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Abstract—In this paper, we address the spectrum allocation R AT e g CAPE Spectrum block
problem in cellular networks under the coordinated dynamic (::rtlt?e:is:my
spectrum access (CDSA) model. In this model, a centralized guous)
spectrum broker owns a part of the spectrum and issues dynarni
spectrum leases to competing base stations in the region it Spectrum Broker Seller
controls. We consider a dynamic auction based approach wher ‘Centralized Serve
the base stations bid for channels depending on their demarsd
The broker allocates channels to them with an objective to
maximize the overall revenue generated subject to wireless

interference in the network. Nutwork Ts;’_'::t“'m Demandy
This problem is known to be NP-hard and has been addressed Bagkhanl from ) )

before in limited context. We address this problem in a very Mﬁ“g‘“ﬁ Market clearing!

generic context where (i) interference in the network is mod e ﬁ A Spectonn sliocation

eled using pairwise and physical interference models and ii . e

base stations can bid for heterogeneous channels of differe CDMA~ 2 "&Aﬂm =

width using generic bidding functions. We propose efficient 4

approximation algorithms that give near optimal solutions with s _ : i 2

provable analytical bounds. Detailed simulation studies sing GSM.& =~ ° = Sl i =

randomly generated and real base station networks show that - T = - ——

our algorithms scale very well for large network sizes. TR A1+ Buyers

g Y ° copc Ty e
[. Introduction

Usage of wireless spectrum by radio communication devices
has long been governed by governmental regulatory auigrit
(e.g., FCC in USA or Ofcom in UK) that divide the spectrum
into fixed size chunks to be used strictly for specific purgpse
such as broadcast radio/TV, cellular/PCS services, vaiselghe free spectrum using a completely distributed coordinat
LAN/PANSs, public safety related communication, etc. Thismmechanism. This form of DSA (often referred to as cognitive
allocation is very long-term and space-time invariant, @d radio) may be suitable for ad hoc on-demand networks, but
often based on peak usage per provider. Many recent obsernecessarily complex for infrastructure based netwaksh
vations have shown that such long-term static allocation af the commercial cellular networks used by millions of end
spectrum introduces significant inefficiencies in utiliaat[1]. users worldwide. Buddhikot et al. [1], explored the applma
To improve spectrum utilization, there is a new policy tr¢2[d of a centralized architecture for dynamic spectrum access
to make spectrum allocation more dynamic in both spatied cellular networks by introducing theoordinated dynamic
and temporal dimensions and more responsive to end uspectrum acces@CDSA) model which is much simpler and
demands. practical compared to fully distributed architectures.tie

There can be several different architectures for providytxg CDSA model (see Figure 1), there is a centralized entity
namic spectrum access (DSA) that can widely vary dependikigown as thespectrum brokewho owns a part of the spectrum
on the technological limitation and usage models. For exampcalled thecoordinated access ban@CAB) and dynamically
one can consider a very flexible architecture (like in [3])endn  allocates them to base stations in the region it controtiedd,
individual nodes are envisioned to operate over a very widentralized architectures [4—6] for dynamic spectrum sgce
band of spectrum (e.g., 0-3 GHz range). They can perfolmave gained a lot of interest in the research community due
rapid spectrum sensing to identify spectrum holes and accés their practicality and potential impact. However, siescef

the CDSA model hinges on the design of scalable and efficient
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CNS-0435348. near optimal solutions.

Fig. 1. Coordinated dynamic spectrum access architecture.



Problem Addressed.We consider a dynamic auction basediowever, in contrast to existing cellular spectrum license
approach to allocate spectrum to competing base statidres. The spectrum broker can in turn grant spectrum leases that ar
centralized spectrum broker acts as #wler and the base for small geographical regions (e.g., per base stationyahd
stations (in the region controlled by the broker) act as tHier short durations (e.g., tens of minutes) [7]. Such a spett
buyersof the CAB. The spectrum broker divides the CAB intdease gives the lessee exclusive rights to use the spectrum i
channels (contiguous or non-contiguous blocks of frequendhe designated region for the duration of the lease without
and the base stations bid for these channels based on tezteeding the maximum power limit. In this paper, we mainly
spectrum demands. The base stations express their bids usitddress the challenge of how to assign these dynamic spectru
a bidding functionthat specifies the price they are willingleases to various service providers and design fast andldeal
to pay for a given set of allocated channels. Periodicallgpectrum allocation algorithms.
the spectrum broker allocates available channels to the bas _
stations (based on the received bids) under the “wireldds Base Stations or Nodes (Buyers)
interference constraint” such that the total revenue l(fmiae The region under the control of the spectrum broker can
paid by the base stations) is maximized. The above auctibave a number of base stations (also refered tocesin
based approach allows the base stations to bid accordinghis article) owned by different Radio Infrastructure Hdmrs
the spectrum demands, and the spectrum broker to maxim{®P). The Wireless Service Providers (WSP) (e.g., AT&T,
the revenue generated from allocation of spectrum. Verizon) are customers of the RIPs and use their infrasiract
The above spectrum allocation problem is known to ke provide wireless services like voice, data etc. to endsuse
NP-hard and has been addressed before [5, 6] in limited cdtach base station in the region can be used to operate differe
texts; e.g., [5] assumes unit-disk graphs to model interfee types of networks by the WSPs. For example, some base
between base stations, piece-wise linear bidding funstiostations can be used to operate a GSM network, some for
and homogeneous set of non-overlapping channels, while 5]CDMA or WCDMA network, and some for a WiMAX
considers very primitive forms of bids and interference gled network. In a more general model, multiple types of networks
In contrast, we consider general network graphs and imterfean be operated on the same base station. Interferencedpetwe
ence models (pairwise and physical), overlapping channedéfferent base stations depends on the location of the base
and arbitrary non-complementariidding functions. For the stations, the frequency band used and the terrain propagati
above general context, we present approximation algosithmmodel [8]. We assume that the spectrum broker is aware of all
that deliver allocations with near-optimal revenue. Ogrthe the details of each base station in its region ranging froair th
first work to address the above spectrum allocation problesract location, and other characteristics like frequeranyge
in such general contexts. of operations, power levels, number of transmitters etalsib
o . . knows the terrain propagation model in the region and can
Paper Organization: The rest of the paper is organized &2stimate the level of interference between base statioms gi

