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Abstract

In this paper, we consider multi-hop wireless mesh networks, where each router node is equipped

with multiple radio interfaces and multiple channels are available for communication. We address the

problem of assigning channels to communication links in thenetwork with the objective of minimizing

overall network interference. Since the number of radios onany node can be less than the number

of available channels, the channel assignment must obey theconstraint that the number of different

channels assigned to the links incident on any node is atmostthe number of radio interfaces on that

node. The above optimization problem is known to be NP-hard.

We design centralized and distributed algorithms for the above channel assignment problem. To

evaluate the quality of the solutions obtained by our algorithms, we develop a semidefinite program and

a linear program formulation of our optimization problem toobtain lower bounds on overall network

interference. Empirical evaluations on randomly generated network graphs show that our algorithms

perform close to the above established lower bounds, with the difference diminishing rapidly with

increase in number of radios. Also, detailedns-2 simulation studies demonstrate the performance

potential of our channel assignment algorithms in 802.11-based multi-radio mesh networks.

Index Terms

Multi-Radio Wireless Mesh Networks, Channel Assignment, Graph Coloring, Interference, Mathe-

matical Programming.

I. Introduction

Wireless mesh networks [1] are multihop networks of wireless routers. There is an increasing

interest in using wireless mesh networks as broadband backbone networks to provide ubiquitous

network connectivity in enterprises, campuses, and in metropolitan areas. An important design

goal for wireless mesh networks iscapacity. It is well-known that wireless interference severely

limits network capacity in multi-hop settings [2].One common technique used to improve

overall network capacity is use of multiple channels [3]. Essentially, wireless interference can be

minimized by using orthogonal (non-interfering) channelsfor neighboring wireless transmissions.

The current IEEE 802.11 standard for WLANs (also used for mesh networks) indeed provides

several orthogonal channels to facilitate the above. Presence of multiple channels requires us to

address the problem of which channel to use for a particular transmission; the overall objective

of such an assignment strategy is to minimize the overall network interference.
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Dynamic Channel Assignment.One of the channel assignment approaches is to frequently change

the channel on the interface; for instance, for each packet transmission based on the current state

of the medium.Suchdynamic channel assignmentapproaches [4–7] require channel switching at

a very fast time scale (per packet or a handful of packets). The fast-channel switching requirement

makes these approaches unsuitable for use with commodity hardware, where channel switching

delays itself can be in the order of milliseconds [8] which isan order of magnitude higher than

typical packet transmission times (in microseconds). Someof the dynamic channel assignment

approaches also require specialized MAC protocols or extensions of 802.11 MAC layer, making

them further unsuitable for use with commodity 802.11 hardware.

Static or Quasi-static Channel Assignment.Due to the difficulty of use of above dynamic ap-

proach with commodity hardware, there is need to develop techniques that assign channels

statically [9–13]. Such static assignments can be changed whenever there are significant changes

to traffic load or network topology; however, such changes are infrequent enough that the channel-

switching delay and traffic measurement (see Section II) overheads are inconsequential. We

refer to the above asquasi-static channel assignments. If there is only one radio interface per

router, then the above channel assignment schemes will haveto assign thesamechannel to

all radios/links in the network to preserve network connectivity. Thus, such assignment schemes

require use of multiple radio interfaces at each node. Due toboard crosstalk or radio leakage [12,

14], commodity radios on a node may actually interfere even if they are tuned to different

channels. However, this phenomena can be addressed by providing some amount of shielding

or antenna separation [14, 15], or increased channel separation (as is the case in 802.11a) [10].

Problem Addressed. In our article, we address the problem of quasi-static assignment of

channels to links in the context of networks with multi-radio nodes. The objective of the channel

assignment is to minimize the overall network interference. Channel assignment is done as some

variation of a graph coloring problem; but it has an interesting twist in the context of mesh

networks. The assignment of channels to links must obey theinterface constraintthat the number

of different channels assigned to the links incident on a node is at most the number of interfaces

on that node. Different variations of this problem have beenshown to be NP-hard [9, 11] before.

Thus, efficient algorithms that run reasonably fast and provide good quality solutions are of

interest. Since computing the optimal is intractable and approximation algorithms are still an
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open question, we take the approach of computing abound on the optimalusing mathematical

programming approaches, and develop heuristics that perform very close to the obtained bounds

on the optimal.

Our Contributions. For the above described channel assignment problem, we develop a central-

ized and a distributed algorithm. The centralized algorithm is based on a popular heuristic search

technique called Tabu search [16] that has been used in the past in graph coloring problems. The

distributed approach is motivated by the greedy approximation algorithm for MaxK-cut problem

in graphs [17]. To evaluate their performances, we develop two mathematical programming

formulations, using semidefinite programming (SDP) and integer linear programming (ILP).

We obtainboundson the optimal solution by relaxing the ILP and SDP formulations to run

in polynomial time. Finally, detailed ns-2 simulation studies demonstrate the full performance

potential of the channel assignment algorithms in 802.11 based multi-radio mesh networks.

The salient features of our workthat set us apart from the existing channel assignment

approaches on multi-radio platforms are as follows.

• Our approach is “topology preserving,” i.e., all links thatcan exist in a single channel

network also exist in the multichannel network after channel assignment. Thus, our channel

assignment does not have any impact on routing.

• Our approach is suitable for use with commodity 802.11-based networks without any specific

systems support. We do not require fast channel switching orany form of MAC layer or

scheduling support. While our algorithms indeed use interference and traffic models as

input, such models can be gathered using experimental methods.

• Our work generalizes to non-orthogonal channels [18], including channels that are suppos-

edly orthogonal but interfere because of crosstalk or leakage [14].

• Ours is the first work that establishes good lower bounds on the optimal network interfer-

ence, and demonstrates good performance of the developed heuristics by comparing them

with the lower bounds.

Paper Organization. The rest of the paper is organized as follows. We start with describing the

network model and the formulation of our problem in Section II, and discuss related work in

Section III. We present our algorithms in Section IV and Section V respectively. In Section VI,

we obtain lower bounds on the optimal network interference using semidefinite and linear
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programming. Section VII presents generalizations of our techniques. We present our simulation

results in Section VIII.

II. Problem Formulation

In this section, we first present our network model and formulate of our channel assignment

problem.

Network Model. We consider a wireless mesh network with stationary wireless routers where

each router is equipped with a certain (not necessarily same) number of radio interfaces. We

model thecommunication graphof the network as a general undirected graph over the set

of network nodes (routers). An edge(i, j) in the communication graph is referred to as a

communication linkor link, and signifies that the nodesi and j can communicate with each

other as long as both the nodes have a radio interface each with a common channel. There are

a certain number of channels available in the network. For clarity of presentation, we assume

for now that the channels are orthogonal (non-interfering), and extend our techniques for non-

orthogonal channels in Section VII.

