
Incremental Maintenance of Aggregate and Outerjoin

Expressions

Himanshu Gupta∗

SUNY, Stony Brook

hgupta@cs.sunysb.edu

Inderpal Singh Mumick

Kirusa Inc.

mumick@mumick.com

Abstract

Views stored in a data warehouse need to be kept current. As recomputing the views is very expensive,

incremental maintenance algorithms are required. Over recent years, several incremental maintenance

algorithms have been proposed. None of the proposed algorithms handle the general case of relational

expressions involving aggregate and outerjoin operators efficiently.

In this article, we develop the change-table technique for incrementally maintaining general view expres-

sions involving relational and aggregate operators. We show that the change-table technique outperforms

the previously proposed techniques by orders of magnitude. The developed framework easily extends

to efficiently maintaining view expressions containing outerjoin operators. We prove that the developed

change-table technique is an optimal incremental maintenance scheme for a given view expression tree

under some reasonable assumptions.

1 Introduction

In a data warehouse, views are computed and stored in the database to allow efficient querying and analysis

of the data. These views stored at the data warehouse are known as materialized views. In order to keep

the views in the data warehouse up to date, it is necessary to maintain the materialized views in response

to the changes at the sources. The view can be either recomputed from scratch, or incrementally maintained

by propagating the base data changes onto the view so that the view reflects the changes. Incrementally

maintaining a view can be significantly cheaper than recomputing the view from scratch, especially if the size

of the view is large compared to the size of the changes [BM90, MQM97, CKL+97].

The problem of finding such changes at the views based on changes to the base relations has come to

be known as the view maintenance problem and has been studied extensively. Several algorithms have been

proposed over the recent years [BLT86, BCL89, CW91, QW91, GMS93, GL95, Qua97, MQM97, GJM97] for

incremental maintenance of view expressions. The previously proposed algorithms on incremental maintenance

suffer from the following shortcomings:

• None of the earlier work handles the case of general view expressions involving aggregate and outerjoin

operators. Quass in [Qua97] is the only work that attempts to maintain general view expressions involving

aggregate operators, but the expressions obtained are very inefficient and complicated. Most of the other

work [MQM97, PSCP02, GMS93] is limited to view expressions having only one aggregation operator

∗Contact Author. Department of Computer Science, State University of New York, Stony Brook NY 11794.

1

as the last operator of the expression tree. Gupta et al. in [GJM97] show how to maintain a simple

outerjoin view, but do not address general expressions involving outerjoin operators.1

• To date, most of the incremental maintenance approaches compute and propagate insertions and dele-

tions at each node in a view expression tree, which could be very inefficient in view expressions that

involve aggregation or outerjoin operators.

Our Contributions. In this article, we develop the change-table technique for incremental maintenance of

general view expressions involving aggregate and outerjoin operators. Change table of a particular view is

applied to the view using a special refresh operator. We develop techniques for computation and propagation

of change tables through various operators in a given view expression, in response to changes at the base

relations. In contrast to the previously developed techniques which propagate data in terms of insertions

and deletions through a view expression, our developed change-table technique propagates data (in terms

of change-tables) as well as action (in terms of parameters of the refresh operation) through the given view

expression. We show that the developed change-table framework yields very efficient incremental maintenance

expressions for general view expressions.

Paper Organization. In the rest of this section, we present some basic notation used throughout this article.

Section 2 presents a motivating example that illustrates the idea behind this paper and contrasts previous

techniques with the change-table technique developed in this article. The example shows that the change-

table technique outperforms the previously proposed techniques by orders of magnitude. In Section 3, we

briefly describe how our work fits in the previous frameworks of incremental view maintenance algorithms. In

Section 4, we define the refresh operator used to apply the changes represented as a change table and briefly

outline its implementation. In the following section, we discuss propagation of change tables that originate at

an aggregate operator. Section 6 discusses propagation of change tables that originate at an outerjoin node.

We discuss the optimality of our techniques under some reasonable cost model in Section 7. A brief survey of

related work is presented in Section 8. Finally, we present our concluding remarks in Section 9.

Notations. We consider only bag semantics in this article, i.e., all the relational operators used are duplicate-

preserving. We use] to denote bag union, −· to denote monus (bag minus), 5E to denote deletions from a

bag-algebra expression E,4E to denote insertions into E, σp to denote selection on condition p, ΠA to denote

duplicate-preserving projection on a set of attributes A, π to denote the generalized projection operator (note

that we use slightly different symbols for duplicate-preserving projection (Π) and for generalized projection

(π) operators), × to denote cross-product, 1 to denote natural join, and 1J and fo
./J

to denote join and full

outerjoin operations with the join condition J . The symbols lo
./ and ro

./ are used for left and right outerjoin

respectively. Also, Attrs(J) denotes the set of attributes used in a predicate J or a relation J .

The only operators that may require explanation are the outerjoin and generalized projection operators.

