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Abstract—In this paper, we address the spectrum allocation
problem in cellular networks under the coordinated dynamic
spectrum access (CDSA) model. In this model, a centralized
spectrum broker owns a part of the spectrum and issues dynamic
spectrum leases to competing base stations in the region it
controls. We consider a dynamic auction based approach where
the base stations bid for channels depending on their demands.
The broker allocates channels to them with an objective to
maximize the overall revenue generated subject to wireless
interference in the network.

This problem is known to be NP-hard and has been addressed
before in limited context. We address this problem in a very
generic context where (i) interference in the network is mod-
eled using pairwise and physical interference models and (ii)
base stations can bid for heterogeneous channels of different
width using generic bidding functions. We propose efficient
approximation algorithms that give near optimal solutions with
provable analytical bounds. Detailed simulation studies using
randomly generated and real base station networks show that
our algorithms scale very well for large network sizes.

I. Introduction

Usage of wireless spectrum by radio communication devices
has long been governed by governmental regulatory authorities
(e.g., FCC in USA or Ofcom in UK) that divide the spectrum
into fixed size chunks to be used strictly for specific purposes,
such as broadcast radio/TV, cellular/PCS services, wireless
LAN/PANs, public safety related communication, etc. This
allocation is very long-term and space-time invariant, andis
often based on peak usage per provider. Many recent obser-
vations have shown that such long-term static allocation of
spectrum introduces significant inefficiencies in utilization [1].
To improve spectrum utilization, there is a new policy trend[2]
to make spectrum allocation more dynamic in both spatial
and temporal dimensions and more responsive to end user
demands.

There can be several different architectures for providingdy-
namic spectrum access (DSA) that can widely vary depending
on the technological limitation and usage models. For example,
one can consider a very flexible architecture (like in [3]) where
individual nodes are envisioned to operate over a very wide
band of spectrum (e.g., 0-3 GHz range). They can perform
rapid spectrum sensing to identify spectrum holes and access
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Fig. 1. Coordinated dynamic spectrum access architecture.

the free spectrum using a completely distributed coordination
mechanism. This form of DSA (often referred to as cognitive
radio) may be suitable for ad hoc on-demand networks, but
unnecessarily complex for infrastructure based networks,such
as the commercial cellular networks used by millions of end
users worldwide. Buddhikot et al. [1], explored the application
of a centralized architecture for dynamic spectrum access
in cellular networks by introducing thecoordinated dynamic
spectrum access(CDSA) model which is much simpler and
practical compared to fully distributed architectures. Inthe
CDSA model (see Figure 1), there is a centralized entity
known as thespectrum brokerwho owns a part of the spectrum
called thecoordinated access band(CAB) and dynamically
allocates them to base stations in the region it controls. Indeed,
centralized architectures [4–6] for dynamic spectrum access
have gained a lot of interest in the research community due
to their practicality and potential impact. However, success of
the CDSA model hinges on the design of scalable and efficient
spectrum brokers. We address this issue in this paper by
designing efficient spectrum allocation algorithms that deliver
near optimal solutions.



Problem Addressed.We consider a dynamic auction based
approach to allocate spectrum to competing base stations. The
centralized spectrum broker acts as theseller and the base
stations (in the region controlled by the broker) act as the
buyersof the CAB. The spectrum broker divides the CAB into
channels (contiguous or non-contiguous blocks of frequency)
and the base stations bid for these channels based on their
spectrum demands. The base stations express their bids using
a bidding functionthat specifies the price they are willing
to pay for a given set of allocated channels. Periodically,
the spectrum broker allocates available channels to the base
stations (based on the received bids) under the “wireless
interference constraint” such that the total revenue (total price
paid by the base stations) is maximized. The above auction
based approach allows the base stations to bid according to
the spectrum demands, and the spectrum broker to maximize
the revenue generated from allocation of spectrum.

The above spectrum allocation problem is known to be
NP-hard and has been addressed before [5, 6] in limited con-
texts; e.g., [5] assumes unit-disk graphs to model interference
between base stations, piece-wise linear bidding functions,
and homogeneous set of non-overlapping channels, while [6]
considers very primitive forms of bids and interference models.
In contrast, we consider general network graphs and interfer-
ence models (pairwise and physical), overlapping channels,
and arbitrary non-complementary1 bidding functions. For the
above general context, we present approximation algorithms
that deliver allocations with near-optimal revenue. Ours is the
first work to address the above spectrum allocation problem
in such general contexts.

Paper Organization: The rest of the paper is organized as
follows. In Section II, we describe the system architecture
of the CDSA model and give details of its components. In
Section III and IV, we formally define and present efficient
approximation algorithms for the spectrum allocation problem
under pairwise and physical interference models, respectively.
In Section V, we present detailed simulation results com-
paring performance of the proposed algorithms. Section VII
concludes the paper with details about our future work.

II. System Architecture

In this section, we describe the reference system architecture
(Figure 1) of our coordinated dynamic spectrum access model
and give details of each important component of the model.

A. Spectrum Broker (Seller)

In the CDSA model, a centralized entity called thespectrum
broker [1, 7] owns and coordinates access to the CAB in
a given region and assigns short term spectrum leases to
competing wireless service providers. Regulatory authorities
like FCC can conduct one-time or long-term periodic auctions
to give spectrum licenses to the broker on a regional basis.