Interference Model. Due to the broadcast nature of the wireless links, transmission along a

communication link (between a pair of wireless nodes) may interfere with transmissions along

other communication links in the network. Two interfering links cannot engage in successful

transmission at the same time if they transmit on the same channel. Theinterference modeldefines

the set of links that can interfere with any given link in the network. There have been various

interference models proposed in the literature, for example, the physical and protocol interference

models [2, 19, 20]. The discussion in this paper is independent of the specific interference model

used as long as the interference model is defined on pairs of communication links.

For clarity of presentation, we assume abinary interference modelfor now (i.e., two links

either interfere or do not interfere), and generalize our techniques to fractional interference

in Section VII. Moreover, in our approach of quasi-static channel assignment, the level of

interference between two links actually depends on the traffic on the links. However, for clarity

of presentation, we assume uniform traffic on all links for now, and generalize our techniques

to non-uniform traffic in Section VII.

Conflict Graph.Given an interference model, the set of pairs of communication links that

interfere with each other (assuming them to be on the same channel) can be represented using a
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Fig. 1. Communication graph and corresponding conflict graph.

conflict graph[19]. To define a conflict graph, we first create a set of vertices Vc corresponding

to the communication links in the network. In particular,

Vc = {lij | (i, j) is a communication link}.

Now, the conflict graphGc(Vc, Ec) is defined over the setVc as vertices, and aconflict edge

(lij , lab) in the conflict graph is used to signify that the communication links (i, j) and (a, b)

interfere with each other if they are on the same channel. Theabove concept of a conflict graph

can be used to represent any interference model. As defined above, the conflict graph does not

change with the assignment of channels to vertices in the conflict graph.

We illustrate the concept of conflict graph in Figure 1. The wireless network represented in

Figure 1 has five network nodesA, B, . . . , E and four communication links as shown in the

communication graph (see Figure 1(a)). The conflict graph (see Figure 1(b)) has four nodes

each representing a communication link in the network. In this figure, we assume an 802.11

like interference model where the transmission range and interference range are equal. When

RTS/CTS control messages are used links within two hops interfere. Thus, the communication

link (A, B) interferes with the communication links(B, C) and (C, D), and not with(D, E).

Notations. Here, we introduce some notations that we use throughout this paper.

• N , the set of nodes in the network.

• Ri, the number of radio interfaces on nodei ∈ N .

• K = {1, 2, . . . , K}, the set ofK channels.

• Vc = {lij | (i, j) is a communication link}.

• Gc(Vc, Ec), the conflict graph of the network.

• For i ∈ N , E(i) = {lij ∈ Vc}, i.e., E(i) is set of vertices inVc that represent the

communication links incident on nodei.
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In addition, throughout this paper, we use variablesu, v to refer to vertices inVc, variables

i, j, a, b to refer to nodes inN , and the variablek to refer to a channel. Since assigning channel

can be thought of as coloring vertices, we use the terms channel and colors interchangeably

throughout our paper.

Channel Assignment Problem.The problem of channel assignment in a multi-radio wireless

mesh network can be informally described as follows. Given amesh network of router nodes

with multiple radio interfaces, we wish to assign a unique channel to each communication link1

in the network such that the number of different channels assigned to the links incident on any

node is atmost the number of radios on that node. Since we assume uniform traffic on all links

for now, we assign channels to all links, and define thetotal network interferenceas the number

of pairs of communication links that are interfering (i.e.,are assigned the same channel and are

connected by an edge in the conflict graph). The objective of our problem is to minimize the

above defined total network interference,as it results in improving overall network capacity [2].

More formally, consider a wireless mesh network over a setN of network nodes. Thechannel

assignment problemis to compute a functionf : Vc → K to minimize theoverall network

interferenceI(f) defined below while satisfying the belowinterface constraint.

Interface Constraint.

∀i ∈ N, |{k | f(e) = k for some e ∈ E(i)}| ≤ Ri.

Network InterferenceI(f).

I(f) = |{(u, v) ∈ Ec | f(u) = f(v)}|. (1)

If we look at assignment of channels to vertices as coloring of vertices, then the network

interference is just the number of monochromatic edges in the vertex-colored conflict graph. The

channel assignment problem is NP-hard since it reduces to Max K-cut (as discussed below).

Input Parameters – Measuring Interference and Traffic. Note that, under the simplying

assumption of uniform traffic, the only input to our channel assignment problem is the network

conflict graph. The conflict graph (along with the edge weights for fractional interference; see

1Note that merely assigning channels to radios is not sufficient to measure network interference/capacity, since a link still can

use one of many channels for transmission.
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Section VII) can be computed using methods similar to recently reported measurement-based

techniques in [21, 22]. These techniques are localized, dueto the localized nature of interference,

and hence, can be easily run in a distributed manner. Also, inmost cases (for static network

topologies), the above measurements need to be done only one-time. For the case of non-uniform

traffic, we need to measure average (over the time scale of channel assignment) traffic (i.e., the

function t(.) of Section VII) on each link. Such traffic measurements can beeasily done using

existing software tools (e.g., COMO [23]).

Relationship with Max K-cut. Given a graphG, the MaxK-cut problem [17] is to partition the

vertices ofG into K partitions in order to maximize the number of edges whose endpoints lie in

differentpartitions. In our channel assignment problem, if we view vertices of the conflict graph

assigned to a particular channel as belonging to one partition, then the network interference is

actually the number of edges in the conflict graph that have endpoints insamepartition. Thus,

our channel assignment problem is basically the MaxK-cut problem with the added interface

constraint. Since MaxK-cut is known to be NP-hard, our channel assignment problem is also

NP-hard.

III. Related Work

The use of multiple channels to increase capacity in a multihop network has been addressed

extensively. Generally, there have been two types of approaches, viz., (i) Fast switching of

channels (possibly, on a per-packet basis) on a single radio, or (ii) Assigning channels to radios

for an extended period of time in a multi-radio setting.

Fast Switching of Channels.In MMAC protocol [5], the authors augment the 802.11 MAC

protocol such that the nodes meet at a common channel periodically to negotiate the channels

to use for transmission in the next phase. In SSCH [6], the authors propose dynamic switching

of channels using pseudo-random sequences. The idea is to randomly switch channels such that

the neighboring nodes meet periodically at a common channelto communicate. In DCA [4], the

authors use two radios - one for the control packets (RTS/CTSpackets) and another for data

packets. The channel to send the data packet is negotiated using the control packets and the data

packets are sent in the negotiated channels. In AMCP [7], theauthors uses similar notion of a

control channel, but a single radio and focus on starvation mitigation. In [24] the authors use a

DRAFT



9

channel assignment approach using a routing protocol and then use these channels to transmit

data. For coordination, control channels are used. In [25] two radio and single radio multichannel

protocols are proposed, but separate control channels are not needed.