The (full) outerjoin differs from an ordinary join by including in the result any “dangling”2 tuple of either

relation after “padding” it with NULL’s in those attributes that belong to the other relation. For example,

R(A, B) fo
./R.B=S.B

S(B, C) will include a tuple (a, b, NULL, NULL), if (a, b) ∈ R and (b, c) /∈ S for any c.

One variant of the outerjoin operator is a left (right) outerjoin, where the dangling tuples of only the left

(right) operand relation are padded with NULL’s and included in the result. Hence, in the above example,

(a, b, NULL, NULL) would be included in R lo
./J

S, but not in R ro
./J

S. The generalized projection operator

1In work done concurrently with ours, Griffin and Kumar [GK98] derived expressions for propagating insertions and deletions

through outerjoin operators.
2Dangling tuples are the ones that fail to join with any tuple from the other relation.

2

introduced in [GHQ95] is used to algebraically represent the groupby operation of SQL. For example, we

could use the following expression to define the SISales view of Example 1 on the next page.

SISales = πstoreID,itemID,SumSISales=sum(price),NumSISales=count(∗)(σdate>1/1/95(sales))

We will explain the notation ≡G in Section 5.

2 Motivating Examples and Previous Approaches

EXAMPLE 1

Relations. Consider the classic example of a warehouse containing information about stores, items, and

day-to-day sales. The warehouse stores the information in three base relations viz. stores, items, and sales

having the following schemas.

stores(storeID, city, state)

items(itemID, category)

sales(storeID, itemID, date, price)

For each store location, the relation stores contains the storeID, the city, and the state in which the store

is located. For each item, the relation items contains its itemID and its category. An item can belong to

multiple categories. The relation sales contains detailed information about sales transactions. For each item

sold, the relation sales contains a tuple storing the storeID of the selling store, itemID of the item sold, date

of sale, and the sale price.

sales

SIsales

CategorySales CitySales

storesitems

(storeID, itemID, sum(price), cnt = count(*))
�

(category, sum(price), sum(cnt))� (city, sum(price), sum(cnt))
�

group-by attributes

σ
(date > 1/1/95)

sales

SIsales

CategorySales

items

(storeID, itemID, sum(price), cnt = count(*))
�

(category, sum(price), sum(cnt))�

C1 690 4
C2 210 2

I C1
I C2
J C1

NY I 210 2
NY J 480 2

NY I 1/1/95 10
NY I 1/1/96 22

…
NY I 1/1/95 60
NY I 2/4/98 60
NY J 2/2/99 50

∆ sales
(insertions)

σ
(date > 1/1/95)sales

SIsales
items

CategorySales

Figure 1: Example 1. a) Relations and Views. b) Instance of base relations and insertions into sales. [The

aggregated column names have been omitted or shortened for clarity.]

Views. Consider the views SISales, CitySales, and CategorySales defined over the base relations as shown

in Figure 1(a). The view SISales computes for each storeID and itemID the total price of items sold after

1/1/95. The view SISales is an intermediate view used to define the views CitySales and CategorySales.

The view CitySales stores, for each city, the total number and dollar value of sales of all the stores in the

city. The view CategorySales stores the total sale for each category of items. All the above described

views consider only those sales that occur after 1/1/95. The views CitySales and CategorySales are stored

3

(materialized) at the data warehouse and this is represented below by the keyword “MATERIALIZED”3 in

the SQL definitions of the views. We wish to maintain these materialized views in response to insertions to

the base relation sales for the instance shown in Figure 1(b).

CREATE VIEW SISales AS

SELECT storeID, itemID, sum(price) AS SumSISales, count(∗) AS NumSISales

FROM sales

WHERE date > 1/1/95

GROUP BY storeID, itemID;

CREATE MATERIALIZED VIEW CitySales AS

SELECT city, sum(SumSISales) AS SumCiSales, sum(NumSISales) AS NumCiSales

FROM SISales, stores

WHERE SISales.storeID = stores.storeID

GROUP BY city;

CREATE MATERIALIZED VIEW CategorySales AS

SELECT category, sum(SumSISales) AS SumCaSales, sum(NumSISales) AS NumCaSales

FROM SISales, items

WHERE SISales.itemID = items.itemID

GROUP BY category;

Previous Techniques. Of the previous approaches, only [Qua97] provides techniques to maintain general

view expressions involving aggregate operators. Prior works in [GMS93], [GL95], and [MQM97] consider

aggregates, but in a very limited fashion. The works of [GL95], [PSCP02], and [MQM97] are restricted to

views that have at most one aggregate operator as the last operator in the view expression.4 In contrast,

the techniques developed in this article apply to general view expressions involving aggregate and outerjoin

operators. Also, group-by attributes are not allowed in [GL95], and [MQM97] maintains views on star

schemas only. Thus, for the case of general view expressions involving aggregate operators, we can compare

our techniques with that of [Qua97] only.

