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Abstract— In this paper, we address an optimization problem
that arises in context of cache placement in sensor networks. In
particular, we consider the cache placement problem where the
goal is to determine a set of nodes in the network to cache/store
the given data item, such that the overall communication cost in-
curred in accessing the item is minimized, under the constraint
that the total communication cost in updating the selected caches
is less than a given constant. In our network model, there is a single
server (containing the original copy of the data item) and multiple
client nodes (that wish to access the data item). For various set-
tings of the problem, we design optimal, near-optimal, heuristic-
based, and distributed algorithms, and evaluate their performance
through simulations on randomly generated sensor networks.

I. Introduction

Advances in embedded processing and wireless networking
have made possible creation of sensor networks [1, 13]. A sen-
sor network consists of sensor nodes with short-range radios
and limited on-board processing capability, forming a multi-
hop network of irregular topology. Sensor nodes must be pow-
ered by small batteries, making energy efficiency a critical de-
sign goal. There has been a significant interest in designing
algorithms, applications, and network protocols to reduce en-
ergy usage of sensors. Examples include energy-aware rout-
ing [18], energy-efficient information processing [10, 13], and
energy-optimal topology construction [29]. In this article, we
focus on designing techniques to conserve energy in the net-
work by caching data items at selected sensor nodes in a sensor
network. The techniques developed in this paper are orthogonal
to some of the other mentioned approaches, and can be used in
combination with them to conserve energy.

Existing sensor networks assume that the sensors are prepro-
grammed and send data to a sink node where the data is aggre-
gated and stored for offline querying and analysis. Thus, sensor
networks provide a simple sample-and-gather service, possibly
with some in-network processing to minimize communication
cost and energy consumption. However, this view of sensor
network architecture is quite limited. With the rise in embed-
ded processing technology, sensor networks are set to become
a more general-purpose, heterogeneous, distributed databases
that generate and process time-varying data. As energy and
storage limitations will always remain an issue – as much of
it comes from pure physical limitations – new techniques for
efficient data handling, storage, and dissemination must be de-
veloped. In this article, we take a general view of the sensor
network where a subset of sensor nodes (called servers) gener-
ate data and another subset of nodes (called clients) consume

this data. The data generation and consumption may not be
synchronous with each other, and hence, the overall communi-
cation cost can be optimized by caching generated data at ap-
propriately selected intermediate nodes. In particular, the data-
centric sensor network applications which require efficient data
dissemination [6, 8] will benefit from effective data caching
strategies.

In our model of the sensor network, there is a single data item
at a given server node, and many client nodes. (See Section VI
for a discussion on multiple data items and servers.) The server
is essentially the data item producer and maintains the original
copy of the item. All the nodes in the network cooperate to re-
duce the overall communication cost of accessing the data via a
caching mechanism, wherein any node in the network can serve
as a cache. A natural objective in the above context could be to
select cache nodes such that the sum of the overall access and
update cost is minimized. However, such an objective does not
guarantee anything about the general distribution of enery us-
age across the sensor network. In particular, the updates always
originate from the server node, and hence, the server node and
the surrounding nodes bear most of the communication cost in-
curred in updating. Hence, there is a need to constrain the total
update cost incurred in the network, to prolong the lifetime of
the server node and the nodes around it – and hence, possibly of
the sensor network. Thus, in this article, we address the cache
placement problem to minimize the total access cost under an
update cost constraint. More formally, we address the problem
of selecting nodes in the network to serve as caches in order to
minimize the total access cost (communication cost incurred in
accessing the data item by all the clients), under the constraint
that the total update cost (communication cost incurred in up-
dating the cache nodes using an optimal Steiner tree over the
cache nodes and the server) is less than a given constant. Note
that since we are considering only a single data item, we do not
need to consider memory constraints of a node.

Paper Outline. We start with formulating the problem ad-
dressed in this article and a discussion on related work in Sec-
tion II. For the cache placement problem under an update cost
constraint, we consider a tree topology and a general graph
topology of the sensor network. For the tree topology, we de-
sign an optimal dynamic programming algorithm in Section III.
The optimal algorithm for the tree topology can be applied to
the general graph topology by extracting an appropriate tree
from the given network graph. For the general graph topology,
we consider a simplified multiple-unicast update cost model,
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and design a constant-factor approximation algorithm in Sec-
tion IV-A. In Section IV-B, we present an efficient heuristic for
the general cache placement problem under an update cost con-
straint, i.e., for a general update cost model in general graph
topology. In Section IV-C, we present an efficient distributed
implementation. Finally, we present simulation results in Sec-
tion V, and give concluding remarks in Section VI.

II. Problem Formulation and Related Work

In this section, we formulate the problem addressed in this
article. We start with describing the sensor network model.

Sensor Network Model. A sensor network consists of a large
number of sensor nodes distributed randomly in a geograph-
ical region. Each sensor node has a unique identifier (ID).
Each sensor node has a radio interface and can communicate
directly with some of the sensor nodes around it. For brevity,
we sometimes just use node to refer to a sensor node. The sen-
sor network can be modeled as an undirected weighted graph
G = (V, E), where V is the set of nodes, and E is the set of
edges formed by pairs of nodes that can directly communicate
with each other. The communication distance between any two
nodes i and j is the number of hops dij between the two nodes.
The network has a data item, which is stored at a unique node
called a server, and is updated at a certain update frequency.
Each sensor node could be a client node. A client node i re-
quests the data item with an access frequency ai. The cost of
accessing a data item (access cost) by a node i from a node j
(the server or a cache) is aidij , where dij is the number of hops
from node i to node j.