All the above protocols require a small channel switching delay (of the order of hundred

microseconds or less), since channels are switched at a fasttime scale (possibly, on a per-packet

basis). But, the commodity 802.11 wireless cards incur a a channel switching delay of the order

of milliseconds (based on our observations), as channel switching requires a firmware reset and

execution of an associated procedure.Similar experiences were reported in [8], and in particular,

it has been shown in [6, 26] that packet-based channel assignment may not be feasible in a

practical setting [27].In addition, the above approaches require changes to the MAClayer.

Thus, the above approaches are not suitable with currently available commodity hardware.

Static/Quasi-Static Channel Assignment in Multiradio Networks. There have been many

works that circumvent fast channel switching by assigning channels at a much larger time scale

in a multiradio setting. This solution is deemed more practical as there is neither a need to

modify the 802.11 protocol or need for interfaces with very low channel switching latency.

In particular, [10] assume a tree-based communication pattern to ease coordination for optimiz-

ing channel assignment. Similar tree-based communicationpatterns have been used in [28]. The

above schemes do not quantify the performance of their solutions with respect to the optimal. In

addition, [13] considers minimum-interference channel assignments that preservek-connectivity.

None of the above schemes preserve the original network topology, and hence, may lead to

inefficient assignments and routing in a more general peer-to-peer communication.

Topology Preserving Schemes.To facilitate independent routing protocols, our work focusses on

developing quasi-static channel assignment strategies that preserve the original network topology.

Prior works on topology preserving channel assignment strategies are as follows. Adya et al. [12]

propose a strategy wherein they assume a hard-coded assignment of channels to interfaces, and

then determine which channel/interface to use for communication via a measurement-based

approach. They do not discuss how the channels are assigned to interfaces. In [9], Raniwala et

al. propose a centralized load-aware channel assignment algorithm; however, they require that

source-destination pairs with associated traffic demands and routing paths be known a priori.

In [29], Das et al. present a couple of optimization models for the static channel assignment
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problem in a multi-radio mesh network. However, they do not present any practical (polynomial

time) algorithm.In [30], the authors propose a linear optimization model channel allocation

and interface assignment model. Their model differs from ours in the sense that they assign

channels to interfaces, and then, assign interfaces to neighbors so that neighors having interfaces

with common channels can communicate. In contrast, in our model, we assign channels to links

directly. In addition, [29] assumes binary interference and a uniform traffic model.

In [31], a purely measurement-based approach is taken for channel assignment to radios

(instead of links). Here, one radio at each node is tuned to a common channel to preserve

the original topology; however, this can be wasteful when only a few interfaces are available.

Moreover, assignment of channels to radios still leaves theproblem of which channel to use

for a transmission/link.In [32], the authors propose a simple greedy algorithm for channel

assignment in multi-radio networks. They assume a binary interference model and do not show

any performance bounds.

In the most closely related work to ours, Marina and Das in [11] address the channel as-

signment to communication links in a network with multiple radios per node. They propose a

centralized heuristic for minimizing the network interference. We compare the performance of

our proposed algorithm with this heuristic, and show a significant improvement.

Other Related Works. In other related works, [33] proposes a hybrid channel assignment

strategy: some interfaces on a node have a fixed assignment, and the rest can switch channels

as needed. To put things in perspective, our work presents algorithms for making these fixed

assignments.Authors in [19, 20, 34–36] address joint channel assignment, routing, and scheduling

problems. These papers makes an assumption of synchronizedtime-slotted channel model as

scheduling is integrated in their methods. This makes theseapproaches somewhat impractical

with commodity radios. In addition, [19]’s approach requires enumeration of all maximal sets of

non-interfering links (independent sets), and [34] considers networks with bounded “interference

degrees.”In remaining related works, [3] derives upper bounds on capacity of wireless multihop

networks with multiple channels,and [27] investigate granularity of channel assignment decisions

by assigning channels at the level of components (links, paths, or general graph component) in

single radio networks.

On the theoretical front, the related MaxK-cut problem has been studied extensively. In
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particular, [17] gives a constant approximation algorithmusing semidefinite algorithm for general

graphs, while [37] consider uniformly randomGn,p graphs and give an approximation scheme. As

a hardness result, [38] proves that unless P=NP, the MaxK-cut problem cannot be approximated

within a factor of1 − 1
34K

.

IV. Centralized Tabu-based Algorithm

In this section, we describe one of our algorithms for the channel assignment problem, based

on the Tabu search [16] technique for coloring vertices in graphs.Our Tabu-based algorithm

is centralized. Centralized algorithms are quite practical in “managed” mesh networks where

there is already a central entity. Moreover, they are amenable to a higher degree of optimization,

easier to upgrade, and use of “thin” clients. Centralized approaches have indeed been proposed

in various recent works [9, 11, 13], and have also become prevalent in the industry (e.g., WLAN

and mesh products from Meru Networks [39], Tropos [40], Strix Systems [41], Firetide [42]).

Algorithm Overview. Recall that our channel assignment problem is to color the verticesVc of

the conflict graphGc usingK colors while maintaining the interface constraint and minimizing

the number of monochromatic edges in the conflict graph. In other words, the channel assignment

problem is to find a solution/functionf : Vc → K with minimum network interferenceI(f) such

that f satisfies the interference constraint. Our Tabu-based algorithm consists of two phases. In

the first phase, we use Tabu search based technique [16] to finda good solutionf without

worrying about the interface constraint. In the second phase, we remove interface constraint

violations to get a feasible channel assignment functionf .

First Phase. In the first phase, we start with a random initial solutionf0 wherein each vertex

in Vc is assigned to a random color inK. Starting from such a random solutionf0, we create

a sequence of solutionsf0, f1, f2, . . . , fj, . . . , in an attempt to reach a solution with minimum

network interference. In thejth iteration (j ≥ 0) of this phase, we create the next solutionfj+1

in the sequence (fromfj) as follows.

The jth Iteration. Given a solutionfj, we createfj+1 as follows. First, we generate a certain

number (say,r) of random neighboring solutions offj. A random neighboring solution offj is

generated by picking a random vertexu and reassigning it to a random color in(K− {fj(u)}).

Thus, a neighboring solution offj differs from fj in the color assignment of only one vertex.
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Among the set of such randomly generated neighboring solutions offj, we pick the neighboring

solution with the lowest network interference as the next solution fj+1. Note that we do not

requireI(fj+1) to be less thanI(fj), so as to allow escaping from local minima.

Tabu List.To achieve fast convergence, we avoid reassigning the same color to a vertex more

than once by maintaining atabu list τ of limited size. In particular, iffj+1 was created from

fj by assigning a new color to a vertexu, then we add(u, fj(u)) to the tabu listτ . Now, when

generating random neighboring solutions, we ignore neighboring solutions that assign the color

k to u if (u, k) is in τ .