1A bidding function is said to benon-complementarywhen it is defined on
a set of items that do not complement each other. For example,the bid for
choosing two items together should not be more than the sum ofthe bids for
choosing the items individually.

However, in contrast to existing cellular spectrum licenses,
the spectrum broker can in turn grant spectrum leases that are
for small geographical regions (e.g., per base station) andvalid
for short durations (e.g., tens of minutes) [7]. Such a spectrum
lease gives the lessee exclusive rights to use the spectrum in
the designated region for the duration of the lease without
exceeding the maximum power limit. In this paper, we mainly
address the challenge of how to assign these dynamic spectrum
leases to various service providers and design fast and scalable
spectrum allocation algorithms.

B. Base Stations or Nodes (Buyers)

The region under the control of the spectrum broker can
have a number of base stations (also refered to asnodesin
this article) owned by different Radio Infrastructure Providers
(RIP). The Wireless Service Providers (WSP) (e.g., AT&T,
Verizon) are customers of the RIPs and use their infrastructure
to provide wireless services like voice, data etc. to end users.
Each base station in the region can be used to operate different
types of networks by the WSPs. For example, some base
stations can be used to operate a GSM network, some for
a CDMA or WCDMA network, and some for a WiMAX
network. In a more general model, multiple types of networks
can be operated on the same base station. Interference between
different base stations depends on the location of the base
stations, the frequency band used and the terrain propagation
model [8]. We assume that the spectrum broker is aware of all
the details of each base station in its region ranging from their
exact location, and other characteristics like frequency range
of operations, power levels, number of transmitters etc. Italso
knows the terrain propagation model in the region and can
estimate the level of interference between base stations given
their location and transmission power used. This knowledge
forms part of essential inputs to our spectrum allocation
algorithm.

C. Coordinated Access Band (Items Sold)

The portions of the spectrum that are highly underutilized
or unused in spatial or temporal dimension qualify as prime
candidates to be used as CAB. At the current time, good
examples are Specialized Mobile Radio (SMR) (851-854/806-
809 MHz, 861-866/816-821 MHz), public safety bands (PSB)
(764-776, 794-806 MHz), and unused broadcast UHF TV
channels (450-470 MHz,470-512 MHz (channels 14-20), 512-
698 MHz (channels 21-51), 698-806 MHz (channels 52-
69)). The CAB spectrum is to be shared between different
cellular services with macro-cellular infrastructures. Some of
the current technology examples that can use the above CAB
spectrum are 1xRTT/1xEV-DO that use 1.25 MHz channels,
GSM networks that use 200KHz channels, IS-136 legacy
TDMA that uses 30 KHz channels, W-CDMA networks that
use 5 MHz channels, WiMAX networks that can use 1.75
MHz to 20 MHz channels. Note that different technologies
often provide different forms of services. Spectrum sharing
between different services is advantageous as they providethe
benefit of statistical multiplexing – the services use spectrum



Fig. 2. Channels of different types (widths) in the CAB.

differently and have different load factors that vary largely on
a spatio-temporal scale. It is also reasonable to use existing
cellular bands (450 Mhz, 800 MHz or the 1.9 GHz band) as
part of the CAB, giving a guaranteed access to incumbent
WSPs who already hold licenses and on-demand access to
other WSPs that do not conflict with the license holders.

Since different types of networks use channels of different
widths, the spectrum broker has to make the decision on how
to divide the available spectrum in to channels of different
widths and allocate them to different base stations. In our
model, we consider the spectrum broker divides the available
spectrum into somefinite number of channels for each type
of network. This channelization can be quite general.For
example, the spectrum broker may decide to create channels
of varying width as shown in Figure 2; here, ifW is the
total width of CAB, then forith network/type,W/wi non-
overlapping channels of widthwi are created. Note that
channels of different types that overlap with each other, cannot
be assigned to the same or interfering base stations. Overlap-
ping of channels makes the spectrum allocation problem very
challenging compared to only using homogeneous channels as
assumed in prior work [5, 6, 9].

D. Spectrum Demands, Bids, and Bidding Functions

The WSPs aggregate end user demands at each of the
base station it operates and generate spectrum demands to
the broker. Spectrum demand aggregation at each base station
can be done using a predictive model based on historical
traffic measurements or from end users’ bandwidth inputs.
The above demands are then used to generate bids for various
combination of number of channels and channel types. In
general, the bids are specified using a bidding function, which
may be different for different base stations. Basically, the
bidding functionfor any base station specifies the price the
base station is willing to pay for each set of channelsC. In
general, the complexity of such a bidding function can be
exponential in the number of channels, since the number of
possible sets of channels is exponential. However, in simpler
contexts, each base station may have a separate bidding
function for each channel type, and the bidding function may

specify a price depending on thenumberof channels of that
type. In this article, we do not make any assumptions about
the complexity of the bidding function,2 unlike [5] where
the authors assume the bidding functions to be piece-wise
linear. The time complexity of our allocation algorithms is
polynomial in the size of the bidding function.

III. Spectrum Allocation under Pairwise Interference

In this section, we address the spectrum allocation problem
under the pairwise interference model. To give a formal
definition of the problem, we need to define a few terms. Later,
we design a greedy algorithm, and prove that it delivers a near-
optimal spectrum allocation. We use the termnodeto refer to
a base station.

Interference Graph (Gt). In the pairwise interference model,
wireless interference between the nodes can be modeled using
an interference graphwhich is defined as follows.