Problem. Informally, our article addresses the following cache
placement problem in sensor networks. Select a set of nodes to
store copies of the data item such that the total access cost is
minimized under a given update cost constraint. The total ac-
cess cost is the sum of all individual access costs over all clients
for accessing the data item from the nearest node (either a cache
or the server) having a copy of the data item. The update cost
incurred in updating a set of caches M is modeled as the cost of
the optimal Steiner tree [14] spanning the server and the set of
caches. This problem is obviously NP-hard, as even the Steiner
tree problem is known to be NP-hard [4]. In this article, we look
at the above problem in various stages – a tree topology, a graph
topology with a simplified update cost model, a graph topology
with the general update cost model – and present optimal, ap-
proximation, and heuristic-based algorithms respectively.

More formally, given a sensor network graph G = (V, E), a
server r with the data item, and an update cost ∆, select a set of
cache nodes M ⊆ V (r ∈ M ) to store the data item such that
the total access cost

τ (G, M ) =
∑

i∈V

ai × minj∈M dij

is minimum, under the constraint that the total update cost
µ(M ) is less than a given constant ∆, where µ(M ) is the cost
of the minimum Steiner tree over the set of nodes M . Note that
in the above definition all network nodes are considered as po-
tential clients. If some node i is not a client, the corresponding
ai would be zero.

Related Work. The general problem of determining optimal
cache placements in an arbitrary network topology has similar-
ity to two problems widely studied in graph theory viz., facility
location problem and the k-median problem. Both the problems
consider only a single facility type (data item) in the network. In
the facility-locationproblem, setting up a cache at a node incurs
a certain fixed cost, and the goal is to minimize the sum of total
access cost and the setting-up costs for all the caches, without
any constraint. On the other hand, the k-median problem min-
imizes the total access cost under the number constraint, i.e.,
that at most k nodes can be selected as caches. Both problems
are NP-hard, and a number of constant-factor approximation
algorithms have been developed for each of the problems [9,
11, 20], under the assumption that the edge costs in the graph
satisfy the triangular inequality. Without the triangular inequal-
ity assumption, either problem is as hard as approximating the
set cover [19, 25], and therefore cannot be approximated better
than O(log |V |) unless NP ⊆ P̃. Here, |V | is the size of the
network.

Several papers in the literature circumvent the hardness of the
facility-location and k-median problems by assuming that the
network has a tree topology [24, 30]. In particular, Li et al. [24]
address the optimal placement of web proxies in a tree topology,
essentially designing an O(n3k2) time dynamic programming
algorithm to solve the k-median problem optimally in a tree
of n nodes. In other related works on cache placement in trees,
Xu et al. [30] discuss placement of “transparent” caches to min-
imize the sum of reads and writes, Krishnan et al. [23] consider
a cost model based on cache misses, and Kalpakis et al. [21]
consider a cost model involving reads, writes, and storage. In
sensor networks, which consist of a large number of energy-
constrained nodes, the constraint on the number of cache nodes
is of little relevance.

Cache placement problem has also been widely used in the
web environment [3, 5, 28] and peer-to-peer networks [12, 16,
26] to alleviate problems such as server overloading, delayed
respond time, and inadequate bandwidth. In particular, Qiu
et al. [28] have addressed effective placement of web server
replicas over the Internet and evaluated several placement algo-
rithms. Cohen and Shenkar [12] discuss the data replica place-
ment problem in peer-to-peer networks and formulate the data
replication strategies as a mapping from the query cost to the
number of replicas. Relatively less work has been done on the
cache placement problem in the specific context of ad hoc net-
works. Hara [16] addresses replica allocation methods for mo-
bile ad hoc networks that can experience frequent disconnec-
tion. Yin and Cao [31] design and evaluate three simple coop-
erative caching techniques to efficiently support data access in
ad hoc networks. In particular, they propose that intermediate
nodes either cache data and/or nearest-cache path information
to serve future requests. None of the above described works
offer any performance guarantee on the solutions.

Caching in sensor networks is equally important, since
caching sensed information at intermediate nodes can greatly
reduce overall communication cost which is the main source of
energy consumption. However, relatively less work has been
done for caching in sensor networks. Intanagonwiwat et al. [8]
propose directed diffusion, a data dissemination paradigm for
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sensor networks, which adopts a data centric approach and en-
ables diffusion to achieve energy savings by selecting empir-
ically good paths and by caching/processing data in-network.
Lastly, Bhattacharya et al. [6] develop a distributed frame-
work that improve energy consumption by application layer
data caching and asynchronous update multicast. In this arti-
cle, we consider cache placement in sensor network wherein
the objective is to minimize the access cost under the constraint
of maximum allowable update cost. As mentioned before, the
update cost is typically mostly borne by the server and the sur-
rounding nodes, and hence, is a critical constraint. To the best
of our knowledge, we are not aware of any prior work that con-
siders the cache placement problem under an update cost con-
straint.