Termination.We keep track of the best (i.e., with lowest interference) solution fbest seen so

far by the algorithm. The first phase terminates when maximumnumber (say,imax) of allowed

iterations have passed without any improvement inI(fbest). In our simulations, we setimax

to |Vc|. Since network interferenceI(f) takes integral values and is at most(|Vc|)
2, the value

I(fbest) is guaranteed to decrease by at least 1 inimax = |Vc| iterations (or else, the first phase

terminates). Thus, the time complexity of the first phase is bounded byO(rd|Vc|
3), since each

iteration can be completed inO(rd) time wherer is the number of random neighboring functions

generated andd is the maximum degree of a vertex in the conflict graph. Note that network

interference of a neighboring solution can be computed inO(d) time. A formal description of

the first phase is shown in Algorithm 1.

Second Phase.Note that the solutionf returned by the first phase may violate interface con-

straints. Thus, in the second phase, we eliminate the interface constraints by repeated application

of the following “merge” procedure. Given a channel/color assignment solutionf , we pick a

network node for the merge operation as follows. Among all the network nodes wherein the

interface constraint is violated, i.e, whose number of radios is less than the number of distinct

colors assigned to the incident communication links, we pick the node wherein the difference

between the above two terms is the maximum. Leti be the node picked as above for the merge

operation. We reduce the number of colors incident oni by picking (as described later) two

colors k1 and k2 incident oni, and changing the color of allk1-colored links tok2. In order

to ensure that such a change does not create interface constraint violations at other nodes, we

iteratively “propagate” such a change to allk1 − colored links that are “connected” to the links

whose color has been just changed fromk1 to k2. Here, two links are said to be connected if
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Algorithm 1: First Phase of Tabu-based Algorithm.
Input : Conflict GraphGc(Vc, Ec); Set of channelsK.

Output : Channel Assignment Functionfbest : Vc → K.
Start with a random assignment functionf0;

fbest = f0; Ibest = I(f0); τ = null; j = 0; i = 0;

while I(fi) > 0 and i ≤ imax do

Generater random neighbors offj ;

Each neighbor is generated by randomly picking

a u in Vc andk ∈ K s.t. k 6= fj(u) and (u, k) /∈ τ ,

and changingfj(u) to k

Let fj+1 be the neighbor with lowest interference.

Add (u, fj(u)) to τ .

If τ is full, delete its oldest entry;

if (I(fj+1) < Ibest)

then Ibest = I(fj+1); fbest = fj+1; i = 0;

elsei = i + 1;

endif;

j = j + 1;

end while

RETURN fbest;

they are incident on a common node. Essentially the above propagation of color-change ensures

that for any nodej, either all or none of the k1-colored links incident onj are changed to

color k2. See Figure 2. Completion of the above described color-change propagation marks the

completion ofonemerge procedure. The above described merge procedure reduce the number of

distinct colors incident oni by one, and does not increase the number of distinct colors incident

on any other node (due to the all or none property). Thus, repeated application of such a merge

operation is guaranteed to resolve all interface constraints. Note that a merge operation probably

will result in increase in network interference. Thus, for agiven nodei, we pick those two color

k1 andk2 for the merge operation that cause the least increase in the network interference due

to the complete merge operation.
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Fig. 2. Merge operation of second phase. The two figures are the communication graphs of the network before and after the

merge operation. Labels on the links denote the color/channel. Here, the merge operation is started at nodei by changing all

its 1-colored links to color 2.

V. Distributed Greedy Algorithm (DGA)

In this section, we describe our Distributed Greedy Algorithm (DGA) for the channel assign-

ment problem. Our choice of greedy approach is motivated by the following two observations.

Max K-cut Problem in Random Graphs.As described before, the MaxK-cut problem on a

given graphG is to partition the vertices ofG into K disjoint subsets such that the sum of

number of edges with endpoints in different partitions is maximized. In [37], the authors consider

Gn,p graphs which are defined as random graph overn vertices where each edge exists with a

uniform probability ofp. The authors design an algorithm with an approximation ratio 1 − 1
Kx

(wherex ≥ 1) for the MaxK-cut problem in suchGn,p graphs. In particular, they obtain a lower

bound on the size of the MaxK-cut in Gn,p graphs problem using a simple greedy heuristic, and

obtain an upper bound using a relaxed semidefinite program given by [17]. They show that the

lower and upper bounds are close with very high probability.In effect, the authors show that the

greedy heuristic delivers a1− 1
Kx

factor approximation solution with very high probability.The

greedy heuristic proposed in [37] for MaxK-cut works by deciding the partition of one vertex

at a time in a greedy manner (i.e., place the vertex in the partition that results in maximizing

the number of edges with endpoints in different partitions).

Conflict Graph isGn,p. It can be shown that a network formed by randomly placed nodesin

a fixed region generates a random conflict graphGc which is alsoGn,p. Here, we assume an

interference model wherein two communication links(u, v) and (r, s) interfere with each other

depending on the locations of the nodesu, v, r, ands (as is the case with protocol interference
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model [2]). Now, the verticeslu,v, lr,s ∈ Vc representing the communication links(u, v) and

(r, s) are connected inGc if and only if the communication links(u, v) and(r, s) interfere with

each other. Thus, the probability of an edge between two vertices ofVc depending only on the

locations of the involved network nodes, and since the network nodes are randomly placed, the

probability of an edge between two vertices inVc is uniform.

The above observations motivate use of a greedy approach forour channel assignment problem.

Centralized Greedy Algorithm. We start with presenting the centralized version, which yields

a natural distributed implementation. In the initialization phase of our greedy approach, each

vertex of Vc is colored with the color1. Then, in each iteration of the algorithm, we try to

change the color of some vertex in a greedy manner without violating the interface constraint.

This strategy is different from the Tabu-based algorithm, where we resolve interface constraint

violations in the second phase while not worrying about introducing them in the first phase.

In each iteration of the greedy approach, we try to change thecolor of some vertexu ∈ Vc to

a color k. We look at all possible pairs ofu and k, considering only those that do not result

in the violation of any interface constraint, and pick the pair (u, k) that results in the largest

decrease in network interference. The algorithm iterates over the above process, until there is

no pair ofu andk that decreases the network interference any further. Note that a vertex inVc

may be picked multiple times in different iterations. However, we are guaranteed to terminate

because each iteration monotonically decreases the network interference. In particular, as noted

in previous section, since the network interference takes integral values and is at most(|Vc|)
2,

the number of iterations of the greedy algorithm is bounded by (|Vc|)
2. Since each iteration

can be completed inO(dK|Vc|), whereK is the total number of colors andd is the maximum

degree of a vertex in the conflict graph, the total time complexity of the greedy algorithm is

O(dK|Vc|
3). The pseudocode for the centralized verison of the greedy algorithm is shown in

Algorithm 2.

Distributed Greedy Algorithm (DGA). The above described greedy approach can also be easily

distributed by using a localized greedy strategy. The distributed implementation differs from the

centralized implementation in the following aspects. Firstly, in the distributed setting, multiple

link-color pairs may be picked simultaneously across the network by different nodes. Secondly,

the decision of which pair is picked is based on the local information. Lastly, to guarantee
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Algorithm 2: Centralized Greedy Algorithm.
Input : Conflict GraphGc(Vc, Ec); Set of channelsK.

