parameters was discussed in Section 2. Based on the above no-
tations, the overall network interference for a given channel as-
signment function f : Vc → K can be defined as follows. Let
M = {(u,v)|u,v∈Vc and f (u) = f (v)}. Then,

I( f ) = ∑
(u,v)∈M

t(u)t(v)r(u,v).

For the generalized interference and traffic model, the Tabu-
based and Greedy algorithms use the above definition of net-
work interference; no additional changes are required. Similarly,
the LP and SDP formulations of the channel assignment prob-
lem can be generalized by appropriately extending the objective
function; no other changes are required in the list of variables
and constraint equations.

Non-orthogonal Channels. Let c(k1 ,k2), a value between 0
and 1, denote the level of interference between two channels
k1 and k2 . For non-orthogonal channels, the overall network
network can be further generalized as follows for a given channel
assignment function f : Vc → K .

I( f ) = ∑
(u,v)∈M

t(u)t(v)r(u,v)c( f (u), f (v)).

As before, Tabu-based and Greedy algorithms can use the
above definition of network interference without any additional
changes. However, in the LP formulation, we need to replace
the Equations 3 by the following.

Xuv ≥ Yuk1 +Yvk2 −2+ c(k1,k2), ∀(u,v) ∈ Ec,∀k1,k2 ∈ K

Unfortunately, the SDP formulation cannot be generalized eas-
ily for non-orthogonal channels. The problem arises from the
difficulty in choosing appropriate vectors ai such that ai.a j is
proportional to c(i, j) for all channels i, j∈ K . The values c(i, j)
are characteristics of the channel spectrum, and can be measured
independently.

8 Performance Evaluation
We present our performance results for two different settings.

First, we evaluate a graph-theoretic performance metric, and
then, evaluate throughput improvement using ns2 simulations.
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Figure 3. Fractional network interference of solutions delivered by var-
ious algorithms compared with the lower bounds in dense or sparse net-
works for 3 or 12 channels.

We start with discussing various algorithms used for compari-
son.

Algorithms. In addition to our designed algorithms (Tabu-based
and Distributed Greedy) and the lower bounds obtained from
the linear and semidefinite programming techniques, we also
present results for two other algorithms for comparison. In par-
ticular, we simulate a modified version of the centralized CLICA
heuristic presented in [26] for a slightly different version of the
channel assignment problem.5 We refer to the modified algo-
rithm of [26] as CLICA-SCE. We also simulate a random algo-
rithm which uses only a limited number of channels (equal to
the number of radio interfaces), assigns a different channel to
each radio interface, and then, selects a random interface (and
hence, channel) for transmitting a packet. See Section 3 for a
discussion on other related works.

We note here the network interference metric is actually a
localized metric since a communication link interferes with only
“neighboring” communication links. Thus, we observed that the
centralized version of the greedy algorithm performed almost
exactly the same as the Distributed Greedy algorithm.
8.1 Graph-Theoretic Performance Metric

In this set of experiments, we generate random networks
by randomly placing a number of nodes in a fixed region,
and evaluate various algorithms based on a certain graph-
theoretic performance metric. To solve linear programs, we used
GLPK [11] which is a public-domain MIP/LP solver, while to
solve semidefinite programs, we used DSDP 5.0 [5] which uses
an efficient interior-point technique.

Graph Parameters. We consider two sets of random network,
viz., dense and sparse networks, generated by randomly plac-
ing 50 nodes in 500×500 and 800×800 square meters of area
respectively.6 In dense networks, the average node degree is

5In CLICA [26], a communication link may multiplex between mul-
tiple channels, but in our network model each communication link uses
exactly one channel for transmission. We modify CLICA to use our
network model.