Griffin and Libkin in [GL95] update view expressions by recursively computing insertions and deletions for

each of the subexpressions in the view expression in response to changes at the base relations. Quass in [Qua97]

extends the techniques in [GL95] by including aggregate operators. In our example, the insertions to sales,

4sales, result in insertions (4SISales) and deletions (5SISales) to the view SISales, which is an aggre-

gate view over the base relation sales. The expressions that compute 4SISales and 5SISales, as derived

in [Qua97], are quite complex (see Appendix A). As SISales is not materialized, the maintenance expressions

for SISales essentially recompute the aggregate values of the affected tuples in SISales from the base relation

sales. Using the propagation equations from [Qua97], one can propagate 4SISales and 5SISales upwards

to obtain expressions for 5CitySales,4CitySales,5CategorySales, and 4CategorySales. Figure 2(a)

illustrates the [Qua97] technique for updating CategorySales in response to insertions into sales. As em-

phasized in the figure, the computation of4SISales and 5SISales require querying the base relation sales,

because the intermediate view SISales is not materialized.

3The keyword “MATERIALIZED” is not supported by SQL, but has been introduced in this article.
4In some cases, view expressions can be rewritten so that aggregation is the last operator, but the rewritten query has worse

query performance.

4

sales

SIsales

CategorySales

C1 690 4
C2 210 2

∇ SIsales ∆ SIsales

NEED to
query sales

∇ CategorySales ∆ CategorySales

C1 690 4
C2 210 2

C1 860 7
C2 330 4

NY I 1/1/95 10
NY I 1/1/96 22

…

NY I 1/1/95 60
NY I 2/4/98 60
NY J 2/2/99 50

∆ sales

NY I 210 2
NY J 480 2

NY I 330 4
NY J 530 3

SIsales

CategorySales

NY I 120 2
NY J 50 1

SIsales

CategorySales

C1 170 3
C2 120 2

Refreshed View

C1 860 7
C2 330 4

sales

NO NEED to
query sales

NY I 1/1/95 10
NY I 1/1/96 22

…

NY I 1/1/95 60
NY I 2/4/98 60
NY J 2/2/99 50

∆ sales

NY I 210 2
NY J 480 2

C1 690 4
C2 210 2

SIsales

CategorySales

sales

Figure 2: (a) [Qua97] Approach (b) Our Change-Table Approach

Our Techniques. The approach proposed in this article is the following. Instead of computing and propa-

gating insertions and deletions beyond an aggregate node SISales, we compute and propagate a change table

for SISales.5 We show that propagation of change tables yields very efficient and simple maintenance expres-

sions for general view expressions involving aggregate and/or outerjoin operators. The change table cannot be

simply inserted into or deleted from the materialized view. Rather, the change table must be applied to the

materialized view using a special “refresh” operator, which we will define formally in Section 4. We denote the

change table of a view V by 2V , and a refresh operator by tU
θ , where θ and U are its parameters specifying

join conditions and update functions respectively. However, in this section, we will simply use REFRESH to

denote the refresh operator and ignore the refresh parameters.

For our example, we start with computing the change table 2SISales that summarizes the net changes to

SISales. For this first level of aggregates, the expression that computes 2SISales is similar to that derived

in [MQM97]. The change table 2SISales is computed from the insertions and deletions into sales by using

the same generalized projection (aggregation) as that used for defining SISales. More precisely,

2SISales = πstoreID,itemID,SumSISales=sum(price),NumSISales=sum(count)(ΠstoreID,itemID,price, count=1(σp(4sales))]

ΠstoreID, itemID, price= −price, count= −1(σp(5sales))), where p is (date > 1/1/95)

Figure 2(b) presents an instance of the base relation sales and the table4sales, which is the set of insertions

into sales. For the given tables, Figure 2(b) also shows the computed table 2SISales. Next we propagate the

change table 2SISales upwards to derive expressions for the change tables 2CitySales and 2CategorySales.

2CitySales = πcity,SumCiSales=sum(SumSISales),NumCiSales=sum(NumSISales)(2SISales 1 stores)

2CategorySales = πcategory,SumCaSales=sum(SumSISales),NumCaSales=sum(NumSISales)(2SISales 1 items)

Figure 2(b) shows the change table 2CategorySales for the instance of the base table items in Figure 1(b).

The change table 2CitySales can be similarly computed. The new propagated change tables are then used to

refresh their respective materialized views CitySales and CategorySales using the refresh equations below.

5A change table is a general form of summary-delta tables introduced in [MQM97].

5

Table Number of Changes Tuple Reads and Writes

Tuples (No. of Tuples) Previous Work Our Approach

sales 1,000,000,000 10,000

stores 1,000 -

InfoStates 100 -

items 10,000 -

V1 = SISales 1,000,000 600 610,000 ([Qua97]) 10,000

V2 = CitySales 100 10 1,020 ([Qua97]) 1,020

V3 = CategorySales 1,000 1,000 12,000 ([Qua97]) 12,000

Total for V1, V2, V3 623,020 [Qua97] 23,020

Table 1: Benefits of propagating change tables (Materialized views are V2 and V3.)