follows. In Section I, we describe the system architecturg . . S :
y "Reir location and transmission power used. This knowledge

of the CDSA model and give details of its components. I%rms art of essential inputs to our spectrum allocation
Section Il and 1V, we formally define and present efficient P P P

approximation algorithms for the spectrum allocation peab algorithm.
under pairwise and physical interference models, respgti c. Coordinated Access Band (Items Sold)
In Section V, we present detailed simulation results com-

paring performance of the proposed algorithms. Section VII The porti.ons of.the spectrum th"flt are .highly u.nderutili.zed
concludes the paper with details about our future work. or unused in spatial or temporal dimension qualify as prime

candidates to be used as CAB. At the current time, good
I1. System Architecture examples are Specialized Mobile Radio (SMR) (851-854/806-

In this section, we describe the reference system architect809 MHz, 861-866/816-821 MHz), public safety bands (PSB)

(Figure 1) of our coordinated dynamic spectrum access modép4-776, 794-806 MHz), and unused broadcast UHF TV
and give details of each important component of the modefhannels (450-470 MHz,470-512 MHz (channels 14-20), 512-
698 MHz (channels 21-51), 698-806 MHz (channels 52-
A. Spectrum Broker (Seller) 69)). The CAB spectrum is to be shared between different
In the CDSA model, a centralized entity called gpectrum cellular services with macro-cellular infrastructuresnt of
broker [1,7] owns and coordinates access to the CAB iine current technology examples that can use the above CAB
a given region and assigns short term spectrum leasesspectrum are 1xRTT/1XEV-DO that use 1.25 MHz channels,
competing wireless service providers. Regulatory autiesri GSM networks that use 200KHz channels, 1S-136 legacy
like FCC can conduct one-time or long-term periodic auctiomDMA that uses 30 KHz channels, W-CDMA networks that
to give spectrum licenses to the broker on a regional badise 5 MHz channels, WiIMAX networks that can use 1.75
MHz to 20 MHz channels. Note that different technologies
LA bidding function is said to baon-complementarwhen it is defined on  gften provide different forms of services. Spectrum stgrin
a set of items that do not complement each other. For exartiebid for . . . ) .
choosing two items together should not be more than the sutimedbids for betwe_en d'ﬁer_em serwce; 1S ?‘dvantageous_ as they prawide
choosing the items individually. benefit of statistical multiplexing — the services use speat



. specify a price depending on tlmeimberof channels of that
Coordinated Access Band type. In this article, we do not make any assumptions about
o o the complexity of the bidding functioh,unlike [5] where

o L the authors assume the bidding functions to be piece-wise
Cl (312 . B . . . . . Clk :"I"ypel linear. The time complexity of our allocation algorithms is
" L polynomial in the size of the bidding function.

Ca Cx - Cok, ;.'Typez I11. Spectrum Allocation under Pairwise Interference

T i

3 In this section, we address the spectrum allocation problem
3 ; under the pairwise interference model. To give a formal

C C C Type | definition of the problem, we need to define a few terms. Later,
1 2 3 ype : ; . .
we design a greedy algorithm, and prove that it delivers &nea
optimal spectrum allocation. We use the temodeto refer to
Fig. 2. Channels of different types (widths) in the CAB. a base station.

Interference Graph (Gy). In the pairwise interference model,
differently and have different load factors that vary ldygen wireless interference between the nodes can be modelegl usin
a spatio-temporal scale. It is also reasonable to use myistan interference graptwhich is defined as follows.
cellular bands (450 Mhz, 800 MHz or the 1.9 GHz band) as Definition 1: (Interference GraphG;.) The interference
part of the CAB, giving a guaranteed access to incumbegaphG; = (V;, E;) is an undirected graph where each vertex
WSPs who already hold licenses and on-demand accessepresents a node and there is an edge) € E; betweenu
other WSPs that do not conflict with the license holders. andw if the corresponding nodes “interfere”. Two nodes are

Since different types of networks use channels of differesaid tointerfereif their corresponding “cells” (the surrounding
widths, the spectrum broker has to make the decision on hoggions they “cover” or are responsible for) intersect.é\ibiat
to divide the available spectrum in to channels of differemterfering nodes should not be allocated same or ovenappi
widths and allocate them to different base stations. In oaohannels. O
model, we consider the spectrum broker divides the availabl

spectrum into soménite number of channels for each type,Channel Graph (G.). The overlapping nature of the channels

of network. This channelization can be quite genersior N the CAB is modeled using a channel graph defined
example, the spectrum broker may decide to create chan W _

of varying width as shown in Figure 2; here, i’ is the _ Definition 2: (Channel Grapft:..) A channel graptt. =

total width of CAB, then forit" network/type,IW/w; non- (VC,EC_) is an undirected graph over channels as vertu:gs, and
overlapping channels of widths; are created. Note thatthere is an edgéc;,c;) between two channels; and¢; if
channels of different types that overlap with each otheroa ey overlap with each other. For example, the channel graph
be assigned to the same or interfering base stations. @verig®responding to Figure 2 will have an edge betwegnand

ping of channels makes the spectrum allocation problem vépy: AN émpty (with no edges) channel graph means that the

challenging compared to only using homogeneous channel$§5©f channels are mutually non-overlapping (as in the inode
assumed in prior work [5, 6, 9]. of [3]). 0

Valid Spectrum Allocation. Informally, our spectrum alloca-
tion problem is to allocate channels to nodes so as to magimiz
The WSPs aggregate end user demands at each of e otal revenue (total price paid by the nodes). Howeter, t
base station it operates and generate spectrum demandgitation of channels should be done without violating the
the broker. Spectrum demand aggregation at each basenstafigerference constraints. We formalize the above by deginin

can be done using a predictive model based on historicaboncept of valid spectrum allocation, in terms of confiigti
traffic measurements or from end users’ bandwidth inpul$yge-channel pairs.