III. Tree Topology

In this subsection, we address the cache placement problem
under the update cost constraint in a tree network. The moti-
vation of considering a tree topology (as opposed to a general
graph model which we consider in the next section) is two fold.
Firstly, data dissemination or gathering in sensor networks is
typically done over an appropriately constructed network tree.
Secondly, for the tree topology, we can actually design polyno-
mial time optimal algorithms. Thus, we can apply such opti-
mal algorithms for the tree topology to the general graph topol-
ogy by extracting an appropriate tree (e.g., shortest-path tree or
near-optimal Steiner tree connecting the clients) from the gen-
eral graph. In Section V, we show through extensive simula-
tions that such a strategy of applying an optimal tree algorithm
to a general graph topology yields heuristics that deliver near-
optimal cache placement solutions.

Consider an ad hoc network tree T rooted at the node r.
Since the communication edges are bidirectional, any node in
the network could be designated as the root; thus, we assume
that the root node r is also the server for the data item. The
cache placement problem under update cost constraint in a tree
topology can be formally defined as follows.

Given the tree network T rooted at r, a data item whose
server is r, and an update cost constraint ∆, find a set of cache
nodes M ⊆ T (r ∈ M ) for storing copies of the data item, such
that the total access cost

τ (T, M ) =
∑

i∈T

ai × minj∈M dij

is minimized under the constraint that the total update cost
µ(M ) is less than ∆, where µ(M ) is the cost of minimum cost
Steiner tree over M . Note that the minimum cost Steiner tree
spanning over a set of nodes M is simply the smallest subtree
connecting the root r to all the nodes in M .

A. Dynamic Programming Algorithm

In this subsection, we present an optimal dynamic program-
ming algorithm for the above described cache placement prob-
lem under the update cost constraint in a tree topology. We
first start with some subtree notations [24] that are needed to
describe our dynamic programming algorithm.

Subtree Notations. Consider the network tree T rooted at r.
We use Tu to denote the subtree rooted at u in the tree T with
respect to the root r (i.e., the subtree rooted at u not containing
r); the tree Tr represents the entire tree T . For ease of presenta-
tion, we use Tu to also represent the set of nodes in the subtree
Tu. We use p(i) to denote the parent node of a node i in the tree
Tr . Let π(i, j) denote the unique path from node i to node j in
Tr , and dk,π(i,j) denote the distance of a node k to the closest
node on π(i, j).

Consider two nodes v and u in the network tree, where v in an
ancestor of u in Tr . See Figure 1(a). Let Lv,u be the subgraph
induced by the set of nodes on the left of and excluding the path
π(v, u) in the subtree Tv , and Rv,u be the subgraph induced by
the set of nodes on the right of and including the path π(v, u),
as shown in Figure 1(a). It is easy to see Tv can be divided into
three distinct subgraphs, viz., Lv,u, Tu, and Rv,u.

DP Algorithm. Consider a subtree Tv and a node x on the
leftmost branch of Tv . Let us assume that all the nodes on the
path π(v, x) (including v and x) have already been selected as
caches. Let τ (Tv, x, δ) denote the optimal access cost for all
the nodes in the subtree Tv under the additional update cost
constraint δ, where we do not include the cost of updating the
already selected caches on the path π(v, x). Below, we derive
a recursive equation to compute τ (Tv, x, δ), which would es-
sentially yield a dynamic programming algorithm to compute
τ (Tr , r, ∆) – the minimum value of the total access cost for the
entire network tree Tr under the update cost constraint ∆.

Let Ov be an optimal set (not including and in addition to
π(v, x)) of cache nodes in Tv that minimizes the total access
time under the additional update cost constraint δ. Let u be the
leftmost deepest node of Ov in Tv , i.e., the node u is such that
Lv,u∩ Ov = ∅ and Tu∩ Ov = {u}. It is easy to see that adding
the nodes along the path π(v, u) to the optimal solutionOv does
not increase the additional update cost incurred by Ov , but may
reduce the total access cost. Thus, without loss of generality, we
assume that the optimal solutionOv includes all the nodes along
the path π(v, u) as cache nodes, if u is the leftmost deepest node
of Ov in Tv .
Recursive Equation. As described above, consider an optimal
solution Ov that minimizes τ (Tv, x, δ), and let u be the left-
most deepest node of Ov in Tv . Note that Ov does not in-
clude the nodes on π(v, x). Based on the definition of u and
possible cache placements, a node in Lv,u will access the data
item from either the nearest node on π(v, u) or the nearest node
on π(v, x). In addition, any node in Tu will access the data
item from the cache node u, while all other nodes (i.e., the
nodes in Rv,u) will choose one of the cache nodes in Rv,u

to access the data item. See Figure 1(b). Thus, the optimal
access cost τ (Tv, x, δ) can be recursively defined in terms of
τ (Rv,u, p(u), δ − du,π(v,x)) as shown below. Below, the quan-
tity du,π(v,x) denotes the shortest distance in Tv from u to a
node on the path π(v, x) and hence, is the additional update
cost incurred in updating the caches on the path π(v, u). We
first define S(Tv , x, δ) as the set of nodes u such that the cost of
updating u is less than δ, the additional update cost constraint.
That is,

S(Tv , x, δ) = {u|u ∈ Tv ∧ (δ > du,π(v,x))}
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Fig. 1. Dynamic Programming algorithm for the tree topology.