The details of the refresh equations are given later in Example 4.

CitySales = CitySales REFRESH 2CitySales, and

CategorySales = CategorySales REFRESH 2CategorySales

As SISales is not materialized, it does not need to be refreshed. Also, as emphasized in Figure 2(b),

we don’t need to query the base relation sales for updating CitySales or CategorySales, which re-

sults in huge savings. We illustrate the refresh operation by showing how the CategorySales view is re-

freshed. Figure 2(b) shows the materialized table CategorySales for the given instance of base tables.

For each tuple 2v in 2CategorySales, we look for a matching tuple in CategorySales using the join

condition CategorySales.category = 2CategorySales.category (specified in one of the parameters of RE-

FRESH). For example, the tuple <C1,170,3> in 2CategorySales matches with the tuple v =<C1,690,4> of

CategorySales. The tuple <C1,170,3> in 2CategorySales means that three more sales totaling $170 have

occurred for C1 category. The total number of sales for C1 is now 7 for a total amount of $860. To reflect

the change, the tuple v is updated to <C1,860,7> by adding together the corresponding aggregated attributes

(specified in another parameter of REFRESH).

Cost Comparison. Consider the database sizes shown in Table 1. We assume that the base relation sales

has one billion sales transactions, and the base relations stores, InfoStates, and items have 1,000, 100,

and 10,000 tuples respectively. We illustrate the various maintenance approaches for the case when 10,000

tuples are inserted into the base relation sales. Table 1 shows the number of tuples changed in the views, as

a result of the insertion of 10,000 tuples into sales. The table also shows the number of tuple accesses (reads

and writes) incurred by different maintenance techniques to update the materialized views. We explain the

computation of these tuple access numbers below.

Cost Model. We have used the simple model of counting tuple accesses for the sake of convenience as orders

of magnitude improvement in the number of tuples computed and accessed translates directly into significant

improvement in number of disk accesses. In Section 7, we show that the change-table technique is superior to

previous techniques under a data warehouse cost model.

Computation of Tuple Accesses. Appendix A shows that the total number of tuples accessed by the

[Qua97] technique is 623,020. To compute the number of tuple accesses for our techniques, note that most of

the computation is done in computing 2SISales, which requires 10,000 tuple accesses to read 4sales. Given

the small sizes of 2SISales, items, and stores, the rest of the computation can be done in main memory and

hence, the total number of tuples accesses is 10,000 (to read 4sales) + 11,000 (to read items and stores)

6

+ 2,020 (to refresh CitySales and CategorySales) = 23,020, showing that our technique is very efficient in

comparison to previous approaches.6 2

EXAMPLE 2

Outerjoin Views. The change-table technique can also be used for maintenance of view expressions involving

outerjoin operators. Outerjoin views are supported by SQL and are commonly used in practice, such as for

data integration [GJM96]. We extend the previous example to illustrate our techniques for the case of outerjoin

views. For this example, we require another relation InfoStates that stores area and population for each

state. We also define views SSInfoand SSFullInfo over the base relations. Only the view SSFullInfo is

materialized. The schema of the relation InfoStates and the view definitions are as follows.

InfoStates(state, area, population)

SSInfo = sales
fo
./

sales .storeID=stores.storeID
stores

SSFullInfo = SSInfo
fo
./

stores .state=InfoStates .state
InfoStates

The view SSInfo stores the full outerjoin of the base relations sales and stores, retaining stores that have

had no sales due to some reasons and also retaining those sales whose corresponding storeID is missing from

the table stores, because, maybe, the table stores has not been updated yet. We define another view

SSFullInfo which is the outerjoin view of SSInfo and InfoStates.

Maintenance Expressions. We illustrate our technique for maintaining outerjoin views by deriving main-

tenance expressions for SSFullInfo view. The net changes to SSInfo, in response to insertions 4sales into

sales, can be succinctly summarized in a change table 2SSInfo. The change table 2SSInfo is computed,

propagated up, and then used to refresh the SSFullInfo view as shown below.

2SSInfo = 4sales lo
./ sales.storeID=stores .storeID

stores

2SSFullInfo = 2SSInfo
lo
./ stores.state=InfoStates .state

InfoStates

SSFullInfo = SSFullInfo REFRESH 2SSFullInfo

Recall that lo
./ denotes the left-outerjoin operator. The refresh of SSFullInfo proceeds as follows. Each

tuple in 2SSFullInfo is matched with tuples in SSFullInfo that have the same stores and InfoStates

attributes, but have all NULL’s in the attributes of sales. This join condition used for matching is specified

in one of the parameters of the refresh operator. Each matching pair (2v, v), where 2v ∈ 2SSFullInfo and

v ∈ SSFullInfo, results in an update of v to 2v, in accordance with the update parameter of REFRESH. The

tuples in 2SSFullInfo that do not find a match in SSFullInfo are inserted into the view SSFullInfo.