Definition 1: (Interference GraphGt.) The interference
graphGt = (Vt, Et) is an undirected graph where each vertex
represents a node and there is an edge(u, v) ∈ Et betweenu
and v if the corresponding nodes “interfere”. Two nodes are
said tointerfereif their corresponding “cells” (the surrounding
regions they “cover” or are responsible for) intersect. Note that
interfering nodes should not be allocated same or overlapping
channels.

Channel Graph (Gc). The overlapping nature of the channels
in the CAB is modeled using a channel graphGc defined
below.

Definition 2: (Channel GraphGc.) A channel graphGc =
(Vc, Ec) is an undirected graph over channels as vertices, and
there is an edge(ci, cj) between two channelsci and cj if
they overlap with each other. For example, the channel graph
corresponding to Figure 2 will have an edge betweenc23 and
c15. An empty (with no edges) channel graph means that the
set of channels are mutually non-overlapping (as in the model
of [5]).

Valid Spectrum Allocation. Informally, our spectrum alloca-
tion problem is to allocate channels to nodes so as to maximize
the total revenue (total price paid by the nodes). However, the
allocation of channels should be done without violating the
interference constraints. We formalize the above by defining
a concept of valid spectrum allocation, in terms of conflicting
node-channel pairs.

Definition 3: (Conflicting node-channel pairs.) Consider
two node-channel pairs(u, ci) and (v, cj) whereu andv are
nodes andci and cj are channels. The node-channel pairs
(u, ci) and(v, cj) are said to beconflictingif the following is
true: (i) u = v, or (u, v) is an edge in the interference graph,
and (ii) ci = cj , or (ci, cj) ∈ Ec (i.e., ci andcj overlap).

Definition 4: ((Valid) Spectrum Allocation.) Aspectrum
allocation is a set of node-channel pairs, i.e., a spectrum

2Later, we do assume the bidding function to be non-complementary, to
prove the performance guarantee of our designed algorithms.



allocation is a set

{(u, ci)|u is a node, ci is a channel}.

A spectrum allocationI is consideredvalid if no two node-
channel pairs inI conflict with each other.

Bidding Functions and Revenue. In general, a bidding
function for a nodeu gives the price thatu is willing to pay
for a set of mutually non-overlapping channels. For the sake
of simplicity, we use an equivalent notion of total revenue
generated by a given valid spectrum allocation. Below, we
formally define both the terms bidding functions and revenue.

Definition 5: (Bidding Function.) Abidding functionFu for
a nodeu is a functionFu : P (C) 7→ R, whereP (C) is the
power set of all channelsC andR is the set of real numbers.

Definition 6: (RevenueR(I)). Given the bidding functions
of nodes, therevenuegenerated by avalid spectrum allocation
I is denoted byR(I) and is defined as the sum of the prices
paid by the nodes for the channels allocated to them by the
spectrum allocationI. More formally,

R(I) =
∑

u∈Vt

Fu(Cu),

whereFu is the bidding function ofu, andCu = {ci|(u, ci) ∈
I} is the set of channels allocated tou by I. Revenue is defined
only for valid spectrum allocations.

Spectrum Allocation Problem. Based on the above defini-
tions of valid spectrum allocation and revenue, the spectrum
allocation problem under the pairwise interference model can
be defined as follows.

Definition 7: (Spectrum Allocation Problem.) Given an in-
terference graph, a channel graph, and the bidding functions
for nodes, the spectrum allocation problem is to find a valid
spectrum allocationI that maximizes the total revenueR(I).

Greedy Algorithm (GA). For the above spectrum allocation
problem, we design a greedy algorithm that constructs a valid
spectrum allocation by iteratively adding the “best” node-
channel pair at each stage. We will show that such a greedy
strategy results in a valid spectrum allocation with near-
optimal revenue. A more formal description of our Greedy
Algorithm for the spectrum allocation problem is as follows.

Let I be the valid spectrum allocation being constructed by
the algorithm. Initially,I = φ. In each iteration, the algorithm
picks a node-channel pair(u, ci) to add toI such that

• I ∪ (u, ci) remains a valid spectrum allocation, and
• R(I ∪ {(u, ci)}) − R(I), the “incremental revenue” is

maximum (among all choices of node-channel pairs).

The algorithm terminates whenI cannot be extended any
further.

If nt is the number of nodes,nc is the number of chan-
nels, and∆t and ∆c are the maximum vertex-degree in the
interference and channel graphs respectively, then the overall
time complexity of the above algorithm can be shown to be

bounded byO(ntnc∆t∆clog(ntnc)) if we use a heap data
structure to compute the maximum at each stage.

Performance Guarantee of GA. In the following theorem,
we will show that the Greedy Algorithm returns a near-
optimal valid spectrum allocation. However, to prove the
approximation bound, we need to assume a certain “non-
complementary” property of the revenue function. Given the
bidding functions, we say that the revenue satisfies thenon-
complementary propertyif the following condition holds for
any two valid spectrum allocationsI1 andI2 such thatI1∪ I2

is also a valid spectrum allocation.

max(R(I1), R(I2)) ≤ R(I1 ∪ I2) ≤ R(I1) + R(I2) (1)

Recall that revenue is only defined forvalid spectrum alloca-
tions. It is easy to see that revenue is non-complementary if
and only if the bidding functions are non-complementary. The
above non-complementary property is commonly assumed in
the auction literature [10], and signifies that no two valid spec-
trum allocations “complement” one another. More importantly,
the above property entails that the incremental revenue of any
particular node-channel pair never increases as the Greedy
Algorithm progresses (i.e., with the selection of other nodes-
channel pairs). Such a property is indeed essential for the
Greedy Algorithm to have a bounded performance guarantee.
Later in this section, we discuss scenarios where the non-
complementary property may not be satisfied, but the Greedy
Algorithm can still be modified appropriately to preserve the
performance guarantee. We now prove the approximation ratio
of the Greedy Algorithm, for non-complementary revenue
functions.