The above demands are then used to generate bids for varioySefinition 3: (Conflicting node-channel pairs.) Consider

combination qf number o_f_ chan_nels ar_wd _channel_types._mo node-channel pair&u, ¢;) and (v, ¢;) whereu andv are
general, th_e bids are sp_ecmed using a bld_dlng funcponcbvmnodes and; and ¢; are channels. The node-channel pairs
may be different for different base stations. Basicallye thy,, ..y and (v, c;) are said to beonflictingif the following is
bidding functionfor any base station specifies the price thg, . (i) u = v, or (u,v) is an edge in the interference graph
base station is willing to pay for each set of chanr€lsin ;4 (i) ¢; — c;- or (;i ¢;) € B, (16, c: ande, overlap). O ,
general, the complexity of such a bidding function can be Definition 4: ((Valid) Spectrum Allocation.) Aspectrum

exponential in the number of channels, since the numberaﬂfocation is a set of node-channel pairs, i.e., a spectrum
possible sets of channels is exponential. However, in @mpl ’ ’

Come_'XtS' each base station may have. a_separatg b'dd'nagater, we do assume the bidding function to be non-complésngnto
function for each channel type, and the bidding function mayove the performance guarantee of our designed algorithms

D. Spectrum Demands, Bids, and Bidding Functions



allocation is a set bounded byO(nin.AiAclog(nin.)) if we use a heap data

) ) structure to compute the maximum at each stage.
{(u,¢;)|u is a node, ¢; is a channel}.

Performance Guarantee of GA.In the following theorem,
we will show that the Greedy Algorithm returns a near-
optimal valid spectrum allocation. However, to prove the
Bidding Functions and Revenue.In general, a bidding approximation bound, we need to assume a certain “non-
function for a nodeu gives the price that: is willing to pay complementary” property of the revenue function. Given the
for a set of mutually non-overlapping channels. For the sakédding functions, we say that the revenue satisfiesnite-

of simplicity, we use an equivalent notion of total revenugomplementary propertif the following condition holds for
generated by a given valid spectrum allocation. Below, wany two valid spectrum allocation’s and/; such that/; U I
formally define both the terms bidding functions and revenuié also a valid spectrum allocation.

a nodeu s a functiondh : P(C) - K. whereP(C) 4 the XU R < R(LU 1) < R + R() - (1)
power set of all channel§ andR is the set of real numbers.Recall that revenue is only defined fealid spectrum alloca-

O tions. It is easy to see that revenue is non-complementary if
Definition 6: (RevenueR(I)). Given the bidding functions and only if the bidding functions are non-complementarye Th
of nodes, theevenuegenerated by &alid spectrum allocation above non-complementary property is commonly assumed in
I is denoted byR(I) and is defined as the sum of the pricethe auction literature [10], and signifies that no two vajieés
paid by the nodes for the channels allocated to them by ttram allocations “complement” one another. More imporant

A spectrum allocatior is consideredvalid if no two node-
channel pairs i conflict with each other. O

spectrum allocatiord. More formally, the above property entails that the incremental revenueywf a
particular node-channel pair never increases as the Greedy
R(I) = Z Fu(Cu), Algorithm progresses (i.e., with the selection of other emd
ueVy

channel pairs). Such a property is indeed essential for the
whereF, is the bidding function of;, andC,, = {¢;|(u,¢;) € Greedy Algorithm to have a bounded performance guarantee.
I} is the set of channels allocateditdoy I. Revenue is defined Later in this section, we discuss scenarios where the non-
only for valid spectrum allocations. O complementary property may not be satisfied, but the Greedy

Spectrum Allocation Problem. Based on the above defini-Algorlthm can still be modified appropriately to preserve th

. . . erformance guarantee. We now prove the approximation rati
tions of valid spectrum allocation and revenue, the speattr .

. Lo of the Greedy Algorithm, for non-complementary revenue
allocation problem under the pairwise interference model c

! functions.
be defined as follows. Theorem 1:For a non-complementary revenue function, the
Definition 7: (Spectrum Allocation Problem.) Given an in- ‘ P y '

terference graph, a channel graph, and the bidding furmtiozb()\r/gxi(r;nraetzdzaﬁ(ljgZmehcrt?u(rfpz;)lI(gigiirgr? é-f'te(gc i: 1%: sli)z-e
for nodes, the spectrum allocation problem is to find a vali P b ' '

spectrum allocatiod that maximizes the total revenu®([). ° the_ maximum independent set n the nelghborhood of any
- node in the interference graph, aid is the maximum degree

of a vertex in the channel graph.
Greedy Algorithm (GA). For the above spectrum allocationProof: Let ¢; be thei?” node-channel pair selected by GA in
problem, we design a greedy algorithm that constructs a vailis i*" iteration,a; be the corresponding incremental revenue
spectrum allocation by iteratively adding the “best” nodesf ¢;, andm be the total number of iterations of GA for the
channel pair at each stage. We will show that such a greegiyen input. We usd; to denote{q1, g2, ..., ¢; }; thus,a; =
strategy results in a valid spectrum allocation with neaR(I;) — R([;—1). Let O be the optimal solution and le?,,
optimal revenue. A more formal description of our Greedye the set of node-channel pairsdnthat conflict with some
Algorithm for the spectrum allocation problem is as followspair in I,,,. Below, we use the notatio®(/;|I>) to denote
Let I be the valid spectrum allocation being constructed big(7; UI,) — R(I2) wherel;, I, and; U, are all some valid
the algorithm. Initially,/ = ¢. In each iteration, the algorithm spectrum allocations.