Cost Comparison. Given the small sizes of stores, InfoStates, 5sales, and 2SSInfo, the number of

tuple accesses required to compute the change tables and refresh V5 is 10,000 (to read 4sales) + 1,000 (to

read stores) + 100 (to read InfoStates) + 20,000 (to refresh SSFullInfo).

This is the first paper to address maintenance of general view expressions involving outerjoin operators.

In work done concurrently with ours, [GK98] also reports an algorithm to handle view expressions involving

outerjoins, extending previous work on maintenance of outerjoin views in [GJM97]. [GK98] uses insertion and

deletion sets to propagate changes through outerjoin operators. Thus, insertions in sales results in insertions

and deletions at SSInfo, which in turn result in insertions and deletions at SSFullInfo. However, according to

the change propagation equations in [GK98], in order to compute the insertions and deletions at SSFullInfo,

we have to compute the intermediate view SSInfo, thereby incurring more than a billion tuple accesses. 2

6Note that the above estimation of number of tuple accesses will also hold irrespective of the items and stores table sizes, if

the change tables 2SISales, 2CitySales, and 2CategorySales are small enough to fit in the main memory.

7

Table Number of Changes Tuple Reads and Writes

Tuples (No. of Tuples) Previous Work Our Approach

InfoStates 100 -

V4 = SSInfo 1,000,000,010 10,000 2,000,000,020 [GJM97] 11,000

11,000 [GK98]

V5 = SSFullInfo 1,000,000,020 10,000 10,100 [GJM97]/[GL95] 20,100

1,000,020,110 [GK98]

Total for V4 and V5 1,000,031,110 [GK98] 31,100

Table 2: Benefits of propagating change tables (V5 is the materialized view.)

3 The Change-Table Technique for View Maintenance

In this section, we explain the framework developed in [QW91, GL95] for deriving incremental view mainte-

nance expressions and relate it to the change-table technique developed in this article.

Let a database contain a set of relationsR = {R1, R2, . . . , Rn}. A change transaction t is defined to contain

the expression Ri ← (Ri −· 5Ri)] 4Ri, for each relation Ri, where 5Ri are the deletions from Ri, and

4Ri are the insertions into Ri. Let V be a bag-algebra expression defined on a subset of the relations in R.

The refresh-expression New(V, t)7 is used to compute the new value of V . Griffin and Libkin in [GL95] define

the expression New(V, t) to be:

New(V, t) = (V −· 5(V, t))] 4(V, t).

So, the goal in deriving view maintenance expressions for a view V is to derive two functions 5(V, t) and

4(V, t) such that for any transaction t, the view V can be maintained by evaluating (V −· 5(V, t))] 4(V, t).

In order to derive 5(V, t) and 4(V, t), [GL95] gives change propagation equations that show how deletions

and insertions are propagated up through each of the relational operators. The work of [GL95] was extended

to include aggregate operators by Quass in [Qua97].

The change-table technique presented in this article can be thought of as introducing a new definition for

New(V, t). We define the expression New(V, t) for general view expressions as

New(V, t) = (V tU
θ 2(V, t)),

where 2(V, t) is called the change table, tU
θ is the refresh operator used to apply the net changes in a change

table to its view, and (θ, U) are the parameters of the refresh operator. The parameter θ specifies the join

conditions on the basis of which the tuples from the change table and the view are matched, and U specifies

the functions that are used to update the matched tuples in V .

The new definition of New(V, t) is motivated from the following observation. In the case of general view

expressions involving aggregate operators, it is usually more efficient to propagate the change tables beyond

an aggregate operator, instead of propagating insertions and deletions. Propagation of a change table is par-

ticularly efficient when the change table depends only on the changes to the base relation (self-maintainability

[GJM96]), while the insertions and deletions depend on the old value of the view. As we showed in the moti-

vating example, if the aggregate node is not materialized, the computation of insertions and deletions could

be very expensive.

The new definition of New(V, t) means that in order to obtain a complete technique, we need to define a

general refresh operator, show how to generate a change table, and how to propagate a change table through

various operators. In the following section, we present a formal definition of the refresh operator. In later

7 [GL95] uses the notation pre(t, V) instead.

8

sections, we derive change propagation equations for general view expressions involving aggregate and outerjoin

operators. Although in the following sections we derive incremental maintenance expressions for changes at

one base table at a time, changes occurring simultaneously at multiple base tables can be incorporated by

propagating one change at a time8 using the techniques presented in this article.

4 The refresh Operator

In this section, we give a formal treatment of the refresh operator. Given a materialized table V and its

change table 2V , the refresh operator is used to apply the changes represented in a change table. The binary

refresh operator is a generalization of the refresh algorithm used in [MQM97] and can be implemented using

the modify operation discussed in [QM97].