Now, the recursive equation can be defined as follows.

τ (Tv, x, δ) =



























∑

i∈Tv

ai × di,π(v,x) if S(Tv , x, δ) = ∅

minu∈S(Tv ,x,δ)




∑

i∈Lv,u
ai × min(di,π(v,u), di,π(v,x))

+
∑

i∈Tu

aidiu

+τ (Rv,u, p(u), δ − du,π(v,x))





In the above recursive equation, the first case corresponds
to the situation when the additional update constraint δ is not
sufficient to cache the data item at any more nodes (other than
already selected cache nodes on π(v, x)). For the second case,
we compute the total (and minimum possible) access cost for
each possible value of u, the leftmost deepest additional cache
node, and pick the value of u that yields the minimum total ac-
cess cost. In particular, for a fixed u, the first term corresponds
to the total access cost of the nodes in Lv,u. Note that for a node
in Lv,u the closest cache node is either on the path πv,x or πv,u.
The second and third terms correspond to the total access time
of nodes in Tu and Rv,u respectively. Since the tree Tu is de-
void of any cache nodes, the cache node closest to any node in
Tu is u. The minimum total access cost of all the nodes in Rv,u

can be represented as τ (Rv,u, p(u), δ− du,π(v,x)), since the re-
maining available update cost is δ − du,π(v,x) where du,π(v,x))
is the update cost used up by the cache node u.

Time Complexity. Note that the above recursive equation can
also be used to compute the optimal placement of cache nodes
needed within Tv to attain the optimal cost τ (Tv, x, δ). Now,
our original problem of finding an optimal set of cache nodes
in Tr under the given update constraint ∆ can be solved by
evaluating τ (Tr , r, ∆). To evaluate τ (Tr, r, ∆), we compute
τ (Tv, x, δ) for all pairs of nodes {v, x} and all values of the up-
date cost δ in a dynamic programming fashion using the above
recursive equation. To reduce the complexity of the algorithm,
we precompute dij and di,π(j,k) for all values of i, j, and k in

Tr . If the size of the tree network T is n nodes, then the above
precomputation can be done in O(n3) time. Now, the over-
all time complexity of the dynamic programming algorithm is
O(n4∆), since there are n2∆ values to be computed and com-
putation of each value can be done in O(n2) time using the
precomputed values. Note that the quantity ∆ is bounded by n
for unweighted graphs.

IV. General Graph Topology

The tree topology assumption makes it possible to design
a polynomial-time optimal algorithm for the cache placement
problem under update cost constraint. In this subsection, we
address the cache placement problem in a general graph topol-
ogy. In the general graph topology, the cache placement prob-
lem becomes NP-hard. Thus, our focus here is on designing
polynomial-time algorithms with some performance guarantee
on the quality of the solution.

As defined before, the total update cost incurred by a set of
caches nodes is the minimum cost of an optimal Steiner tree
over the set of cache nodes and the server; we refer to this up-
date cost model as the Steiner tree update cost model. Since
the minimum-cost Steiner tree problem is NP-hard in general
graphs, we solve the cache placement problem in two steps.
First, we consider a simplified multiple-unicast update cost
model and present a greedy algorithm with a provable perfor-
mance guarantee for the simplified model. Then, we improve
our greedy algorithm based upon the more efficient Steiner tree
update cost model.

A. Multiple-Unicast Update Cost Model

In this section, we consider the cache placement problem for
general network graph under a simplified update cost model. In
particular, we consider the multiple-unicast update cost model,
wherein we model the total update cost incurred in updating a
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set of caches as the sum of the individual shortest path lengths
from the server to each cache node. More formally, the total
update cost of a set M of cache nodes is µ(M ) =

∑

i∈M dsi,
where s is the server. Using this simplified update cost model,
the cache placement problem in general graphs for update cost
constraint can be formulated as follows.

Problem Under Multiple-Unicast Model. Given an ad hoc
network graph G = (V, E), a server s with the data item, and
an update cost ∆, select a set of cache nodes M ⊆ V (s ∈ M )
to store the data item such that the total access cost τ (G, M ) =
∑

i∈V ai × minj∈Mdij is minimum, under the constraint that
the total update cost µ(M ) =

∑

i∈M dsi < ∆.
The cache placement problem with the above simplified up-

date cost model is still NP-hard, as can be easily shown by a
reduction from the k-median problem. A number of constant-
factor approximation algorithms have been proposed [9, 20] for
the k-median problem which can also be used to solve the above
cache placement problem. However, all the constant-factor ap-
proximation algorithms are based on the assumption that the
edge costs in the network graph satisfy the triangular inequal-
ity. Moreover, the proposed approximation algorithms for k-
median problem cannot be easily extended to the more efficient
Steiner tree update cost model. Below, we present a greedy al-
gorithm that returns a solution whose “access benefit” is at least
63% of the optimal benefit, where access benefit is defined as
the reduction in total access cost due to cache placements.