Theorem 1:For a non-complementary revenue function, the
above Greedy Algorithm (GA) returns a(δt(∆c + 1) + 1)-
approximate valid spectrum allocation. Here,δt is the size
of the maximum independent set in the neighborhood of any
node in the interference graph, and∆c is the maximum degree
of a vertex in the channel graph.
Proof: Let qi be theith node-channel pair selected by GA in
its ith iteration,ai be the corresponding incremental revenue
of qi, andm be the total number of iterations of GA for the
given input. We useIi to denote{q1, q2, ..., qi}; thus, ai =
R(Ii) − R(Ii−1). Let O be the optimal solution and letOm

be the set of node-channel pairs inO that conflict with some
pair in Im. Below, we use the notationR(I1|I2) to denote
R(I1∪I2)−R(I2) whereI1, I2 andI1∪I2 are all some valid
spectrum allocations.

We make the following three claims.

• For eacho ∈ Om, let f(o) be the smallest integer such
that o conflict with qf(o). Informally, selection ofqf(o)

by GA is the reason whyo is not considered by GA for
selection in later iterations. Note, by the greedy choice
of ql we have,

R({o}|If(o)−1) < af(o) (2)

• By definition ofδt (the maximum size of an independent
set in the neighborhood of any node in the interference



graph), it is easy to see that the maximum number of
mutually non-conflicting node-channel pairs that conflict
with a particular qi is δt(∆c + 1). Here, ∆c is the
maximum degree of any vertex in the channel graph. Thus
for any integerl, there are atmostδt(∆c+1) node-channel
pairso in Om such thatf(o) = l. Thus we have,

∑

o∈Om

af(o) ≤ δt(∆c +1)

m
∑

l=1

al = δt(∆c +1)R(Im) (3)

• Using induction onOm, it is easy to shown that:3

R(O) ≤ R(Im)+R(O−Om|Im)+
∑

o∈Om

R({o}|If(o)−1)

(4)

Without loss of generality, assume that the Greedy and op-
timal solutions are disjoint. Then, GA continues tillOm = O.
For Om = O, the above Equation 4 becomes:

R(O) ≤ R(Im) +
∑

o∈Om

R({o}|If(o)−1). (5)

Now using Equations 2 and 3 in the above Equation 5, we get

R(O) ≤ (δt(∆c + 1) + 1)R(Im),

yielding the approximation ratio.

Remarks. We make the following remarks, as special cases
of the above result.

• If each base station has a circular cell of a fixed radius,
then the the interference graph is a unit-disk graph, and
δt is at most 5 [11]. In that case, the approximation ratio
becomes5∆c + 6.

• If we consider non-overlapping channels and a unit-disk
interference graph, then the above theorem states that
GA returns a 6-approximate solution. This is a direct
generalization of the result in [5], for arbitrary revenue
functions.

Handling Complementary Bidding Functions. We have
so far assumed that the revenue function satisfies the non-
complementary property (Equation 1). However, there may be
scenarios where the bidding functions (and hence, the revenue
function) may not satisfy the non-complementary property.In
many such scenarios, our Greedy Algorithm (and similarly,
the algorithms designed in next section) can be modified to
ensure the approximation ratio.

For instance, consider the case where a node may bid for
“groups” of channels, i.e., the node is willing to pay a high
price for a group of channelsC but bids zero price for any of
the individual channels inC. More specifically, a node may
pay a price of 100 units for channels 5 and 10together, but
pays nothing for either channel 5 or 10 individually. Such a
bidding function iscomplementary. However, we can have our

3Note that the base case is whenOm = φ; in that case, the equation is
true becauseR(O) ≤ R(O ∪ Im) = R(Im) + R(O|Im). For the inductive
step, we just need to use the fact thatR({o}|Im) ≤ R({o}|If(o)−1).

Greedy Algorithm handle the above case by creatingsuper-
channelscorresponding to each such group of channels; we
also have the set of super-channels include the singleton sets
of individual channels. Then, the channel-interference graph
is constructed over super-channels as vertices, and allocation
is done in terms of such (node, super-channel) pairs. The
modified GA, which selects a (node, super-channel) pair at
each stage, still yields the same approximation ratio.

In a more general scenario of “packaged bids,” a service
provider (owning multiple nodes) may bid for a channelc1

at a nodeu1 only if a nodeu2 is also allocated a channel
c2. In essence, a service provider may pay certain price for a
groupof node-channel pairs, but none for any individual pair.
For the above case, the bidding functions cannot be defined
independently for each node, but must be defined for each
service provider (i.e., for the group of nodes owned by it).
However, the revenue function can be easily computed from
such bidding functions. But, the resulting revenue function
is no longer non-complementary. Fortunately, our Greedy
Algorithm can still be appropriately modified (by having it
allocated in terms of groups of node-channel pairs) to handle
the above case, while ensuring its approximation ratio.