Output : Channel Assignment Functionf : Vc → K.
Initialization:

f(u) = 1, ∀u ∈ Vc

Repeat

(1) Choose the pair(u, k) ∈ (Vc ×K), such that whenf(u) is assigned tok, the

interference constraint is not violated and the total network interference (I(f))

decreases the most

(2) Setf(u) = k

Until I(f) cannot be decreased any further.

termination in a distributed setting, we impose additionalrestriction that each pair(u, k) is

picked at most once (i.e., each vertexu ∈ Vc is assigned a particular colork at most once) in

the entire duration of the algorithm.

In the distributed implementation, each vertexu = lij ∈ Vc corresponding to the link(i, j)

is ownedby i or j, whichever has the higher node ID. This is done to ensure consistency of

color information across the network. Initially, each vertex in Vc is assumed to colored 1. Let

m ≥ 1 be the parameter defining the local neighborhood of a node. Based on the information

available about the colors of links in them-hop neighborhood ofi, each network nodei selects

(after waiting for a certain random delay) a(u, k) combination such that (i)u = lij is owned by

i, (ii) changing the color ofu to k does not violate the interface constraint at nodei or j, (iii)

the pair(u, k) has not been selected before byi, and (iv) the pair(u, k) results in the largest

decrease in the “local” network interference. Then, the node i sends aColorRequest message

to nodej. The nodej responds with theColorReply message, if and only if changing the

color of u to k still does not violate the interface constraint at nodej. On responding with the

ColorReply message, the nodej assumes2 that the color ofu has been changed tok. On

receiving theColorReply message forj, the nodei sends aColorUpdate(u, k) message

2Such an assumption may need to be later corrected through communication withi if the ColorUpdate(u,k) message is

not received fromi within a certain amount of time.
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to all its m-hop neighbors. If aColorReply message is not received within a certain time

period, the nodei abandons the choice of(u, k) for now, and starts a fresh iteration. Since each

pair (u, k) is picked at most once, then the total number of iterations (over all nodes) in the

above algorithm is at mostO(|Vc|K). The pseudocode for the distributed greedy algorithm that

runs in every nodei ∈ V is shown in Algorithm 3.

The above Distributed Greedy algorithm is localized, and can be made to work in dynamic

topologies. Our simulation results showed that the above distributed algorithm performs almost

same as the centralized version, due to the localized natureof the network interference objective

function. The input network parameters of traffic and interference are measured as discussed in

Section II.

Algorithm 3: Distributed Greedy Algorithm for each nodei ∈ V

Input : “Local” network and conflict graph; set of channelsK.

Output : Channel Assignment (i.e.,f(u)) for all links u ∈ Vc incident on nodei.
Repeat

Among all pairs(u, k) whereu ∈ Vc is owned byi andk ∈ K

that is not already chosen and does not violate interface constraint ati

choose the one which produces largest decrease in local interference.

SendColorRequest(u, k) to nodej whereu = (i, j).

Wait for ColorReply(u, k) message from nodej.

If ColorReply(u, k) message is not received within a certain time

Abandon the choice(u, k).

Until Local interference cannot be decreased any further, or all(u, k) combinations

have already been chosen.

When ColorRequest(u, k) message is received from nodej, whereu = (i, j):

If assigning channelk to link u does not cause interface constraint violation

SendColorReply(u, k) message to nodej.

When ColorReply(u, k) message is received from nodej:

Setf(u) = k and sendColorUpdate(u,k) message to “local” neighborhood

When ColorUpdate(u, k) message is received:

Update locally maintained channel assignment of links in the local network graph.
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VI. Bounds on Optimal Network Interference

In this section, we derive lower bounds on the minimum network interference using semidef-

inite and linear programming approaches. These lower bounds will aid in understanding the

quality of the solutions obtained from the algorithms presented in previous two sections.

A. Semidefinite Programming Formulation

In this section, we model our channel assignment problem in terms of a semidefinite program

(SDP).

Semidefinite Programs.A semidefinite program[43] is a technique to optimize a linear function

of a symmetric positive-semidefinite matrix3 subject to linear equality constraints. Semidefinite

programming is a special case of convex programming [44], since a set of positive semidefinite

matrices constitutes a convex cone. Semidefinite programs can be solved in polynomial time

using various techniques [45]. The reader is referred to [43, 46] for further details on semidefinite

programming and its application to combinatorial optimization. The standard form of semidefinite

program is as follows.

Minimize C.X

such that Ai.X = bi, 1 ≤ i ≤ m, and

X � 0

whereC, Ai (∀i), andX are all symmetricn×n matrices, andbi is a scalar vector. The constraint

X � 0 implies that the variable (to be computed) matrixX must lie in the closed, convex cone

of a positive semidefinite matrix. Also, the. (dot) operation refers to the standard inner product

of two symmetric matrices.

As mentioned in Section II, our channel assignment problem is essentially the MaxK-cut

problem in the conflict graph with the additional interface constraint. Below, we start with

presenting the SDP for the MaxK-cut problem from [17]. We then extend it to our channel

assignment problem by adding the interface constraint.

SDP for Max K-cut. Let yu be a variable that represent the color of a vertexu ∈ Vc. Instead

of allowing yu to take 1 toK integer values, we defineyu to be a vector in{a1, a2, ..., aK},

3A matrix is said to bepositive semidefiniteif all its eigen values are nonnegative.
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where theai vectors are defined as follows [17]. We take an equilateral simplex ΣK in RK−1

with verticesb1, b2, ..., bK . Let cK = (b1+b2+...+bK)
K

be the centroid ofΣK , and letai = bi − cK

for 1 ≤ i ≤ K. Also, assume|ai| = 1 for 1 ≤ i ≤ K. Now, the MaxK-cut problem can be

formulated as an integer quadratic program as follows [17].

IPMax−K:

Maximize
K − 1

K

∑

(u,v)∈Ec

(1 − yu.yv)

such that yu ∈ {a1, a2, ...., aK}

Note that sinceai.aj = −1
K−1

for i 6= j, we have:

1 − yu.yv =







0, if yu = yv

K
K−1

, if yu 6= yv.

Interface Constraint. We now add the interface constraint to the above formulationfor Max

K-cut. For eachi ∈ N , let

Φi = σ(E(i), Ri) − (

(

|E(i)|

2

)

− σ(E(i), Ri))/(K − 1),

whereσ(E(i), Ri) is as defined as follows:

σ(S, K) =
βα(α + 1) + (K − β)α(α − 1)

2
, (2)

whereα = ⌊ |S|
K
⌋ andβ = |S| mod K. It can be shown [47] that the number of monochromatic

edges in the clique of size|S| when colored byK colors is at leastσ(S, K). Now, we add the

following constraint to represent the interface constraint.