Greedy Algorithm. In this section, we present a greedy ap-
proximation algorithm for the cache placement problem under
the multiple-unicast update cost constraint in general graphs,
and show that it returns a solution with near-optimal reduction
in access cost. We start with defining the concept of a benefit
of a set of nodes which is important for the description of the
algorithm.

Definition 1: (Benefit of Nodes) Let A be an arbitrary set of
nodes in the sensor network. The benefit of A with respect to
an already selected set of cache nodes M , denoted as β(A, M ),
is the decrease in total access cost resulting due to the selection
of A as cache nodes. More formally, β(A, M ) = τ (G, M ) −
τ (G, M ∪ A), where τ (G, M ), as defined before, is the total
access cost of the network graph G when the set of nodes M
have been selected as caches. The absolute benefit of A denoted
by β(A) is the benefit of A with respect to an empty set, i.e.,
β(A) = β(A, ∅).

The benefit per unit update cost of A with respect to M is
β(A, M )/µ(A), where µ(A) is the total update cost of the set
A under the multiple-unicast update cost model. �

Our proposed Greedy Algorithm works as follows. Let M be
the set of caches selected at any stage. Initially, M is empty. At
each stage of the Greedy Algorithm, we add to M the node A
that has the highest benefit per unit update cost with respect to
M at that stage. This process continues until the update cost of
M reaches the allowed update cost constraint. The algorithm is
formally presented below.

Algorithm 1: Greedy Algorithm
Input: A sensor network graph V = (G, E).

Update cost constraint ∆.
Output: A set of cache nodes M .

BEGIN
M = ∅;
while (µ(M ) < ∆)

Let A be the node with maximum β(A, M )/µ(A).
M = M ∪ {A};

end while;
RETURN M ;

END. ♦

The running time of the above greedy algorithm is O(kn2),
where k is the number of iterations and n is the number of nodes
in the network. Note that the number of iterations k is bounded
by n.

Performance Guarantee of the Greedy Algorithm. We now
show that the Greedy Algorithm returns a solution that has a
benefit at least 63% of that of the optimal solution. We start
with presenting a lemma about the benefit function that leads
to the final approximation result. The following lemma shows
that the total benefit of a set of set of nodes is at most the sum
of the benefit of individual sets.

Lemma 1: Let O1, O2, ..., Om and M be arbitrary sets of
nodes. Then, β(O1 ∪ O2 . . . ∪ Om, M ) ≤

∑m

i=1 β(Oi, M ).

Proof: Without loss of generality, we prove the lemma for
m = 2. By definition of the benefit function, we have

β(O1 ∪ O2, M ) = β(O1, M ) + β(O2, M ∪ O1).

In the next paragraph, we show that

β(O2, M ∪ O1) ≤ β(O2, M ).

Thus, we get β(O1 ∪ O2, M ) ≤ β(O1, M ) + β(O2, M ).
To complete the proof, we now show that β(O2, M ) ≥

β(O2, M ∪O1) for arbitrary sets of nodes M, O1, and O2. Let
V be the set of all nodes in the given network graph, and let
d(i, M ) denote the distance (number of hops) from a node i to
the closest node in the set M . Note that for an arbitrary node i
and arbitrary sets of nodes M, O1, and O2, we have

d(i, M )−d(i, M ∪O2) ≥ d(i, M ∪O1)−d(i, M ∪O1∪O2).

To see the above, consider the following three cases viz. the
closest node to i in the set M ∪ O1 ∪ O2 is in M , or O1 or
O2. In the first case, both sides of the above equation are zero.
For the second case, the right hand side is zero while the left
hand side is positive. For the third case, d(i, M ∪ O1 ∪ O2) =
d(i, M ∪ O2) = d(i, O2) and d(i, M ) ≥ d(i, M ∪ O1).

Now, by the definition of the benefit function, we have

β(O2, M ) =
∑

i∈V

ai × (d(i, M ) − d(i, M ∪ O2))

≥
∑

i∈V

ai × (d(i, M ∪ O1) − d(i, M ∪ O1 ∪ O2))

= β(O2, M ∪ O1)

Now, we show that the Greedy Algorithm returns a solution
with near-optimal benefit. The proof technique used here is
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similar to that used in [15] for the closely related problem of
selection of views in a data warehouse.

Theorem 1: Greedy Algorithm (Algorithm 1) returns a solu-
tion M whose absolute benefit is of at least (1− 1/e) times the
absolute benefit of an optimal solution having the update cost
(under the multiple-unicast model) of at most that of M .

Proof: Let µ(M ), the total multiple-unicast update cost
of M , be equal to k. Let the optimal solution using at most k
units of multiple-unicast update cost be O.