We denote the refresh operator by tU
θ , where θ is a pair of two mutually exclusive join conditions and U

is a list of update function specifications. The refresh operator takes two operands, a view V to be updated

and a corresponding change table (denoted by 2V).

Let V and 2V be tables with the same attribute names A1, A2, . . . , An. The subscript θ associated with

the operator is a pair of join conditions J 1 and J 2. The update list U is a specification of how the attributes

are updated. In an expression V tU
θ 2V , each tuple 2v of 2V is checked for possible matches (due to J 1

or J 2) with tuples in V . If a match is found due to the join condition J 1, then the corresponding matching

tuple v of V is changed using the specifications in the update list U (as described in the next paragraph). If

the match is due to J 2, the tuple v of V is deleted. The unmatched tuples in 2V are inserted into V . The

matching done is one-to-one in the sense that a tuple 2v ∈ 2V is matched with at most one tuple in V and

vice-versa. If 2v finds more than one match9 in V , then an arbitrary matching tuple from V is picked.

The tuple v of V matching with the tuple 2v of 2V due to join condition J 1 is updated as follows.

Let U = <(Ai1 , f1), (Ai2 , f2), . . . , (Aik
, fk)>, where Ai1 , . . . , Aik

are attributes of V and f1, . . . , fk are binary

functions. For each pair (Aij
, fj) in U , the Aij

attribute of v is changed to fj(v(Aij
), 2v(Aij

)), where v(X)

and 2v(X) denote the values of the X attribute of v and 2v respectively.

Implementation. One simple way to implement the refresh operator is to use a nested loop algorithm,

with the change table as the outer table, and the materialized view table as the inner table. The nested loop

algorithm is just one possible way to implement the refresh operator. In fact, Quass and Mumick [QM97]

show that the refresh operation can be implemented more efficiently by using existing outerjoin methods inside

the DBMS.

EXAMPLE 3 Consider the view CategorySales defined in Example 1 earlier. The CategorySales table

as defined in Example 1 computes the total sales for each category. In this example, we illustrate the refresh

operation by applying the changes summarized in a change table 2CategorySales to its view CategorySales

using the refresh operator.

For this example, we consider the instance of the base table shown in Figure 2(b). The figure also shows

the materialized table CategorySales for the given instance. In response to the insertion of the table 4sales

into the base table sales, the change table 2CategorySales can be computed and is shown in the figure.

The view CategorySales is refreshed using the expression CategorySales tU3

θ3
2CategorySales, where the

8Multiple changes to the same base table can be merged into one insertion and one deletion, and multiple changes occurring

at different base tables can be handled in an arbitrary order. Also, multiple occurrences of a base table in a view expression can

be treated as different base tables for the purposes of incremental view maintenance.
9Such a situation may arise when a change-table is propagated through a cross product operator (Row 3 of Table 1). See Page

15 for details.

9

parameters, θ3 = (J 1,J 2) and U3, of the refresh operator are defined as follows. Here, we use ≡category to

represent the predicate (CategorySales.category = (2 CategorySales).category).

• J 1 is (≡category ∧ ((CategorySales.NumCaSales + (2CategorySales).NumCaSales) 6= 0))

• J 2 is (≡category ∧ ((CategorySales.NumCaSales + (2CategorySales).NumCaSales) = 0))

• U3 = <(SumCaSales, f), (NumCaSales, f)>, where f(x, y) = x + y for any x, y.

Now, we try to run the refresh operation on the view CategorySales and its change table 2CategorySales

of Figure 2(b). The first tuple 2v3 = <C1,170,3> of 2CategorySalesmatches with the tuple v3 = <C1,690,4>

in CategorySales due to the join condition J 1. The match results in an update of the tuple <C1,690,4>

in CategorySales according to the specifications in the update list U3. Thus, the attribute SumCaSales of

the tuple v3 is changed to 2v3(SumCaSales) + v3(SumCaSales) = 170 + 690 = 860 and the attribute Num-

CaSales is changed to 4 + 3 = 7. Similarly, the tuple <C2,210,2> ∈ CategorySales matches with the tuple

<C2,120,2> of 2CategorySales and is updated to <C2,330,4>.

To illustrate deletion from the view CategorySales, let us assume that the change table 2CategorySales

contains a tuple b = <C2,-210,-2> as a result of a deletion of a couple of tuples from the sales table. The

tuple b = <C2,-210,-2> will match with the tuple v = <C2,210,2> in CategorySales due to the join condition

J 2, and the match will result in deletion of v from CategorySales. 2

5 Propagating Change Tables Generated at Aggregates

In this section, we show how to generate a change table at an aggregate node, and derive change-propagation

equations used to propagate these change tables through various operators. We start with a few definitions.