picks a node-channel paft, ¢;) to add tol such that We make the following three claims.
e U (u,c;) remains a valid spectrum allocation, and « For eacho € O,,, let f(o) be the smallest integer such
e R(IU{(u,¢;)}) — R(I), the “incremental revenue” is that o conflict with g;(,). Informally, selection ofgy )
maximum (among all choices of node-channel pairs). by GA is the reason why is not considered by GA for
The algorithm terminates whefi cannot be extended any  Selection in later iterations. Note, by the greedy choice
further. of ¢ we have,
If n, is the number of nodes;. is the number of chan- R({O}Uf(o)—l) < as0) @)

nels, andA,; and A. are the maximum vertex-degree in the
interference and channel graphs respectively, then thelbve « By definition ofd; (the maximum size of an independent
time complexity of the above algorithm can be shown to be set in the neighborhood of any node in the interference



graph), it is easy to see that the maximum number &reedy Algorithm handle the above case by creasoper-
mutually non-conflicting node-channel pairs that confliathannelscorresponding to each such group of channels; we
with a particularg; is 0,(A. + 1). Here, A. is the also have the set of super-channels include the singletsn se
maximum degree of any vertex in the channel graph. Tho$ individual channels. Then, the channel-interferencapbr
for any integet, there are atmost (A.+1) node-channel is constructed over super-channels as vertices, and atloca
pairso in O, such thatf (o) = [. Thus we have, is done in terms of such (node, super-channel) pairs. The
m modified GA, which selects a (node, super-channel) pair at
Z (o) < 0r(Ac+1) Z‘” = 6:(A.+1)R(I,,) (3) each stage, still yields the same approximation ratio.
0€Om =1 In a more general scenario of “packaged bids,” a service
provider (owning multiple nodes) may bid for a chanmel
at a nodeu; only if a nodeus is also allocated a channel
R(O) < R(Iy)+R(O—Om| L)+ Z R{o}f)-1) € In essence, a service provider may pay certain price for a
' group of node-channel pairs, but none for any individual pair.
(4) For the above case, the bidding functions cannot be defined

Without loss of generality, assume that the Greedy and dpdependently for each node, but must be defined for each
timal solutions are disjoint. Then, GA continues ll,, = 0. Service provider (i.e., for the group of nodes owned by it).

« Using induction on0O,,,, it is easy to shown thét:

0€0.,

For O,, = O, the above Equation 4 becomes: However, the revenue function can be easily computed from
such bidding functions. But, the resulting revenue functio

R(0) < R(Im) + Y R({o}If(o)-1)- (5) is no longer non-complementary. Fortunately, our Greedy
0€0m Algorithm can still be appropriately modified (by having it

Now using Equations 2 and 3 in the above Equation 5, we gétocated in terms of groups of node-channel pairs) to rendl
the above case, while ensuring its approximation ratio.

R(O) < (0u(Ac +1) + D)R(1), For explicitly represented bidding functions (where a @ric
is specified foreachsuper-channel or package), GA still runs
in time which is polynomial in the size of the input (includin
the representation of the bidding functions).
Remarks. We make the following remarks, as special cases
of the above result.
« If each base station has a circular cell of a fixed radius, In this section, we use the physical interference model to
then the the interference graph is a unit-disk graph, ag@pture interference between base stations in the network,
8 is at most 5 [11]. In that case, the approximation ratidnd present two approximation alogrithms for the spectrum
becomes$A, + 6. allocation problem in this context. We start by redefining
« If we consider non-overlapping channels and a unit-digke interference model and the concept of valid spectrum
interference graph, then the above theorem states tRH@cation.

GA retums a 6-approximate solution. This is a diréGhiq ference Model. Here, we assume that each node operates
generalization of the result in [5], for arbitrary revenugging 5 fixed transmission powgt. In the physical interfer-
functions. ence model [12], a successful reception at a distanftem a

Handling Complementary Bidding Functions. We have node is possible, if the SINR at the receiver is greater than a
so far assumed that the revenue function satisfies the ngH€sholds. More formally, a successful reception for a node
complementary property (Equation 1). However, there may HelS POssible at a poing if and only if,

scenarios where the bidding functions (and hence, the ueven P/d

function) may not satisfy the non-complementary propérty. N+ .oy P/dg = (6)

many such scenarios, our Greedy Algorithm (and similarly, . )
the algorithms designed in next section) can be modified ¥1ereV’ is the set of other nodes operating on the same (or

ensure the approximation ratio. overlapping) channel as, d, is the distance of the point
For instance, consider the case where a node may bid f#M @ nodez, N is the background noise, andis the path
“groups” of channels, i.e., the node is willing to pay a highPSS exponent based on the terrain propagation model.

price for a group of channelS but bids zero price for any of communication Radius ¢). The communication radius
the individual channels ir’. More specifically, a node may s the maximum distance from a node within which we
pay a price of 100 units for channels 5 and tb@ether but \yant the SINR fromu to be greater thar3. Essentially,
pays nothing for either channel 5 or 10 individually. Such ghe above is based on the stipulation that a node’s “cell”
bidding function iscomplementaryHowever, we can have our (syrrounding region covered by a node) is a circular region

3 _ _ ~_of radiusr around the node. In our context, the value-afan
Note that the base case is whéh, = ¢; in that case, the equation is . . .. . . L
true becausR(0) < R(O U Im) = R(Im) 4+ R(O|In). For the inductive 0€ arbitrarily large (but finite), since the approximatiatio

step, we just need to use the fact tt{o}|7m) < R({o}|I}(0)—1)- and time complexity of our designed algorithms is indep@nde

yielding the approximation ratio.