For explicitly represented bidding functions (where a price
is specified foreachsuper-channel or package), GA still runs
in time which is polynomial in the size of the input (including
the representation of the bidding functions).

IV. Spectrum Allocation under Physical Interference

In this section, we use the physical interference model to
capture interference between base stations in the network,
and present two approximation alogrithms for the spectrum
allocation problem in this context. We start by redefining
the interference model and the concept of valid spectrum
allocation.

Interference Model. Here, we assume that each node operates
using a fixed transmission powerP . In the physical interfer-
ence model [12], a successful reception at a distanced from a
node is possible, if the SINR at the receiver is greater than a
thresholdβ. More formally, a successful reception for a node
u is possible at a pointp if and only if,

P/dα
u

N +
∑

v∈V ′ P/dα
v

≥ β (6)

whereV ′ is the set of other nodes operating on the same (or
overlapping) channel asu, dx is the distance of the pointp
from a nodex, N is the background noise, andα is the path
loss exponent based on the terrain propagation model.

Communication Radius (r). The communication radiusr
is the maximum distance from a nodeu within which we
want the SINR from u to be greater thanβ. Essentially,
the above is based on the stipulation that a node’s “cell”
(surrounding region covered by a node) is a circular region
of radiusr around the node. In our context, the value ofr can
be arbitrarily large (but finite), since the approximation ratio
and time complexity of our designed algorithms is independent



of r. Thus,the concept of communication radius must not be
looked upon as an assumption.

Valid Spectrum Allocation. In the context of physical inter-
ference model, a spectrum allocationI is considered valid if
it satisfies the following two conditions:

• For any nodeu, the set{ci|(u, ci) ∈ I} of channels allo-
cated tou consists of mutually non-overlapping channels.

• For a node-channel pair(u, ci) in I, let Vui denote
the set of nodes that have been allocated inI some
channel cj that overlaps withci. More formally, let
Vui = {v|(v, cj) ∈ I and cj = ci or (ci, cj) ∈ Ec}.
Now, for I to be valid, for every(u, ci) in I and every
point p within a distance ofr from u, SINR atp due tou
should be greater thanβ; i.e, the following should hold:

P/dα
u

N +
∑

v∈Vui
P/dα

v

≥ β

wheredx is the distance of nodex from the pointp.

Spectrum Allocation Problem.The spectrum allocation prob-
lem under the physical interference model is as follows. Given
a set of nodes, the channel graph, and the bidding functions,
the spectrum allocation problem is to select a valid spectrum
allocationI that maximizesR(I), the total revenue generated
by I.

In the following paragraphs, we describe two greedy al-
gorithms, viz. GAHT and GACP, for the spectrum allocation
problem under physical interference model. The performance
of both the algorithms depend on the interference model
parameters (α and β). Our simulations results (presented in
Section V) show that GAHT generates higher revenue than
GACP for lowerα and higherβ values. In other cases, GACP
generates higher revenue compared to GAHT. An appropriate
choice between the two algorithms can be made depending on
the actual values ofα andβ.

Greedy Algorithm Based on Hexagonal Tiling (GAHT).
The basic idea of GAHT is as follows. We start with parti-
tioning the entire region into hexagonal subregions of certain
length, and color them using 3 colors such that no two
adjacent subregions have the same color. See Figure 3. Then,
we constructthree valid spectrum allocations, one for each
color. For a particular colork, we consider onlyk-colored
hexagonal subregions and pick node-channel pairs iteratively
(as in GA). However, we impose the condition that in any
hexagonal subregion, only one node is assigned any particular
channel; this condition ensures the validity of the spectrum
allocation (as shown in Lemma 1). Finally, we pick the best
of the three spectrum allocations (one for each color) thus
constructed. We will prove that the above algorithm yields a
near-optimal spectrum allocation (Theorem 2). A more formal
description of GAHT is as follows.

• Partition the entire region into hexagonal subregions of
side µr each, wherer is the communication radius and

Fig. 3. Hexagonal subregions colored using three colors such that adjacent
subregions have different colors. The red-colored subregions around the
subregion containing nodeu have been partitioned into hierarchical levels; the
numbers denote the hierarchical level. Atlth level, there are6l red-colored
subregions.

µ is defined as:

µ = 4 α

√

2β(3α − 5)

3(α − 1)(α − 2)
(7)

• Next, color the subregions using three colors, such that
adjacent subregions are colored differently. See Figure 3.

• For each colork, consider only thek-colored subregions
and construct a spectrum allocationIk as below.

– Initially Ik = φ.
– Pick a node-channel pair(u, ci) with the highest

incremental revenue to add toIk such that (i)u
lies in ak-colored subregion, (ii) No(v, cj) already
exists inIk, such thatv is in the same subregion as
u andci overlaps with (or is same as)cj .

– Terminate whenIk cannot be extended any further.

• From the three spectrum allocationsI1, I2, andI3 thus
constructed, pick the one that has the highest revenue and
return it as the solution.

We now prove that each of the three spectrum allocations
constructed by GAHT, the above algorithm, are valid. Intu-
itively, the spectrum allocations are valid because the total
interference at any pointp due to “far away” (in non-adjacent
subregions) interferers is less than the signal received due to
a nodeu in the subregion ofp.