∑

u,v∈E(i)

yu.yv ≥ Φi ∀i ∈ N (3)

Recall that vertices inE(i) form a clique in the conflict graph, and cannot be partitionedinto

more thanRi partitions to satisfy our interface constraint. Now,σ(E(i), Ri)) gives a lower bound

on the number of monochromatic edges in this clique (E(i)) [47], and thus,
(

|E(i)|
2

)

−σ(E(i), Ri))

is an upper bound on the number of non-monochromatic edges. Since we know thatyu.yv = 1

for any monochromatic edge(u, v) andyu.yv = −1
K−1

for any non-monochromatic edge, we have

constraint in the above Equation 3.
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Note that even though Equation 3 is a valid constraint, it does not necessarily restrict the

number of colors assigned to vertices ofE(i) to Ri. Thus, theIPMax−K augmented by the

above Equation 3 only gives an upper bound on the number of non-monochromatic edges.

Relaxed SDP for Channel Assignment.Since we cannot solve the integer quadratic program

IPMax−K for problems of reasonable size, we relax it by allowing the variablesyu to take any

unit vector inR|Vc|. Sinceyu.yv can now take any value between1 and−1, we add an additional

constraint to restrictyu.yv to be greater than−1
K−1

. The relaxed SDP for the channel assignment

is as follows.

Maximize
K − 1

K

∑

(u,v)∈Ec

(1 − yu.yv)

such that

yu ∈ R|Vc| and |yu| = 1

yu.yv ≥
−1

K − 1
, ∀u 6= v, and

∑

u,v∈E(i)

yu.yv ≥ Φi, ∀i ∈ N.

Standard SDP Formulation. Now, we convert the above relaxed version into the standard SDP

formulation. LetW be the|Vc|× |Vc| symmetric matrix representing the adjacency matrix of the

graphGc, and lete be the|Vc| × 1 vector containing all 1’s. Now, letL = d(W.e) − W denote

the Laplacian of theW matrix, whered(W.e) is the |Vc| × |Vc| matrix with W.e as the main

diagonal. Finally, let

C = −
L(K − 1)

2K
,

X be the semidefinite|Vc|×|Vc| matrix representingyu.yv for all u, v ∈ Vc. Now, the semidefinite

program for the channel assignment problem in the standard SDP form (Matrix Notation) [37]
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can be represented as follows.

Minimize C.X

such that

diagonal(X) = e

Xu,v ≥
−1

K − 1
, ∀u 6= v ∈ Vc,

Ai.X ≥ 2Φi, ∀i ∈ N, and

X � 0,

where eachAi(i ∈ V ) is a |Vc| × |Vc| matrix representingE(i). In particular, theAi[u, v] = 1

if (u, v) ∈ Ei, and 0 otherwise. Also, the inequalities in the above constraints can be converted

into equalities by subtracing linear positive variables from the left hand side.

The solution to the above semidefinite program gives an upperbounds on the number of non-

monochromatic edges, and the lower bound on the optimal network interference can be obtained

by subtracting it from|Ec|. This semidefinite program can solved using standard SDP solver

such as DSDP 5.0 [48].

B. Linear Programming Formulation

In our simulations, we observed that solving the semidefinite program formulation presented

in the previous section can take a long time (12 hours on a 2.4 GHz Intel Xeon machine with

2GB RAM for a 50 node network) and memory, and hence, may not befeasible for very large

network sizes. Thus, in this section, we formulate our channel assignment problem as an integer

linear program (ILP), and use the relaxed linear program with additional constraints to estimate

the lower bound on the optimal network interference. The LP formulation can be solved in a

much less time (less than an hour vs. 12 hours) than the SDP formulation, but yields a slightly

looser lower bound than SDP on the optimal network interference. Note that the SDP and

LP formulations are used only to demonstrate the performance of our Tabu-based and Greedy

algorithms.

Integer Linear Programming. Recall thatN is the set of network nodes,Ri is the number of

radio interfaces for a nodei, K is the set of available channels, andGc(Vc, Ec) is the conflict
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graph. Also,E(i) represents the set of vertices inVc that represent the communication links

incident on nodei ∈ N .

We use the following set of binary integer (taking values 0 or1) variables and constraints in

our ILP formulation.

• Variables Yuk, for eachu ∈ Vc and k ∈ K. The variableYuk is 1 if and only if the

vertex u ∈ Vc is assigned the channelk. Essentially, the variablesYuk define the channel

assignment function. Since, each vertex inVc is given exactly one channel, we have the

following constraints.

Yuk = {0, 1}, ∀u ∈ Vc, ∀k ∈ K (4)

∑

k∈K

Yuk = 1, ∀u ∈ Vc (5)

• VariablesXuv, for each edge(u, v) ∈ Ec. The variableXuv is 0 only if the verticesu, v ∈ Vc

are assigned different channels.4 The following equation defines the value ofXuv in terms

of Y variables.

Xuv = {0, 1}, ∀(u, v) ∈ Ec (6)

Xuv ≥ Yuk + Yvk − 1, ∀(u, v) ∈ Ec, ∀k ∈ K (7)

The variablesXuv are used to define the network interference (the objective function defined

later).

• VariablesZik, for each network nodei ∈ N and channelk ∈ K. The variableZik is 1

if and only if someu ∈ E(i) has been assigned a channelk; note that,u represents a

communication link incident oni ∈ N .

Zik = {0, 1}, ∀i ∈ N, ∀k ∈ K (8)

Zik ≥ Yuk, ∀u ∈ E(i), ∀i ∈ N, ∀k ∈ K (9)

Zik ≤
∑

u∈E(i)

Yuk, ∀i ∈ N, ∀k ∈ K (10)

4If vertices u and v in Vc are assigned same channel, thenXuv can be 0 or 1. However,Xuv will be chosen to be 0 to

minimize the objective function (see below), as there are noadditional constraints involvingXuv. The additional constraints in

Equation 12 and 13 can be looked upon as derivations of Equation 7.
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The last equation above is used to enforce thatZik is 0 if there is indeed no vertexu ∈ E(i)

that has been assigned a channelk. The below equation enforces the interface constraint

usingZ variables.
k

∑

f=1

Zif ≤ Ri ∀i ∈ N (11)

Objective Function. Our objective function for the above ILP is to

Minimize
∑

(u,v)∈Ec

Xuv.

Linear Programming. Due to NP-hardness of integer linear programming, solving the above

ILP is intractable for reasonably sized problem instances.Thus, we relax the above ILP to a linear

program (LP) by relaxing the integrality constraints. In particular, we replace the Equations 6,

4, and 8 by the following equation.

0 ≤ Xuv, Yuk, Zik ≤ 1.

The solution to the relaxed linear program gives only a lowerbound on the optimal solution

to the ILP. Through simulations, we have observed that the lower bound obtained by the above

LP formulation is very loose. Thus, in order to obtain a tighter lower bound, we add additional

constraints as follows.

Clique Constraint.For each vertexu ∈ Vc, let Su be the set of vertices in a maximal clique

containingu. As discussed in Section VI-A, we can lower bound the number of monochromatic

edges in a complere graph of size|Su| when colored byK colors asσ(Su, K) using Equation 2.