IV. Spectrum Allocation under Physical Interference




of r. Thus,the concept of communication radius must not be
looked upon as an assumption

Valid Spectrum Allocation. In the context of physical inter-
ference model, a spectrum allocatiéris considered valid if
it satisfies the following two conditions:

« For any nodey, the set{¢;|(u, c;) € I} of channels allo-
cated tou consists of mutually non-overlapping channels.

o For a node-channel paifu,c;) in I, let V,; denote
the set of nodes that have been allocated/ isome
channel¢; that overlaps withc;. More formally, let
Vui = {v|(v,¢;) € T andc¢; = ¢; or (¢,¢j) € E.}.
Now, for I to be valid, for every(u,¢;) in I and every
pointp within a distance of from «, SINR atp due tou

. ; . Fig. 3. Hexagonal subregions colored using three colorb that adjacent
should be greater thatk, i.e, the foIIowmg should hold: subregions have different colors. The red-colored subrsgiaround the

P/da subregion containing node have been partitioned into hierarchical levels; the
u > numbers denote the hierarchical level. At level, there aresl red-colored
N+ ZUEVM P/dg N subregions.

whered,. is the distance of node from the pointp.

Spectrum Allocation Problem. The spectrum allocation prob- pis defined as:

lem under the physical interference model is as followse@iv
a set of nodes, the channel graph, and the bidding functions, w=4
the spectrum allocation problem is to select a valid spettru
allocation/ that maximizesi(I), the total revenue generated , Next, color the subregions using three colors, such that
by 1. adjacent subregions are colored differently. See Figure 3.
« For each colot, consider only thé:-colored subregions
In the following paragraphs, we describe two greedy al- and construct a spectrum allocatiéh as below.

of _268(Ba—5)

3a—1)(a—2) 0

gorithms, viz. GAHT and GACP, for the spectrum allocation — Initially I* = 6.

problem under physical interference model. The perforranc — Pick a node-channel paifu, ¢;) with the highest
of both the algorithms depend on the interference model incremental revenue to add tf such that (i)u
parameters¢ and ). Our simulations results (presented in lies in ak-colored subregion, (ii) Ngv, ¢;) already
Section V) show that GAHT generates higher revenue than exists inI*, such thaw is in the same subregion as
GACP for lowera and highers values. In other cases, GACP u andc; overlaps with (or is same as).

generates higher revenue compared to GAHT. An appropriate  _ Terminate when’* cannot be extended any further.

choice between the two algorithms can be made depending on

i 2 3
the actual values of and g, From the three spectrum allocations, 12, andI® thus

constructed, pick the one that has the highest revenue and
Greedy Algorithm Based on Hexagonal Tiling (GAHT). return it as the solution.
The basic idea of GAHT is as follows. We start with parti- We now prove that each of the three spectrum allocations
tioning the entire region into hexagonal subregions ofaiert constructed by GAHT, the above algorithm, are valid. Intu-
length, and color them using 3 colors such that no twgvely, the spectrum allocations are valid because thal tot
adjacent subregions have the same color. See Figure 3. Therference at any point due to “far away” (in non-adjacent
we constructthree valid spectrum allocations, one for eaclsubregions) interferers is less than the signal receivedtdu
color. For a particular colok, we consider onlyk-colored a nodeu in the subregion op.
hexagonal subregions and pick node-channel pairs itefgtiv. | emma 1: GAHT returns a valid spectrum allocation.
(as in GA). However, we impose the condition that in anproof: Consider a nodeu in a subregionA of color k.
hexagonal subregion, only one node is assigned any paticlds shown in Figure 3, partition alk-colored subregions
channel; this condition ensures the validity of the speutrusyrroundingA into hierarchical levels. The first level contains
allocation (as shown in Lemma 1). Finally, we pick the begtsubregions and each such subregiis at a distance ofir
of the three spectrum allocations (One for each COlor) th%m A; here, by distance between two Subregions we mean
constructed. We will prove that the above algorithm yleldS tAat the distance betweaﬂmypoint inB andanypoint inAis
near-optimal spectrum allocation (Theorem 2). A more fdrmgt |eastyr. Similarly, the second level containg subregions
description of GAHT is as follows. at a distance of at leagt/3.r from A. In general, thé'” level

« Partition the entire region into hexagonal subregions abntains6l subregions at a distance of at Iez—)@(i&l —2)ur

side ur each, where' is the communication radius andfrom A.



Now consider a poinp within a distance of- from u. Let virtual interference graph as the pairwise interferenaplr
u be operating on a channel. Recall that GAHT does not It can be shown that the resulting spectrum allocation iglval
assign overlapping channels to any single node or to any tivothe context ofphysicalinterference model, and its revenue
nodes in the same subregion. Thus, the total signal recaiveds at leastl /(¢'(A.+ 1) + 1) of the optimal revenue possible,
p due to all nodes possibly operating ¢nor an overlapping whereA. is the maximum degree of a vertex in the channel
channel in thek-colored subregions other thahis at most: graph andy’ is as defined below.