Lemma 1:GAHT returns a valid spectrum allocation.
Proof: Consider a nodeu in a subregionA of color k.
As shown in Figure 3, partition allk-colored subregions
surroundingA into hierarchical levels. The first level contains
6 subregions and each such subregionB is at a distance ofµr
from A; here, by distance between two subregions we mean
that the distance betweenanypoint in B andanypoint in A is
at leastµr. Similarly, the second level contains12 subregions
at a distance of at least2

√
3µr from A. In general, thelth level

contains6l subregions at a distance of at least
√

3
2 (3l − 2)µr

from A.



Now consider a pointp within a distance ofr from u. Let
u be operating on a channelci. Recall that GAHT does not
assign overlapping channels to any single node or to any two
nodes in the same subregion. Thus, the total signal receivedat
p due to all nodes possibly operating inci or an overlapping
channel in thek-colored subregions other thanA is at most:

∞
∑

l=1

6l
P

(((
√

3
2 (3l − 2))µ − 1)r)α

<
2P (3α − 5)

3(α − 1)(α − 2)(1
4µr)α

Thus, ignoring the noise, the SINR of channelci at p due to
u is at least:

P
rα

2P (3α−5)

3(α−1)(α−2)( 1
4 µr)α

= β.

The above follows from the value ofµ in Equation 7.
We now show that no valid spectrum allocation (in partic-

ular, the optimal) can have more thanq base stations within a
subregion allocated the same channel, whereq is:

q =
(2µ − 1)α

β
(8)

Lemma 2:No particular channel can be assigned to more
thanq nodes in any hexagonal subregion, by a valid spectrum
allocation.
Proof: Assume the contrary, i.e., a valid spectrum allocation
assigns a particular channel toq +1 nodes in same hexagonal
subregion. Now consider a pointp at a distance ofr from one
of these nodesu. Then, the SINR atp due tou is at most:

P
rα

qP
((2µ−1)r)α

< β.

The above lemma can be used to show that GAHT returns
a constant-factor approximate solution.

Theorem 2:GAHT returns a valid spectrum allocation
whose revenue is at least1/(3(q(∆c +1)+1)) of the optimal
revenue, where∆c is the maximum degree of a vertex in the
channel graph andq is as defined above in Equation 8.

The proof of the above theorem is similar to that of
Theorem 1, and is given in [13].

Greedy Physical Based on Circular Packing (GACP).We
now present another algorithm (GACP) whose approximation
proof is based on a circular packing argument. In short, GACP
works by first constructing a “virtual” interference graph over
the nodes. Two nodes are connected by a simple edge if the
distance between them is less thanµ′ · r, where r is the
communication radius andµ′ is as defined below.

µ′ = α−2

√

2α+2(3α − 4)β

( α
√

β + 1)2(α − 1)(α − 2)
(9)

Then, GACP works exactly as the GA for the pairwise inter-
ference model, except that GACP uses the above constructed

virtual interference graph as the pairwise interference graph.
It can be shown that the resulting spectrum allocation is valid
in the context ofphysicalinterference model, and its revenue
is at least1/(q′(∆c +1)+1) of the optimal revenue possible,
where∆c is the maximum degree of a vertex in the channel
graph andq′ is as defined below.

q′ =
4µ′2 + 4µ′( α

√
β + 1) + ( α

√
β + 1)2

( α
√

β + 1)2
(10)

Theorem 3:GACP returns a valid spectrum allocation un-
der physical interference model whose revenue is at least
1/(q′(∆c + 1) + 1) of the optimal revenue.
The validity of spectrum allocation can be proved using a
circle-packing technique following a similar argument as in
the proof of Lemma 1. To prove the approximation ratio, we
need to show that the size of the maximum independent set
in the neighborhood of any node in the “virtual” interference
graph used in the GACP algorithm isq′. We can show this
using a simple packing argument. Consider a circle of radius
µ′r around any base station. Then the maximum number of
non-overlapping circles of radius( α

√
β+1)/2 that overlap with

this circle is given by Equation 10. A detailed version of the
proof for the above theorem is given in [13].

V. Simulation

In this section, we present detailed simulation results com-
paring the performance of the proposed algorithms. First, we
compare the performance of the two greedy algorithms under
the physical interference model (GAHT and GACP) for dif-
ferent network topologies and interference model parameters
(α and β). Next we examine how well a spectrum alloca-
tion returned by the greedy algorithm (GA) under the pair-
wise interference model work under the physical interference
model. We start by describing the simulation parameters and
then present the results.

Network Topology. In order to examine the impact of network
topology, we consider two types of networks.

• Random Networks:We consider a fixed area of1000 ×
1000 units and randomly place base stations within this
area. We vary the network density by changing the
number of base stations from 100 to 1500. We assume a
communication radiusr of 25 units in this scenario.

• Real Networks:We use locations of real cellular base
stations availalbe in FCC public GIS database [14] and
choose base stations deployed in 4 different regions of
increasing size and number of base stations.

– R1 - 843 base stations in the state of MA
– R2 - 2412 base stations in New England area (MA,

ME, NH, VT, RI, CT)
– R3 - 4467 base stations in New England and New

York
– R4 - 8618 base stations in North East USA (New

England, NY, NJ, PA)
Here the regions are progressively supersets of the previ-
ous ones. We assume the communication radiusr to be
25 meters in this scenario.
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Fig. 4. Comparison of overall revenue generated by GAHT and GACP algorithms for various network topologies.