The above observation yields the following additional constraint.

∑

v,w∈Su

Xvw ≥ σ(Su, K) ∀u ∈ Vc (12)

Since the set of verticesE(i) in Vc forms a clique inGc and uses at mostRi colors (due to the

interface constraint on nodei), we also have the following constraint.

∑

(u,v)∈E(i)

Xuv ≥ σ(E(i), Ri) ∀i ∈ N (13)

The above two additional constraints pose a lower bound on the interference on clique like

subgraphs. This helps to reduce the gap between the actual integer optimum and the relaxed

linear solution.
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Number of Variables and Constraints.The number of variables in the above LP formulation is

|Ec|+K(|Vc|+N), and the total number of equations/constraints are2(|Vc|+ |N |)+K(2|Vc|+

2|N |+ |Ec|) including the integrality constraints. We solve the linearprogram using GLPK [49],

a public-domain MIP/LP solver.

VII. Generalizations

In the previous sections, for sake of clarity, we made various assumptions, viz., uniform

traffic on all communication links, a binary interference model, and orthogonal channels. In this

section, we generalize our techniques to relax these assumptions. These generalizations are quite

useful in practical deployments. For example, the links in the network communication graph may

carry different amounts of traffic. Thus, the average interference must be weighted by traffic as

interfering traffic is not the same for all interfering link pairs. Also, channels – even when

they are orthogonal in theory – do interfere due to device imperfections (e.g., radio leakage,

improper shielding, etc.) [14]. Thus, modeling of non-orthogonal (i.e., interfering) channels is

a good idea. In addition, this also allows us to explicitly utilize non-orthogonal channels [18].

Finally, regardless of traffic and use of different channels, path loss effects can influence the

degree of interference between two links – and thus, result in fractional interference between

two links.

Non-uniform Traffic and Fractional Interference. Let u andv be two vertices in the conflict

graph,r(u, v) (a real number between 0 and 1) be the level of interference between two links

corresponding to the verticesu andv, andt(u) andt(v) denote the normalized traffic on the links

corresponding to the vertexu and v respectively. Note that in our network model, we assume

that the traffic is known a priori. Measurements of these parameters was discussed in Section II.

Based on the above notations, the overall network interference for a given channel assignment

function f : Vc → K can be defined as follows. LetM = {(u, v)|u, v ∈ Vc and f(u) = f(v)}.

Then,

I(f) =
∑

(u,v)∈M

t(u)t(v)r(u, v).

For the generalized interference and traffic model, the Tabu-based and Greedy algorithms use

the above definition of network interference; no additionalchanges are required. Similarly, the LP

and SDP formulations of the channel assignment problem can be generalized by appropriately
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extending the objective function; no other changes are required in the list of variables and

constraint equations.

Non-orthogonal Channels.Let c(k1, k2), a value between 0 and 1, denote the level of interfer-

ence between two channelsk1 andk2. For non-orthogonal channels, the overall network network

can be further generalized as follows for a given channel assignment functionf : Vc → K.

I(f) =
∑

(u,v)∈M

t(u)t(v)r(u, v)c(f(u), f(v)).

As before, Tabu-based and Greedy algorithms can use the above definition of network inter-

ference without any additional changes. However, in the LP formulation, we need to replace the

Equations 7 by the following.

Xuv ≥ Yuk1
+ Yvk2

− 2 + c(k1, k2), ∀(u, v) ∈ Ec, ∀k1, k2 ∈ K

Unfortunately, the SDP formulation cannot be generalized easily for non-orthogonal channels.

The problem arises from the difficulty in choosing appropriate vectorsai such thatai.aj is

proportional toc(i, j) for all channelsi, j ∈ K. The valuesc(i, j) are characteristics of the

channel spectrum, and can be measured independently.

VIII. Performance Evaluation

In this section, we study the performance of our designed algorithms for the channel as-

signment problem through extensive simulations. We present our performance results for two

different settings. First, we evaluate a graph-theoretic performance metric, and then, evaluate

throughput improvement using ns2 simulations. We start with discussing various algorithms

used for comparison.

Algorithms. In addition to our designed algorithms (Tabu-based and Distributed Greedy) and

the lower bounds obtained from the linear and semidefinite programming techniques, we also

present results for two other algorithms for comparison. Inparticular, we simulate a modified

version of the centralized CLICA heuristic presented in [11] for a slightly different version of

the channel assignment problem.5 We refer to the modified algorithm of [11] as CLICA-SCE.

5In CLICA [11], a communication link may multiplex between multiple channels, but in our network model each

communication link uses exactly one channel for transmission. We modify CLICA to use our network model.
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(d) Sparse, 12 Channels

Fig. 3. Fractional network interference of solutions delivered byvarious algorithms compared with the lower bounds

in dense or sparse networks for 3 or 12 channels.

We also simulate arandomalgorithm which uses only a limited number of channels (equal to

the number of radio interfaces), assigns a different channel to each radio interface, and then,

selects a random interface (and hence, channel) for transmitting a packet. See Section III for a

discussion on other related works.

We note here the network interference metric is actually a localized metric since a communi-

cation link interferes with only “neighboring” communication links. Thus, we observed that the

centralized version of the greedy algorithm performed almost exactly the same as the Distributed

Greedy algorithm.
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A. Graph-Theoretic Performance Metric

In this set of experiments, we generate random networks by randomly placing a number

of nodes in a fixed region, and evaluate various algorithms based on a certain graph-theoretic

performance metric. To solve linear programs, we used GLPK [49] which is a public-domain

MIP/LP solver, while to solve semidefinite programs, we usedDSDP 5.0 [48] [50] which uses

an efficient interior-point technique.

Graph Parameters.We consider two sets of random network, viz., dense and sparse networks,

generated by randomly placing 50 nodes in500 × 500 and 800 × 800 square meters of area

respectively.6 In dense networks, the average node degree is around 10, while in sparse networks

the average node degree is around 5. Each node has the same number of radio interfaces, and

has a uniform transmission and interference range of 150 meters. Two nodes are connected by a

communication link if they lie within each other’stransmission range. Also, two communication

links (i, j) and (g, h) interfere with each other if and only if eitherg or h lies within the

interference rangeof i or j; this is based on the protocol interference model [2]. We assume

orthogonal channels and uniform traffic on all links.

Performance Metric. We evaluate the performance of our algorithms in random networks using

the metric “fractional network interference.” Given a channel assignment functionf computed by

an algorithm, thefractional network interferenceis defined as the ratio of network interference

(I(f)) and the total number of edges in the conflict graph. This represents the number of

conflicts that remain even after channel assignment relative to the number of conflicts in the

single-channel network. The fractional network interference for the random algorithm is given

by 1
R

, whereR is the number of radios on each node. Note that the above performance metric is

purely graph-theoretic and hence, we do not use any network simulator for these experiments.