Consider a stage when the greedy algorithm has already cho-
sen a set M = Gl occupying l units of update cost with “incre-
mental” benefits b1, b2, . . . , bl. Incremental benefit bi is defined
as the increase in benefit when the node with the ith unit of
update cost is added into the set of cache nodes. So, the ab-
solute benefit of Gl , β(Gl) =

∑l
i=1 bi. Since, the absolute

benefit of O ∪ Gl is at least that of O, we have β(O, Gl) ≥

β(O) −
∑l

i=1 bi.
Let O = {o1, o2, . . . , om}. By Lemma 1 for the sets

{oi}’s, we have β(O, Gl) ≤
∑m

i=1 β({oi}, Gl). Now,
we show by contradiction that there exists a node oh in
O such that β({oh}, Gl)/µ(oh) ≥ β(O, Gl)/k. Let us
assume that there is no such node oh in O. Then,
β({oi}, Gl) < (β(O, Gl)/k)µ(oi) for every node oi ∈
O. Thus,

∑m

i=1 β({oi}, Gl) < (β(O, Gl)/k)
∑m

i=1 µ(oi) =
β(O, Gl), which violates Lemma 1. Therefore, there exists a
node oh in O such that β({oh}, Gl)/µ(oh) ≥ β(O, Gl)/k ≥

(β(O) −
∑l

i=1 bi)/k.
Now, the benefit per unit update cost with respect to Gl of the

node C selected by the algorithm is at least that of oh, which is
at least (β(O) −

∑l

i=1 bi)/k, as shown above. Distributing the
benefit of C over each of its unit update costs equally (for the
purpose of analysis), we get bl+j ≥ (β(O) −

∑l

i=1 bi)/k, for
0 < j ≤ µ(C), where µ(C) is the update cost for C . As the
above analysis is true for each node C selected at any stage, we
have

β(O) ≤ kbj +

j−1
∑

i=1

bi for 0 < j ≤ k.

Multiplying the jth equation by (k−1
k

)k−j and adding all the

equations, we get (
∑k

i=1 bi)/β(O) ≥ 1 − (k−1
k

)k ≥ 1 − 1/e.

Since, the absolute benefit of M is β(M ) =
∑k

i=1 bi, we have
β(M )/β(O) ≥ 1 − 1/e.

B. Steiner Tree Update Cost Model

Recall that the constant factor performance guarantee of the
Greedy Algorithm described in previous section is based on the
multiple-unicast update cost model, wherein whenever the data
item in a cache nodes needs to be updated, the updated informa-
tion is transmitted along the individual shortest path between
the server and the cache node. However, the more efficient
method of updating a set of caches from the server is by us-
ing the optimal (minimum-cost) Steiner tree over the selected
cache nodes and the server. In this section, we improve the per-
formance of our Greedy Algorithm by using the more efficient

Steiner tree update cost model, wherein the total update cost in-
curred for a set of cache nodes is the cost of the optimal Steiner
tree over the set of nodes M and the server of the data item.

Since the minimum-cost Steiner tree problem is NP-hard, we
adopt the simple 2-approximation algorithm [14] for the Steiner
tree construction, which constructs a Steiner tree over a set of
nodes L by first computing a minimum spanning tree in the
“distance graph” of the set of nodes L. We use the term 2-
approximate Steiner tree to refer to the solution returned by the
2-approximation Steiner tree approximation algorithm. Based
on the notion of 2-approximate Steiner tree, we define the fol-
lowing update cost terms.

Definition 2: (Steiner Update Cost) The Steiner update cost
for a set M of cache nodes, denoted by µ′(M ), is defined as
the cost of a 2-approximate Steiner tree over the set of nodes
M and the server s.

The incremental Steiner update cost for a set A of nodes with
respect to a set of nodes M is denoted by µ′(A, M ) and is de-
fined as the increase in the cost of the 2-approximate Steiner
tree due to addition of A to M , i.e., µ′(A, M ) = µ′(A∪ M )−
µ′(M ). �

Based on the above definitions, we describe the Greedy-
Steiner Algorithm which uses the more efficient Steiner tree
update cost model as follows.

Algorithm 2: Greedy-Steiner Algorithm
Input: A network graph V = (G, E).

Update cost constraint ∆.
Output: The set of cache nodes M .
BEGIN

M = ∅;
while (µ′(M ) < ∆)

Let A be the node with maximum β(A, M )/µ′(A, M ).
M = M ∪ {A};

end while;
RETURN M ;

END. ♦

Unfortunately, there is no performance guarantee of the solu-
tion delivered by the Greedy-Steiner Algorithm. However, as
we show in Section V, the Greedy-Steiner Algorithm performs
the best among all our designed algorithms for the cache place-
ment problem under an update cost constraint.

C. Distributed Implementation

In this subsection, we design a distributed version of the cen-
tralized Greedy-Steiner Algorithm (Algorithm 2). Using sim-
ilar ideas as presented in this section, we can also design a
distributed version of the centralized Greedy Algorithm (Al-
gorithm 1). However, since the centralized Greedy-Steiner Al-
gorithm outperformed the centralized Greedy Algorithm for all
ranges of parameter values in our simulations, we present only
the distributed version of Greedy-Steiner Algorithm. As in
the case of centralized Greedy-Steiner Algorithm, we cannot
prove any performance guarantee for the presented distributed
version. However, we observe in our simulations that solution
delivered by the distributed version is very close to that deliv-
ered by the centralized Greedy-Steiner Algorithm. Here, we
assume the presence of an underlying routing protocol in the
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sensor network. Due to limited memory resources at each sen-
sor node, a proactive routing protocol [27] that builds routing
tables at each node is unlikely to be feasible. In such a case, a
location-aided routing protocol such as GPSR [22] is sufficient
for our purposes, if each node is aware of its location (either
through GPS [17] or other localization techniques [2, 7]).