> P A2+ 4 (/B4 1) + (VB +1)?
> 6l ¢ = (10)
S (CEBI—2)u— e (vB+1)° |
Theorem 3:GACP returns a valid spectrum allocation un-
2P(3a —5) der physical interference model whose revenue is at least
3(a—1)(a—2)(fur)> 1/(¢'(A. + 1) + 1) of the optimal revenue. O

The validity of spectrum allocation can be proved using a

Thus, ignoring the noise, the SINR of chaneglt p due to circle-packing technique following a similar argument as i

uis atleast il the proof of Lemma 1. To prove the approximation ratio, we
Qp(ga_5) =p. need to show that the size of the maximum independent set
3(a—1)(a—2)(Lpr)= in the neighborhood of any node in the “virtual” interferenc

The above follows from the value ¢f in Equation 7. graph used in the GACP algorithm ig. We can show this
We now show that no valid spectrum allocation (in particd!Sing & simple packing argument. Consider a circle of radius
) . ;
ular, the optimal) can have more tharbase stations within a /' @round any base station. Then the maximum number of

subregion allocated the same channel, wheie non-overlapping circles of radiysy/5+1)/2 that overlap with
@ n this circle is given by Equation 10. A detailed version of the
- [e%

_ 8) proof for the above theorem is given in [13].

B

Lemma 2:No particular channel can be assigned to more

thang nodes in any hexagonal subregion, by a valid SpeCtrLW&ring the performance of the proposed algorithms. First, w

aIIoca}tlon. . . . compare the performance of the two greedy algorithms under
Proof: Assume the contrary, i.e., a valid spectrum aIIocatlottﬂe physical interference model (GAHT and GACP) for dif-

assigns a particular c_hannel(j(_al-l nodgs In same he‘xagOnalferent network topologies and interference model paramsete
subregion. Now consider a poiptat a distance of from one (o and 3). Next we examine how well a spectrum alloca-

of these nodes. Then, the SINR ap due tou is at most: ., etyrned by the greedy algorithm (GA) under the pair-

V. Simulation
In this section, we present detailed simulation results-com

Tia wise interference model work under the physical interfeeen
—gp < B. model. We start by describing the simulation parameters and
(@u=1)r)* then present the results.

] . .

The above lemma can be used to show that GAHT returN€twork Topology. In order to examine the impact of network
a constant-factor approximate solution. topology, we consider two types of networks.

Theorem 2:GAHT returns a valid spectrum allocation * Random NetworksWe consider a fixed area abo0 x
whose revenue is at least (3(g(A.+ 1) + 1)) of the optimal 1000 units and randomly place base stations within this
revenue, where\, is the maximum degree of a vertex in the ~ area. We vary the network density by changing the
channel graph and is as defined above in Equation 8. O number Of base StationS from 100 to 1500. We assume a

The proof of the above theorem is similar to that of ~Communication radius of 25 units in this scenario.
Theorem 1, and is given in [13]. » Real Networks:We use locations of real cellular base

) ) ) stations availalbe in FCC public GIS database [14] and
Greedy Physical Based on Circular Packing (GACP)We choose base stations deployed in 4 different regions of

now present another algorithm (GACP) whose approximation  jncreasing size and number of base stations.

proof is based on a circular packing argument. In short, GACP R1 - 843 base stations in the state of MA

works by first constructing a “virtual” interference grapbeo R2 - 2412 base stations in New England area (MA,
the nodes. Two nodes are connected by a simple edge if the ME, NH, VT, RI, CT)

distance between them is less thah- r, wherer is the

R3 - 4467 base stations in New England and New

communication radius and’ is as defined below. York
. 20+2(30 — 4)3 o - Féﬁg]aigl?\lgaai sFt)it)ions in North East USA (New
(VB+1)*(a = 1)(a = 2) e are.

Here the regions are progressively supersets of the previ-
Then, GACP works exactly as the GA for the pairwise inter- ous ones. We assume the communication radits be
ference model, except that GACP uses the above constructed 25 meters in this scenario.
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Fig. 4. Comparison of overall revenue generated by GAHT aA€® algorithms for various network topologies.

CAB. We consider a CAB with a bandwidth of 300 MHz and
assume that each base station in the region can operate one
or more of the following types of networks: GSM (200 KHz),
CDMA (1.25 Mhz) and W-CDMA (5 Mhz). We assume the
CAB is divided in to channels of different types as described
in Figure 2 and so we have 1500 GSM channels, 240 CDMA
channels and 60 W-CDMA channels in total.

Bidding Functions. We generate bidding functions for each
base station as follows. First, we randomly assign the numbe
(between one and three) of types of channels/networks oper-
ated at the base station. For each network type, we generate a
separate bidding function as follows. Let be the number of
channels in the given network type. We generategandom
numbers from a predetermine range; let the generated nember
in the non-increasing order bép1, p2, ps, . . ., pm }. Now, for

any set of channels of size, we assign the bidding price

to be sz p;. Such a bidding function essentially gives

(a) p used in GAHT algorithm

30000

higher value to channels that are allocated earlier. In germ 30000 ooe
of price ranges, for GSM networks, we generate prices from 20000 o
the interval 1-20, for CDMA networks we use the interval 1— 19000 S000
125 and for W-CDMA networks we use the interval of 1-500. 0

The intervals are chosen as above so that channels that have
higher width (e.g. W-CDMA compared to GSM) are valued
at a higher price by each base station.