Definition 1 (Aggregate-change table) A change table is defined as an aggregate-change table if it either

originated at an aggregate operator or is a result of propagation of a change table that originated at an

aggregate node.

For example, the change tables, 2SISales, 2CitySales, and 2CategorySales, computed for the views

SISales, CitySales, and CategorySales respectively in Example 1 are aggregate-change tables. 2

The notions of aggregate-change table and outerjoin-change table (introduced later in Section 6) have been

defined only for simplying the presentation of the material in this article. We will show that a restricted

definition of the general refresh operator suffices to refresh a view using its aggregate-change table. The

restricted refresh operator yields very simple change-propagation equations.

More Notations. We use the notation Attrs(ϕ) to represent the set of attributes referenced in a refresh

parameter ϕ. Thus, Attrs(U) refers to the set of attributes specified in the update list U and Attrs(θ)

represents Attrs(J 1) ∪ Attrs(J 2), where J 1 and J 2 are the join conditions in θ = (J 1,J 2). Also, for a set

of attributes G, we use the notation ≡G to represent the predicate

∧
g∈G(LHS.g = RHS.g)

in a join condition, where LHS and RHS are the left and right operand relations of the join operator.

For example, when J is (≡G ∧ p), the expression R 1JS denotes a join operation with the join condition

(
∧

g∈G(R.g = S.g) ∧ p), for a predicate p and a set of attributes G in R and S.

5.1 Generating the Aggregate-Change Table

Consider a view V defined as an aggregation over a select-project-join (SPJ) expression. In this section,

we give a brief description of how an aggregate-change table is generated at V in response to the insertions

10

Aggregate Change due to N

COUNT(*) -1

SUM(expr) -expr

MIN(expr) expr

MAX(expr) expr

Table 3: Table used to change the aggregate attributes in deletions

and deletions at the base tables. The method is similar to that of generating “summary-delta table” for a

“summary table” [MQM97].

For the case when a view V is defined as an aggregation over an SPJ expression, the insertions and

deletions to the base tables can be propagated to V as a single aggregate-change table, which we denote by

2V . Without loss of generality, assume V to be πG,B=f(A)(R), where R is the SPJ subview, G is the set of

group-by attributes, f is an aggregate function, and A is an attribute of R. In the case of self-maintainable

aggregate functions, the aggregate-change table 2V can be computed from the insertions and deletions into

R by using the same generalized projection as that used for defining the view V . More precisely, 2V can be

computed as

2V = πG,f(A),Count=sum(count)(ΠG,A, count=1(4R)] ΠG,A=N(A), count=−1(5R)),

where the function N is suitably defined depending on the aggregate function f as shown in Table 3. For

example, in the case of a sum aggregate the function N negates the attribute value passed.

For the case of aggregate functions that are not self-maintainable, we need more complex functions in the

update list U of the refresh operator. For example, to handle deletions from a subview of a simple MAX

aggregate view, the change table is appropriately defined as before (aggregation of the deleted values), but the

update function has an embedded SQL query that efficiently computes, when needed, the new MAX value by

accessing the base relations. The advantage of our approach comes from delaying the update-query execution

as late as possible in the view expression tree and executing the query only when the matching tuple exists in

the materialized view (and has not been filtered through other operators after the aggregation). The change

propagation equations and other formalisms presented in this article are independent of the complexity of

update functions used in the update list U of refresh.

In a general view expression tree V , an aggregate-change table is generated at the first non-relational

operator which is an aggregate node, and then propagated upwards through various operators to V , as shown

in Figure 3 (a) on page 20. Figure 3 (a) refers to an aggregate-refresh operator, which is a restricted form

of the refresh operator that is used to apply aggregate-change tables and is defined in the next subsection.

We derive change propagation equations for aggregate-change tables in the following subsection.

5.2 Refresh Operator for Applying Aggregate-Change Tables

In this section, we define the characteristics of the “aggregate-refresh” operator that is used to apply an

aggregate-change table to its view. The “aggregate-refresh” operator is a special case of the generic refresh

operator defined in Section 4. In the next subsection, we derive simple change propagation equations using

these special characteristics.

Recall that the expression used to refresh a view V using its change table 2V is: V = V tU
θ 2V , where

θ = (J 1,J 2) and U is the update list. In the case of the aggregate-refresh operator used to apply aggregate-

change tables, J 1 is (≡G ∧ ¬p1) and J 2 is (≡G ∧ p1), for some predicate p1 and a set of attributes G common

to both V and 2V . As defined before, the notation ≡G here represents the predicate
∧

g∈G(V.g = 2V.g), as V

11

New V

No. V θ = (J 1,J 2) Refresh Equation 2V Conditions

J 1 is ≡G ∧ ¬p1

J 2 is ≡G ∧ p1

1 σp(E1) σp(E1 tU
θ 2E1) V tU

θ σp(2E1) σp(2E1) Attrs(p) ⊆ G

2 ΠA(E1) ΠA(E1 tU
θ 2E1) V tU

θ ΠA(2E1) ΠA(2E1) Attrs(θ) ⊆ A

V tU
θ1

(2E1 × E2)