Distributed Greedy-Steiner Algorithm. The distributed ver-
sion of the centralized Greedy-Steiner Algorithm consists of
rounds. During a round, each non-cache node A estimates its
benefit per unit update cost, i.e., β(A, M )/µ′(A, M ), as de-
scribed in the next paragraph. If the estimate at a node A is
maximum among all its communication neighbors, then A de-
cides to cache itself. Thus, during each round, a number of
sensor nodes may decide to cache the data item according to the
above criteria. At the end of each round, the server node gathers
information from all the newly added cache nodes, and com-
putes the Steiner tree involving all the selected cache nodes till
the round. Then, the remaining update cost (i.e., the given up-
date cost constraint minus the current update cost of the Steiner
tree involving the selected cache nodes) is broadcast by the
server to the entire network and a new round is initiated. If
there is no remaining update cost, then the server decides to dis-
card some of the recently added caches (to keep the total update
cost under the given update cost constraint), and the algorithm
terminates. The algorithm is formally presented below.

Algorithm 3: Distributed Greedy-Steiner Algorithm
Input: A network graph V = (G, E).

Update cost constraint ∆.
Output: The set of cache nodes M .
BEGIN

M = ∅;
while (µ′(M ) < ∆)

Let A be the set of nodes each of which (denoted as A)
has the maximum β(A, M )/µ′(A, M ) among its
non-cache neighbors.
M = M ∪A;

end while;
RETURN M ;

END. ♦

Estimation of µ′(A, M ). Let A be a non-cache node, and T S
A be

the shortest path tree from the server to the set of communica-
tion neighbors of A. Let C ∈ M be the cache node in T S

A that
is closest to A, and let d be the distance from A to C . In the
above Distributed Greedy-Steiner Algorithm, we estimate the
incremental Steiner update cost µ′(A, M ) to be d. The value
d can be computed in a distributed manner at the start of each
round as follows. As mentioned before, the server initiates a
new round by broadcasting a packet containing the remaining
update cost to the entire network. If we append to this packet all
the cache nodes encountered on the way, then each node should
get the set of cache nodes on the shortest path from the server
to itself. Now, to compute d, each node only needs to exchange
the above information with all its immediate neighbors.

Estimation of β(A, M ). A non-cache node A considers only its
“local” traffic to estimate β(A, M ), the benefit with respect to
an already selected set of cache nodes M . The local traffic of
A is defined as the data access requests that use A as an inter-

mediate/origin node. Thus, the local traffic of a node includes
its own data requests. We estimate the benefit of caching the
data item at A as β(A, M ) = d× t, where t is the frequency of
the local traffic observed at A and d is the distance to the near-
est cache from A (which is computed as shown in the previous
paragraph). The local traffic t can be computed if we let the nor-
mal network traffic (using only the already selected caches in
previous rounds) run for some time between successive rounds.
The data access requests of a node A during normal network
traffic between rounds can be directed to the nearest cache in
the tree T S

A as defined in the previous paragraph.

Dynamic Topologies. The sensor network topology may be
very dynamic due to node/link failures, mobility of sensor
nodes, new sensor nodes entering the network, etc. The Dis-
tributed Greedy-Steiner Algorithm can be adapted to handle
node failures if the active cache nodes periodically send a probe
to the server node, and the server initiates a new round if the
current update cost is sufficiently less than the update cost con-
straint. If the server node is static, then mobility of cache nodes
can be handled in a similar way. However, in this case, the
server node may need to discard cache nodes that have moved
too far away. The situation is more challenging if the server
node itself is mobile. In the most general scenario of mobile
server and client nodes, the server node may need to gather lat-
est location of active cache nodes’ by periodically flooding the
network (in absence of a proactive routing scheme that adapts
to mobility of nodes). New nodes entering the network auto-
matically become part of the network and play a useful role in
later rounds of the algorithm.

V. Performance Evaluation
We empirically evaluate the relative performances of the

cache placement algorithms for randomly generated sensor net-
works of various densities. As the focus of our work is to op-
timize access cost, this metric is evaluated for a wide range of
parameters – (i) network-related – such as the number of nodes
and network density, (ii) application-related – such as the num-
ber of clients accessing each data item.

We study various caching schemes (listed below) on a ran-
domly generated sensor network of 2,000 to 5,000 nodes in a
square region of 30×30. The distances are in terms of arbitrary
units. We assume all the nodes have the same transmission ra-
dius (Tr), and all edges in the network graph have unit weight.
We have varied the number of clients over a wide range. For
clarity, we first present the data for the case where number of
clients is 50% of the number of nodes, and then present a spe-
cific case with varying number of clients. All the data presented
here are representative of a very large number of experiments
we have run. Each point in a plot represents an average of five
runs, in each of which the server is randomly chosen. The ac-
cess costs are plotted against number of nodes and transmission
radius and several caching schemes are evaluated:

• No Caching – serves as a baseline case.
• Greedy Algorithm — greedy algorithm using the multiple-

unicast update cost model (Algorithm 1).
• Centralized Greedy-Steiner Algorithm — greedy algo-

rithm using the Steiner tree-based update cost model (Al-
gorithm 2).
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(a) Update cost = 25% of the near-optimal Steiner tree cost.
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(b) Update cost = 75% of the near-optimal Steiner tree cost.