Results. In Figure 3, we plot the fractional network interference forvarying number of radio

interfaces/node, in dense and sparse networks using 3 and 12channels. In general, both our

algorithms perform extremely well compared to the CLICA-SCE and random algorithms. The

Tabu-based algorithm almost always performs better that than the Distributed Greedy algorithm,

6We evaluated networks of size up to 750 nodes and varying densities, with similar performance results for all algorithms.

However, the LP and SDP formulations for networks of size larger than 50 nodes took unreasonably long computation time.
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except when the number of radios is very small. When the number of radios is very small, the

second phase of Tabu-based algorithm is forced to perform many inefficient merge operations

which leads to performance degradation.

The performance of our algorithms compared to the lower bounds obtained from the LP and

SDP formulations shows that our algorithms deliver very good solutions, particularly for larger

number of radios. Note that the vertical axis of the plots is presented in log-scale for ease

of viewing. The performance difference between the Tabu-based algorithm and the SDP lower

bound is about 1% to 4% when the number of radios is large. We can also see that the SDP

formulation delivers a much better lower bound than the LP formulation, for all parameter values.

However, as we noted before, running SDP is significantly more computationally expensive (in

terms of time and memory) than LP.

The comparison of plots for dense and sparse networks bring out interesting features. The

fractional interference reduces with increase in number ofradios per node; however, this trend

saturates beyond a certain number of radios. This saturation point is reached with smaller number

of radios for sparse networks than for dense networks, for the same number of channels. This

is because the denser networks can potentially support moreconcurrent transmissions than the

sparse networks. Similar trends were observed in [11].

B. ns2 Simulations

In this set of experiments, we study the impact of channel assignment in improving throughput

in an 802.11-based mesh network. We compare the performanceof various algorithms by

measuring thesaturation throughputusing ns2 simulations over randomly generated networks.

We consider networks of 50 nodes randomly placed in a1000 × 1000 square meters area. The

transmit power, receive and carrier sense thresholds in thedefault setting of ns2 are such that

the transmission range is 250 meters and the interference range is 550 meters. We used the same

default radio parameters as in ns2 [51], except that we set the channel data rate to 24Mbps. All

transmissions are unicast transmissions following the 802.11 MAC protocol with RTS/CTS, and

the packet size is fixed to 1000 bytes.

Performance for Various Traffic Models. We use three different traffic models.

• Single-hop traffic model: This model consists of identical poisson traffic for each commu-

nication link. The single-hop traffic model is useful to evaluate the performance in the case
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Fig. 4. Saturation throughput in ns2 simulations for 12 channels and various traffic models, viz., (a) Single hop, (b) Multi-hop

Peer-to-Peer, (c) Multi-hop Gateway.

when all links in the network carry the same load.

• Multi-hop peer-to-peer traffic model: In this model, 25 randomly selected source-destination

pairs communicate using multihop routes. The routes are computed statically using the

shortest number of hops as the metric, and do not change for the lifetime of the simulation.

• Multi-hop gateway traffic model: In this model, 4 random nodes are selected as gateways,

and 25 source nodes send traffic to their nearest (in terms of hops) gateway. Routes are

determined as in the previous traffic model. Such a traffic model will be common when the

mesh network is used for Internet gateway connectivity.

Note that in the last two traffic models the traffic on the linksis non-uniform. The traffic

information is used in the channel assignment algorithms assuggested in Section VII.

Figure 4 plotssaturation throughputagainst number of radio interfaces per node for the three
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traffic models and 12 channels (as we are experimenting with an 802.11a like system). We obtain

the saturation throughputs as follows. For a particular number of radios and channels, we run a

series of simulations, increasing the offered load each time, starting from a low value. We stop

when the throughput does not increase any further with increase in the offered load.

We note that in all the three traffic models, our algorithms perform very well. We also see

that the observations we made from the earlier graph-theoretic evaluations translate well into the

ns2 results. The saturation throughput remain same after a certain number of radios, as inferred

in the graph-theoretic simulations. Also, the relative performance of the algorithms in the ns2

simulations is the same as observed in the graph-theoretic simulations. This indirectly establishes

the merit of the chosen interference model, optimization objective, and use of graph-theoretic

measures as a method of performance evaluation.

Modeling Non-Orthogonal Channels.So far, we have used only perfectly orthogonal channels.

This however is a limitation in systems such as 802.11b wherefew orthogonal channels are avail-

able. Since our techniques are general enough to handle non-orthogonal channels (Section VII),

we now model a non-orthogonal channel situation.

We assume an 802.11b like system where there are 11 channels,with only 3 of them being

mutually orthogonal. For modeling the interference between non-orthogonal channels, we follow

the technique outlined in Section VII. We use the data from [52] to model the “weighted” nature

of conflicts. This data is obtained based on a simple analysisof the amount of overlapped

spectrum between every pair of channels in 802.11b. We also did direct measurements on an

802.11b testbed to estimate interference between non-orthogonal channels and the values we

obtained are similar to those quoted in [52]. Since such measurements can be very much hardware

and environment specific, we stick to the data in [52].

In the ns2 simulator, we model inter-channel interference as follows. Physical layer frames

transmitted on channelk1 arriving at a radio interface tuned to channelk2 are reduced in power

depending on the degree of non-interference. For example, if a k1-frame arrives at ak1-interface,

the frame does not undergo any power reduction. On the other hand, if ak1-frame arrives at a

k2-interface, wherek1 andk2 are perfectly orthogonal, then thek1-frame is completely silenced.

Power reduction between 0% and 100% occur for other intermediate cases. In the simulator, the

interference (e.g., carrier-sense or collisions) is calculated only after such power reduction.
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Fig. 5. Saturation throughput in ns2 simulations when using non-orthogonal channels with 802.11b-like multi-

channel model (11 channels with varying degrees of interference; 3 channels are mutually orthogonal).

We use the peer-to-peer multihop traffic model (as defined before) to show the performance of

our algorithms with non-orthogonal channels. See Figure 5.We observe that both our algorithms

perform better when using all available 11 channels than when using only the 3 mutually

orthogonal channels. The factor of improvement is less in the Tabu-based algorithm compared

to the Distributed Greedy algorithm due to the inefficiency of the merge operations. Overall,

use of non-orthogonal channels is a better choice than restricting channel assignments to only

orthogonal channels.

IX. CONCLUSION

In this paper, we have formulated and addressed the channel assignment problem in multichan-

nel wireless mesh networks where each node may be equipped with multiple radios. We have

presented centralized and distributed algorithms that assign channels to communication links in

the network with the objective of minimizing network interference. Using linear programming

and semidefinite programming formulations of our optimization problem, we obtain tight lower

bounds on the optimal network interference, and empirically demonstrate the goodness of the

quality of solutions delivered by our algorithms. Using simulations onns2, we observe the

effectiveness of our approaches in improving the network throughput. One of the future directions

is to consider assignment of multiple channels to each link.
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