CAB. We consider a CAB with a bandwidth of 300 MHz and
assume that each base station in the region can operate one
or more of the following types of networks: GSM (200 KHz),
CDMA (1.25 Mhz) and W-CDMA (5 Mhz). We assume the
CAB is divided in to channels of different types as described
in Figure 2 and so we have 1500 GSM channels, 240 CDMA
channels and 60 W-CDMA channels in total.

Bidding Functions. We generate bidding functions for each
base station as follows. First, we randomly assign the number
(between one and three) of types of channels/networks oper-
ated at the base station. For each network type, we generate a
separate bidding function as follows. Letm be the number of
channels in the given network type. We generatem random
numbers from a predetermine range; let the generated numbers
in the non-increasing order be:{p1, p2, p3, . . . , pm}. Now, for
any set of channels of sizek, we assign the bidding price
to be

∑i=k
i=1 pi. Such a bidding function essentially gives

higher value to channels that are allocated earlier. In terms
of price ranges, for GSM networks, we generate prices from
the interval 1–20, for CDMA networks we use the interval 1–
125 and for W-CDMA networks we use the interval of 1–500.
The intervals are chosen as above so that channels that have
higher width (e.g. W-CDMA compared to GSM) are valued
at a higher price by each base station.

A. Comparing GAHT and GACP

In our first set of experiments, we compare the performance
of the two greedy algorithms under the physical interference
model. In Figure 4, we show the revenue generated using the
two algorithms for different network sizes in both random and
real network topologies for two different values ofα and
a fixed value ofβ = 5 dB. For the random network case
(see Figures 4(a) and 4(b)), we see that in both algorithms,
the revenue generated increases with the network size. This
is mainly due to the non-increasing nature of the bidding
functions. So with more nodes, the spectrum broker tries to
allocate channels to nodes that are willing to pay more (those
nodes with less number of channels allocated) and thereby
generating higher revenue. We also see when the network size
is small (about 100), the difference between revenue generated
by both algorithms is small. As the network size increases, the
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difference becomes increasingly high. We see similar behavior
in the real network scenarios (see Figures 4(c) and 4(d)). Itis
interesting to note that whenα = 2.5, the revenue generated by
GACP is much poorer than that of GAHT, and whenα = 4 the
scenario is exactly opposite. This is mainly due to dependence
of size of the hexagonal subregion with sideµr (used in
GAHT) and the circular region of radiusµ′r (used in GACP)
on α andβ values.

To understand this behaviour clearly, we show the values of
µ andµ′ for various values ofα andβ in Figure 5. We see that
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µ′ is very large compared toµ for small α. Since we assume
nodes within a distance ofµ′r interfere with each other in
GACP, the revenue due to channel reuse is much less. The
variation ofµ andµ′ due toβ is relatively small compared to
the variation due toα. As α increases andβ decreases,µ and
µ′ become small and more channel reuse is possible.

We show the revenue generated in a 1000 node random
network and a real network (R1) with varying values ofα
and β in Figure 6. We see that whenα < 3.5 and β >
7.5 dB, GAHT generates higher revenue compared to GACP
and it is the opposite in other cases. We conclude that the
performance of both the greedy algorithms mainly depends on
the interference model parameters and an appropriate choice
can be made depending on the actual values ofα andβ.

B. Comparing GA and GACP

In this section, we compare the performance of the greedy
algorithm (GA) under the pairwise interference model and
GACP. Note that both algorithms are based on the same tech-
nique except the way the interference graphs are constructed.
In GA, two nodes interfere when they are within a distance
d. In GACP, two nodes interfere when they are within a
distanceµ′r. Assumed = δr for someδ. In order to do a fair
comparison between GA and GACP, we need to make sure that
the spectrum allocation obtained using GA for some value of
δr is actually “valid” in the physical interference model. We
do this in the following manner. We increase the value ofδ
from 2 to 8 and compute a spectrum allocation using GA. For
each value ofδ, we use the spectrum allocation obtained to
test whether the SINR at any point within a distance ofr from
any base station is less thanβ. Since it is computationally hard
to do this test in the infinitely large number of points in the
region, we only check on 8 selected point on the circumference
of the circle of radiusr around each base station.4 If the
SINR constraint is satisfied for all base stations, then we use
the revenue generated by this spectrum allocation to compare
with the revenue generated by the GACP algorithm. Otherwise
we increase the value ofδ and repeat the above procedure.
We repeat this test for different values ofα for a 1000 node
random network and one real network (R1). The value ofβ
is fixed at 5 dB in all experiments.

In Figure 7(a) and 7(b), we show the values ofδ compared
to µ′ when the spectrum allocation obtained using GA is
valid under the physical interference model. In the case of
random networks,δ is smaller thanµ′ by about 17% on
average. In the case of real networks, we see its is smaller
by about 26% on average. Note that whenδ is same asµ′, the
revenue generated by GA and GACP should be same as both
algorithms are similar. Due to the smaller value ofδ, GA can
exploit much higher spatial reuse of spectrum and generate
more revenue. The revenue generated by both the algorithms
are shown in Figures 7(c) and 7(d). The difference between
the two algorithms is higher in the case of real networks due

4It can be shown easily that if the SINR constraint is satisfiedon the
circumference of the circle, then it will be satisfied at any point within the
circle.
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to the larger difference betweenδ and µ′ compared to the
random network case. This clearly demonstrates that while
the pairwise interference model is simplistic, it can be used
to generate efficient spectrum allocations (with an appropriate
choice ofd) which are valid in the real physical interference
model. But in order to prove good theoretical properties forthe
spectrum allocation algorithm under the physical interference
model, we need to use the definition ofµ′.