6We evaluated networks of size up to 750 nodes and varying densi-
ties, with similar performance results for all algorithms. However, the
LP and SDP formulations for networks of size larger than 50 nodes took
unreasonably long computation time.



around 10, while in sparse networks the average node degree is
around 5. Each node has the same number of radio interfaces,
and has a uniform transmission and interference range of 150
meters. Two nodes are connected by a communication link if
they lie within each other’s transmission range. Also, two com-
munication links (i, j) and (g,h) interfere with each other if and
only if either g or h lies within the interference range of i or j;
this is based on the protocol interference model [15]. We assume
orthogonal channels and uniform traffic on all links.

Performance Metric. We evaluate the performance of our algo-
rithms in random networks using the metric “fractional network
interference.” Given a channel assignment function f computed
by an algorithm, the fractional network interference is defined
as the ratio of network interference (I( f )) and the total number
of edges in the conflict graph. This represents the number of
conflicts that remain even after channel assignment relative to
the number of conflicts in the single-channel network. The frac-
tional network interference for the random algorithm is given by
1
R , where R is the number of radios on each node. Note that the
above performance metric is purely graph-theoretic and hence,
we do not use any network simulator for these experiments.

Results. In Figure 3, we plot the fractional network interfer-
ence for varying number of radio interfaces/node, in dense and
sparse networks using 3 and 12 channels. In general, both our al-
gorithms perform extremely well compared to the CLICA-SCE
and random algorithms. The Tabu-based algorithm almost al-
ways performs better that than the Distributed Greedy algorithm,
except when the number of radios is very small. When the num-
ber of radios is very small, the second phase of Tabu-based al-
gorithm is forced to perform many inefficient merge operations
which leads to performance degradation.

The performance of our algorithms compared to the lower
bounds obtained from the LP and SDP formulations shows
that our algorithms deliver very good solutions, particularly for
larger number of radios. Note that the vertical axis of the plots
is presented in log-scale for ease of viewing. The performance
difference between the Tabu-based algorithm and the SDP lower
bound is about 1% to 4% when the number of radios is large.
We can also see that the SDP formulation delivers a much better
lower bound than the LP formulation, for all parameter values.
However, as we noted before, running SDP is significantly more
computationally expensive (in terms of time and memory) than
LP.

The comparison of plots for dense and sparse networks bring
out interesting features. The fractional interference reduces with
increase in number of radios per node; however, this trend satu-
rates beyond a certain number of radios. This saturation point is
reached with smaller number of radios for sparse networks than
for dense networks, for the same number of channels. This is
because the denser networks can potentially support more con-
current transmissions than the sparse networks. Similar trends
were observed in [26].

8.2 ns2 Simulations
In this set of experiments, we study the impact of channel

assignment in improving throughput in an 802.11-based mesh
network. We compare the performance of various algorithms
by measuring the saturation throughput using ns2 simulations
over randomly generated networks. We consider networks of
50 nodes randomly placed in a 1000×1000 square meters area.
The transmit power, receive and carrier sense thresholds in the
default setting of ns2 are such that the transmission range is
250 meters and the interference range is 550 meters. We used
the same default radio parameters as in ns2 [40], except that
we set the channel data rate to 24Mbps. All transmissions are

unicast transmissions following the 802.11 MAC protocol with
RTS/CTS, and the packet size is fixed to 1000 bytes.

Performance for Various Traffic Models. We use three differ-
ent traffic models.

• Single-hop traffic model: This model consists of identical
poisson traffic for each communication link. The single-
hop traffic model is useful to evaluate the performance in
the case when all links in the network carry the same load.

• Multi-hop peer-to-peer traffic model: In this model, 25 ran-
domly selected source-destination pairs communicate us-
ing multihop routes. The routes are computed statically us-
ing the shortest number of hops as the metric, and do not
change for the lifetime of the simulation.

• Multi-hop gateway traffic model: In this model, 4 random
nodes are selected as gateways, and 25 source nodes send
traffic to their nearest (in terms of hops) gateway. Routes
are determined as in the previous traffic model. Such a traf-
fic model will be common when the mesh network is used
for Internet gateway connectivity.

Note that in the last two traffic models the traffic on the links
is non-uniform. The traffic information is used in the channel
assignment algorithms as suggested in Section 7.