A. Comparing GAHT and GACP

In our first set of experiments, we compare the performance
of the two greedy algorithms under the physical interfeeenc
model. In Figure 4, we show the revenue generated using the
two algorithms for different network sizes in both randond an
real network topologies for two different values of and
a fixed value of3 = 5 dB. For the random network casedifference becomes increasingly high. We see similar biehav
(see Figures 4(a) and 4(b)), we see that in both algorithnis the real network scenarios (see Figures 4(c) and 4(dig. It
the revenue generated increases with the network size. Tihieresting to note that when= 2.5, the revenue generated by
is mainly due to the non-increasing nature of the biddingACP is much poorer than that of GAHT, and when- 4 the
functions. So with more nodes, the spectrum broker tries $o6enario is exactly opposite. This is mainly due to depeoglen
allocate channels to nodes that are willing to pay more ghosf size of the hexagonal subregion with sige (used in
nodes with less number of channels allocated) and thereBAHT) and the circular region of radiysr (used in GACP)
generating higher revenue. We also see when the network sifex and 3 values.
is small (about 100), the difference between revenue gtkra To understand this behaviour clearly, we show the values of
by both algorithms is small. As the network size increadess, tu andy’ for various values ofr and3 in Figure 5. We see that

(b) 1’ used in GACP algorithm

Fig. 5. w andp’ values for different values of and 3.
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Fig. 6. Comparison of overall revenue generated by GAHT aWCiB
algorithms for varyinga and 3 values.

1 is very large compared tp for small .. Since we assume
nodes within a distance gf’r interfere with each other in
GACP, the revenue due to channel reuse is much less. The
variation of , and ' due tog is relatively small compared to
the variation due tev. As « increases ang decreases; and

1/ become small and more channel reuse is possible.

We show the revenue generated in a 1000 node random
network and a real network (R1) with varying values ®f
and 3 in Figure 6. We see that when < 3.5 and 5 >
7.5 dB, GAHT generates higher revenue compared to GACP
and it is the opposite in other cases. We conclude that the
performance of both the greedy algorithms mainly depends on
the interference model parameters and an appropriate echoic
can be made depending on the actual values ahd 5.

B. Comparing GA and GACP

In this section, we compare the performance of the greedy
algorithm (GA) under the pairwise interference model and
GACP. Note that both algorithms are based on the same tech-
nigue except the way the interference graphs are constructe
In GA, two nodes interfere when they are within a distance
d. In GACP, two nodes interfere when they are within a
distancey/r. Assumed = §r for somed. In order to do a fair
comparison between GA and GACP, we need to make sure that
the spectrum allocation obtained using GA for some value of
or is actually “valid” in the physical interference model. We
do this in the following manner. We increase the valué’ of
from 2 to 8 and compute a spectrum allocation using GA. For
each value ofy, we use the spectrum allocation obtained to
test whether the SINR at any point within a distance éfom
any base station is less th@nSince it is computationally hard
to do this test in the infinitely large number of points in the
region, we only check on 8 selected point on the circumfexenc
of the circle of radiusr around each base statidnf the
SINR constraint is satisfied for all base stations, then wee us
the revenue generated by this spectrum allocation to canpar
with the revenue generated by the GACP algorithm. Otherwise
we increase the value of and repeat the above procedure.
We repeat this test for different values @ffor a 1000 node
random network and one real network (R1). The valuesof
is fixed at 5 dB in all experiments.

In Figure 7(a) and 7(b), we show the valuessafompared
to / when the spectrum allocation obtained using GA is
valid under the physical interference model. In the case of
random networksy is smaller thany’ by about 17% on
average. In the case of real networks, we see its is smaller
by about 26% on average. Note that whieis same ag/’, the
revenue generated by GA and GACP should be same as both
algorithms are similar. Due to the smaller valuejpfGA can
exploit much higher spatial reuse of spectrum and generate
more revenue. The revenue generated by both the algorithms
are shown in Figures 7(c) and 7(d). The difference between
the two algorithms is higher in the case of real networks due

4It can be shown easily that if the SINR constraint is satisfied the
circumference of the circle, then it will be satisfied at aminp within the
circle.
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to the larger difference betweehand i/ compared to the stations. In traditional auctions, any item can be assigoed
random network case. This clearly demonstrates that whday buyer that is not true here.
the pairwise interference model is simplistic, it can beduse

- : - X Spectrum allocation without revenue modelsSpectrum al-
to generate efficient spectrum allocations (with an appater _ . . o
g P ( P éocanon algorithms, both centralized [7, 21] and disttéuli[9,

22] in the context of dynamic spectrum access networks have
been proposed previously without any revenue model. Irethes
works, the authors propose algorithms to allocate spectrum
to different nodes thereby optimizing one or more network
VI. Related Work properties like network interference or network capadity.
these algorithms only consider pairwise interference rnsode
nd do not consider heterogeneous channels of varying svidth
hat can overlap. In context of ad hoc networks, Yuan et
in [23] propose centralized and distributed allocatafn

model. But in order to prove good theoretical propertiestier
spectrum allocation algorithm under the physical intenfiee
model, we need to use the definition @f

Traditional auctions. Auctions have been traditionally use
for efficiently allocating scarce resources [15-17]. The-au |
tioneer can maximize his revenue by selling the goods \?/I%riable width frequency blocks to nodes in the network in a
Euyers who are W|II|ng_to pay the mOSt' At the same “”.‘e' tr}ﬁ“ne-slotted fashion. Our work differs from theirs in two ima

uyers also get benefited as auctions tend tp assign |temsa§ ects. We have a general revenue model associated with the
buyers who need them the most based on their valuation. Soa)] nels and try to maximize the overall revenue while they
examples where auction systems have been successfully u&ﬁﬂq

. -optimize a proportionally fair throughput metric. The sedo
include energy market§ [16], treasury bonds [17], andreglli ifference is that we propose efficient algorithms usinghbot
commercial goods online [15]. In general, the goods on s

: . . ) . Sirwise and physical interference models while they udg on
can e|ther be a single item [10], bundlelof mul'_uple units “pairwise interference model. In [24], the authors propose a
single items [10, 18] or bundles of multiple units of multi-

" 19 201 and th lexity of th i hani spectrum allocation algorithm intergrated with interfere-
'ems [ ’ ]_an € complexity ot the auction mechaniSMy, » e statistical admission control. Here also, they daanot
increase in this order.