Fig. 2. Access cost with varying number of nodes in the network for different update cost constraints. Transmission radius (Tr) = 2. Number of clients = 50%
of the number of nodes, and hence increases with the network size.
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(a) Update cost = 25% of the near-optimal Steiner tree cost.
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Fig. 3. Access cost with varying transmission radius (Tr) for different update cost constraints. Number of nodes = 4000, and number of clients = 2000 (50% of
number of nodes).

• Distributed Greedy-Steiner Algorithm – distributed imple-
mentation of the Greedy-Steiner Algorithm (Algorithm 3).

• DP on Shortest Path Tree of Clients – Dynamic Program-
ming algorithm (Section III-A) on the tree formed by the
shortest paths between the clients and the server.

• DP on Steiner Tree of Clients – Dynamic Programming al-
gorithm (Section III-A) on the 2-approximate Steiner tree
over the clients and the server.

Varying Network Size for Multiple Update Constraints. We
first compare the performance of the six algorithms under dif-
ferent update cost constraints with varying number of nodes
(See Figure 2). The transmission radius (Tr) is fixed at 2 (we
will vary this in a later evaluation). Instead of using absolute
cost values to describe the update cost constraint, we repre-
sent it in terms of a fraction of the cost of the near-optimal
(2-approximate [4]) Steiner tree over all clients and the server
node. Clearly, this cost represents a measure of the maximum

possible update cost. The update cost constraint is set to 25%
and 75% of the cost of the near-optimal Steiner tree. Figure 2
shows that the proposed algorithms perform significantly better
(up to an order of magnitude) than the no-caching case (note
the logarithm scale for the vertical axis). Figure 2(a) shows that
when the update cost constraint is small, all our proposed algo-
rithms perform very similarly, especially for large network size.
However, a closer look shows that Greedy Algorithm using the
multiple-unicast update cost model performs the worst among
all our five designed algorithms. The performance differences
can be seen more clearly in Figure 2(b), where the update cost
constraint is larger. In particular, the best performing algo-
rithms are the Steiner tree based centralized algorithms viz. DP
on Steiner tree of clients and Centralized Greedy-Steiner Algo-
rithm. Finally, we observe that the Distributed Greedy-Steiner
Algorithm performs quite closely to its centralized version.

Varying Transmission Radius. Figure 3 shows the effect of
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Fig. 4. Effect of the number of clients on the access cost. Tr = 2. Update
cost = 50% of the minimum Steiner tree cost. Number of nodes = 3,000.

the transmission radius (Tr) on access cost. A network of 4,000
nodes is chosen for these experiments. The transmission ra-
dius Tr is varied from 1 to 4. This range is sufficient for eval-
uation. Tr smaller than 1 disconnects the network with high
probability. On the other end, a convergence of behavior of our
caching algorithms is seen near Tr = 4, as the network is al-
ready dense enough. So, Tr is not increased any further. The to-
tal access cost of all the algorithms decreases with the increase
in Tr , since clients come closer to the server in terms of number
of hops as the network density increases. However, when the
update cost is large (75% of the near-optimal Steiner tree) as
shown in Figure 3(b), the performances of the two Steiner-tree
based centralized algorithms is almost same for all values of Tr .
Moreover, we again observe that the Distributed Greedy-Steiner
Algorithm performs very close to its centralized version.

Summary. The general trend in these two sets of plots (Fig-
ures 2 and 3) is similar. Aside from the fact that our algorithms
offer much less total access cost than the no-caching case, the
plots show that (i) the two Steiner tree-based algorithms (DP on
Steiner Tree of Clients and Centralized Greedy-Steiner Algo-
rithm) perform equally well and the best among all algorithms
except for very sparse graphs; (ii) the Greedy-Steiner Algo-
rithm provides the best overall behavior; (iii) the Distributed
Greedy-Steiner Algorithm performs very closely to its central-
ized version. Figure 4 shows the total access cost as a function
of number of clients for a network with 3,000 nodes. The gen-
eral behavior is no different from before.

VI. Conclusions

We have developed a suite of data caching techniques to sup-
port effective data dissemination in sensor networks. In partic-
ular, we have considered update cost constraint and developed
efficient algorithms to determine optimal or near-optimal cache
placements to minimize overall access cost. Minimization of
access cost leads to communication cost savings and hence, en-
ergy efficiency. The choice of update constraint also indirectly
contributes to resource efficiency. Two models have been con-
sidered – one for a tree topology, where an optimal algorithm
based on dynamic programming has been developed, and the

other for the general graph topology, which presents a NP-hard
problem where a polynomial-time approximation algorithm has
been developed. We also designed efficient distributed imple-
mentations of our centralized algorithms, empirically showed
that they performs well for random sensor networks.

Cache placement of multiple data items at different servers
can be solved as independent single data item cache placement
problems, since the update cost constraint at different servers
would presumably be independent. The cache placement prob-
lem of multiple data items at a single server is challenging, but
we can use a heuristic of allocating update costs for each item in
proportion to the sum of access frequencies. Each of the above
scenarios assumes no memory constraints at network nodes.
Since, sensor nodes are characterized by limited memory ca-
pacity and limited battery energy, we are currently addressing
the more general cache placement problem in sensor networks
under memory and update constraints for multiple data items.
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