Figure 4 plots saturation throughput against number of ra-
dio interfaces per node for the three traffic models and 12 chan-
nels (as we are experimenting with an 802.11a like system). We
obtain the saturation throughputs as follows. For a particular
number of radios and channels, we run a series of simulations,
increasing the offered load each time, starting from a low value.
We stop when the throughput does not increase any further with
increase in the offered load.

We note that in all the three traffic models, our algorithms
perform very well. We also see that the observations we made
from the earlier graph-theoretic evaluations translate well into
the ns2 results. The saturation throughput remain same after a
certain number of radios, as inferred in the graph-theoretic sim-
ulations. Also, the relative performance of the algorithms in the
ns2 simulations is the same as observed in the graph-theoretic
simulations. This indirectly establishes the merit of the chosen
interference model, optimization objective, and use of graph-
theoretic measures as a method of performance evaluation.

Modeling Non-Orthogonal Channels. So far, we have used
only perfectly orthogonal channels. This however is a limita-
tion in systems such as 802.11b where few orthogonal channels
are available. Since our techniques are general enough to han-
dle non-orthogonal channels (Section 7), we now model a non-
orthogonal channel situation.

We assume an 802.11b like system where there are 11 chan-
nels, with only 3 of them being mutually orthogonal. For
modeling the interference between non-orthogonal channels, we
follow the technique outlined in Section 7. We use the data
from [17] to model the “weighted” nature of conflicts. This data
is obtained based on a simple analysis of the amount of over-
lapped spectrum between every pair of channels in 802.11b. We
also did direct measurements on an 802.11b testbed to estimate
interference between non-orthogonalchannels and the values we
obtained are similar to those quoted in [17]. Since such measure-
ments can be very much hardware and environment specific, we
stick to the data in [17].

In the ns2 simulator, we model inter-channel interference as
follows. Physical layer frames transmitted on channel k1 arriv-
ing at a radio interface tuned to channel k2 are reduced in power
depending on the degree of non-interference. For example, if
a k1-frame arrives at a k1-interface, the frame does not undergo
any power reduction. On the other hand, if a k1-frame arrives at
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Figure 4. Saturation throughput in ns2 simulations for 12 channels and various traffic models, viz., (a) Single hop, (b) Multi-
hop Peer-to-Peer, (c) Multi-hop Gateway.
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Figure 5. Saturation throughput in ns2 simulations when using non-
orthogonal channels with 802.11b-like multi-channel model (11 channels
with varying degrees of interference; 3 channels are mutually orthogonal).

a k2-interface, where k1 and k2 are perfectly orthogonal, then the
k1-frame is completely silenced. Power reduction between 0%
and 100% occur for other intermediate cases. In the simulator,
the interference (e.g., carrier-sense or collisions) is calculated
only after such power reduction.

We use the peer-to-peer multihop traffic model (as defined
before) to show the performance of our algorithms with non-
orthogonal channels. See Figure 5. We observe that both our
algorithms perform better when using all available 11 channels
than when using only the 3 mutually orthogonal channels. The
factor of improvement is less in the Tabu-based algorithm com-
pared to the Distributed Greedy algorithm due to the inefficiency
of the merge operations. Overall, use of non-orthogonal chan-
nels is a better choice than restricting channel assignments to
only orthogonal channels.

9 Conclusion
In this paper, we have formulated and addressed the chan-

nel assignment problem in multichannel wireless mesh networks
where each node may be equipped with multiple radios. We
have presented centralized and distributed algorithms that assign
channels to communication links in the network with the objec-
tive of minimizing network interference. Using linear program-
ming and semidefinite programming formulations of our opti-
mization problem, we obtain tight lower bounds on the optimal
network interference, and empirically demonstrate the goodness
of the quality of solutions delivered by our algorithms. Us-
ing simulations on ns2, we observe the effectiveness of our ap-
proaches in improving the network throughput. One of the future
directions is to consider assignment of multiple channels to each
link.
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