. . ... _Sider any revenue model and use only pair-wise interference
The spgptrum allchtlon probler_n n th? CD,SA mpdel d'ﬁerﬁmdel to capture interference between access points.

from traditional periodic sealed bid multi-unit auctiomsthe

following two important aspects. First, in a conventionaillthn Revenue maximizing spectrum allocation.Two previous

unit auction, every buyer competes with every other buyensorks that are directly related to our work are [6] and [5].

participating in the auction. In the problem considered iim [6], Sengupta et al. formulate the spectrum allocation

this work, there is a network of base stations, and each baseblem as a modification of the knapsack problem. Here they

station competes only with other base stations with whiely thassume a very primitive revenue model where they consider a

interfere. This increases the complexity of the auctiorbfgnm constant price for each channel and specify spectrum desnand

significantly as the way in which the base stations interfees a fixed number of channels. The spectrum broker should

depends on external constraints that include complexstieb either allocate all channels demanded or it cannot allcaaye

as radio propagation model, frequency used and transceigbannel. This kind of spectrum demand is too restrictive to

design etc. While traditional multi-unit auctions can béved support efficient allocation. Also, they only consider hgeao

optimally in polynomial time, this class of auction problemneous type of channels. In [5], Gandhi et al. propose saiatio

are known to be NP-hard even when specific restricted cldss the revenue maximizing spectrum allocation problemasnd

of bidding functions [5] are used. The second major diffesen pair-wise interference model. Here, the authors only a®rsa

is the overlapping nature of channels of different typescivhi specific class of revenue function which is piece-wise linea

puts an additional constraint in assigning channels to basa&ure and use only homogeneous channels. Their algorithms



cannot be extended to work for any general class of revenyg M. M. Buddhikot and K. Ryan, “Spectrum Management in Gtioated

functions and heterogeneous types of overlapping channels
as we consider here. If we consider homogeneous chann@@

only, our approximation is still better considering thetfae

can solve the problem for any general revenue function. 11!
addition, we address the spectrum allocation problem under

physical interference model.

VII. Conclusion and Future Work

In this paper, we proposed efficient approximation algo-
rithms that give near optimal solutions for the spectrui2]
allocation problem in cellular network under the coordauht

Dynamic Spectrum Access Based Cellular Networks,Pioceedings
of IEEE DySPANBaltimore,Maryland, November 2005.

D. Tse and P. Viswanathiundamentals of Wireless Communication
Cambridge University Press, 2005.

L. Cao and H. Zheng, “On the Efficiency and Complexity oBibuted
Spectrum Allocation,” inSecond International Conference on Cognitive
Radio Oriented Wireless Networks and Communications (CROW
COM), August 2007.

V. Krishna, Auction Theory Academic Press, 2002.

M. V. Marathe, H. Breu, H. B. Hunt Illl, S. S. Ravi, and D. J.
Rosenkrantz, “Simple Heuristics for Unit Disk Graphd\etworks
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P. Gupta and P. R. Kumar, “The Capacity of Wireless Neks IEEE
Transactions on Information Thearyol. 46, no. 2, 2000.

3] A. P. Subramanian, M. Al-Ayyoub, H. Gupta, S. R. Das, aid M.

dynamic spectrum access model. We addressed the spectrumpuddhikot, “Near-Optimal Dynamic Spectrum Allocation inekiilar

allocation problem in a very general context where (i) in-

terference in the network is modeled using pairwise arE£14]
physical interference models and (ii) base stations can bid
for heterogeneous channels of different width using genetis]
bidding functions. Ours is the first work to propose efficiert®!
solutions in such general context for this problem. For the
specific case of non-overlapping channels and a unit-digk]
interference graph, our greedy algorithm GA returns a ?1-8]
approximate solution which is a direct generalization o th

results in [5] for arbitrary revenue functions. Our simidas

studies show that the proposed algorithms scale very well o
large network topologies. Among the two algorithms projose

for the physical interference model, we see their perfocean21]
primarily depends on the interference model parameters and

Networks,” Computer Science Department, Stony Brook Usitg
Stony Brook, NY, Tech. Rep., August 2008.

FCC Geographic Information Systems. [Online]. Avai&a
http://wireless.fcc.gov/geographic/

EBay, http://www.ebay.com.

S. Borenstein, “The Trouble with Electricity Marketsinderstanding
California’s Restructuring DisasterJournal of Economic Perspectives
vol. 16, no. 1, 2002.

K. Binmore and J. Swierzbinski, “Treasury auctions:iform or dis-
criminatory?”Review of Economic Desigwol. 5, no. 4, December 2000.
EBay - Multi Unit Auctions, http://pages.ebay.comifiibuy/buyer-
multiple.html.

P. Cramton, Y. Shoham, and R. Steinbé&gmbinatorial Auctions MIT
Press, 2006.

K. Binmore and J. Swierzbinski, “Combinatorial AuatiocA Survey,”
INFORMS Journal on Computingol. 3, 2003.

A. P. Subramanian, H. Gupta, S. R. Das, and M. M. Buddhikgast
Spectrum Allocation in Coordinated Dynamic Spectrum AscBased
Cellular Networks,” inSecond |IEEE International Symposium on New

the appropriate algorithm can be chosen based on the actual pirections in Dynamic Spectrum Access Networks (DySPANplin,

value ofa and 3. We also see that the simple pairwise inter-
ference model can be used to come up with efficient spectr

allocations that are valid under the physical interferenoelel

by appropriately choosing the interference region arouned t[23

base stations.

As part of our future work, we plan to develop techniques
to model the dynamics of real spectrum demands and bid4l
using realistic population data and user calling pattems a
study the scalability of our approaches. We also plan toesdr
the problem of joint power and spectrum allocation in this

context.
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