VI. Related Work

Traditional auctions. Auctions have been traditionally used
for efficiently allocating scarce resources [15–17]. The auc-
tioneer can maximize his revenue by selling the goods to
buyers who are willing to pay the most. At the same time, the
buyers also get benefited as auctions tend to assign items to
buyers who need them the most based on their valuation. Some
examples where auction systems have been successfully used
include energy markets [16], treasury bonds [17], and selling
commercial goods online [15]. In general, the goods on sale
can either be a single item [10], bundle of multiple units of
single items [10, 18] or bundles of multiple units of multi-
items [19, 20] and the complexity of the auction mechanisms
increase in this order.

The spectrum allocation problem in the CDSA model differs
from traditional periodic sealed bid multi-unit auctions in the
following two important aspects. First, in a conventional multi-
unit auction, every buyer competes with every other buyers
participating in the auction. In the problem considered in
this work, there is a network of base stations, and each base
station competes only with other base stations with which they
interfere. This increases the complexity of the auction problem
significantly as the way in which the base stations interfere
depends on external constraints that include complexitiessuch
as radio propagation model, frequency used and transceiver
design etc. While traditional multi-unit auctions can be solved
optimally in polynomial time, this class of auction problems
are known to be NP-hard even when specific restricted class
of bidding functions [5] are used. The second major difference
is the overlapping nature of channels of different types which
puts an additional constraint in assigning channels to base

stations. In traditional auctions, any item can be assignedto
any buyer that is not true here.

Spectrum allocation without revenue models.Spectrum al-
location algorithms, both centralized [7, 21] and distributed [9,
22] in the context of dynamic spectrum access networks have
been proposed previously without any revenue model. In these
works, the authors propose algorithms to allocate spectrum
to different nodes thereby optimizing one or more network
properties like network interference or network capacity.All
these algorithms only consider pairwise interference models
and do not consider heterogeneous channels of varying widths
that can overlap. In context of ad hoc networks, Yuan et
al. in [23] propose centralized and distributed allocationof
variable width frequency blocks to nodes in the network in a
time-slotted fashion. Our work differs from theirs in two main
aspects. We have a general revenue model associated with the
channels and try to maximize the overall revenue while they
optimize a proportionally fair throughput metric. The second
difference is that we propose efficient algorithms using both
pairwise and physical interference models while they use only
pairwise interference model. In [24], the authors propose a
spectrum allocation algorithm intergrated with interference-
aware statistical admission control. Here also, they do notcon-
sider any revenue model and use only pair-wise interference
model to capture interference between access points.

Revenue maximizing spectrum allocation.Two previous
works that are directly related to our work are [6] and [5].
In [6], Sengupta et al. formulate the spectrum allocation
problem as a modification of the knapsack problem. Here they
assume a very primitive revenue model where they consider a
constant price for each channel and specify spectrum demands
as a fixed number of channels. The spectrum broker should
either allocate all channels demanded or it cannot allocateany
channel. This kind of spectrum demand is too restrictive to
support efficient allocation. Also, they only consider homoge-
neous type of channels. In [5], Gandhi et al. propose solutions
for the revenue maximizing spectrum allocation problem under
pair-wise interference model. Here, the authors only consider a
specific class of revenue function which is piece-wise linear in
nature and use only homogeneous channels. Their algorithms



cannot be extended to work for any general class of revenue
functions and heterogeneous types of overlapping channels
as we consider here. If we consider homogeneous channels
only, our approximation is still better considering the fact we
can solve the problem for any general revenue function. In
addition, we address the spectrum allocation problem under
physical interference model.

VII. Conclusion and Future Work

In this paper, we proposed efficient approximation algo-
rithms that give near optimal solutions for the spectrum
allocation problem in cellular network under the coordinated
dynamic spectrum access model. We addressed the spectrum
allocation problem in a very general context where (i) in-
terference in the network is modeled using pairwise and
physical interference models and (ii) base stations can bid
for heterogeneous channels of different width using generic
bidding functions. Ours is the first work to propose efficient
solutions in such general context for this problem. For the
specific case of non-overlapping channels and a unit-disk
interference graph, our greedy algorithm GA returns a 6-
approximate solution which is a direct generalization of the
results in [5] for arbitrary revenue functions. Our simulations
studies show that the proposed algorithms scale very well for
large network topologies. Among the two algorithms proposed
for the physical interference model, we see their performance
primarily depends on the interference model parameters and
the appropriate algorithm can be chosen based on the actual
value ofα andβ. We also see that the simple pairwise inter-
ference model can be used to come up with efficient spectrum
allocations that are valid under the physical interferencemodel
by appropriately choosing the interference region around the
base stations.

As part of our future work, we plan to develop techniques
to model the dynamics of real spectrum demands and bids
using realistic population data and user calling patterns and
study the scalability of our approaches. We also plan to address
the problem of joint power and spectrum allocation in this
context.
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