3 E1 × E2 (E1 tU
θ 2E1) × E2 θ1 = (J 1 ∧ ≡τ ,J 2 ∧ ≡τ) 2E1 × E2

τ = Attrs(E2)

V tU
θ1

(2E1 1JE2)

4 E1 1JE2 (E1 tU
θ 2E1) 1JE2 θ1 = (J 1 ∧ ≡τ ,J 2 ∧ ≡τ) 2E1 1JE2 Attrs(J) ⊆ G

τ = Attrs(E2)

5 E1] E2 (E1 tU
θ 2E1)] E2 ((V −· E2) tU

θ 2E1)] E2) 2E1

V t
U3

θ3
πG′,F (2E1) Ai ∈ Attrs(U), G′ ⊆ G,

6 πG′,F (E1) πG′,F (E1 tU
θ 2E1) θ3 = (≡G′ ∧ ¬p3, ≡G′ ∧ p3) πG′,F (2E1) fi’s are distributive,

F = f1(A1), p3 is (V.Cnt + 2V.Cnt) 6= 0 and the function

. . . , fk(Ak). U3 = <(A1, f1), . . . , (Ak, fk)> in U for Ai is fi.

V tU
θ1

(2E1
lo
./

J
E2)

7 E1
fo
./

J
E2 (E1 tU

θ 2E1)
fo
./

J
E2 θ1 = (J 1 ∧ ≡τ ,J 2 ∧ ≡τ) (2E1

lo
./

J
E2) Attrs(J) ⊆ G

τ = Attrs(E1)

Table 4: Change propagation equations for propagating aggregate-change tables

and 2V are the left and right operands of the join operator. Also, the set of attributes G is disjoint from the

set of attributes, Attrs(U), that are being updated. The predicate p1 specifies when the matching tuple in V

is to be deleted, i.e., when the value of the attribute that stores the number of deriving base tuples becomes

zero. The above characteristics are summarized in the definition of an aggregate-refresh operator below.

Definition 2 (Aggregate-refresh Operator) A refresh operator tU
θ , where θ = (J 1,J 2), is said to be

an aggregate-refresh operator if, for some predicate p1 and a set of attributes G common to both the view

and its aggregate-change table,

(1) The join conditions J 1 and J 2 can be represented as:

• J 1 : (≡G ∧ ¬p1)

• J 2 : (≡G ∧ p1), and

(2) G ∩Attrs(U) = φ. 2

The above characteristics of the aggregate-refresh operator are used to derive simple change propagation

equations for propagating aggregate-change tables.

5.3 Change Propagation Equations

For the purposes of change propagation equations shown in Table 4, we assume that an aggregate-change

table has been generated (as shown in Section 5.1) at the first aggregate operator in a view expression, in

response to insertions and/or deletions at a base relation.10 Table 4 gives change propagation equations for

10As mentioned before, when two or more base relations are updated simultaneously (or a relation appears more than once in

a view expression), we handle the updates in an arbitrary order.

12

propagating (already generated) aggregate-change tables through relational, aggregate and outerjoin operators.

In Theorem 1, we will prove the correctness of these change propagation equations.

Each row in the table considers propagation of an aggregate-change table through a relational, aggregate,

or outerjoin operator. The first column gives the equation number used for later reference in examples. The

second column in the table gives the outermost operator used in the definition of V . Consider a change

transaction t consisting of the following change: E1 ← (E1 t
U
θ 2E1), where E1 is a subexpression, 2E1 is

an aggregate-change table and tU
θ is an aggregate-refresh operator. We assume θ to be (J 1,J 2), where

J 1 is ≡G ∧ ¬p1 and J 2 is ≡G ∧ p1, for some predicate p1 and a set of attributes G in E1. The third

column expresses the new expression for V due to change t, by replacing E1 in V by (E1 t
U
θ 2E1).

11 The

fourth column gives the refresh equation New(V, t) that is used to refresh the view V . Theorem 1 proves that

the refresh equations (New(V, t) of the fourth column) are correct, by showing that they are equivalent to

the expressions in the third column. Theorem 1 also proves that the refresh operator used in the refresh

equation of the fourth column is an aggregate-refresh operator. The fifth column gives the expression

for the propagated aggregate-change table 2V , which can be derived from the refresh equation of the fourth

column. Finally, the last column of the table states the conditions under which the equivalence of the fourth

column and third column expressions holds, i.e., the conditions under which the change propagation can be

done. If the condition is not satisfied, then the refresh equation cannot be used to propagate the aggregate-

change table. We will show later how to handle changes at an operator node when the conditions in the sixth

column are not satisfied.

The first row of the table depicts the case of a selection view V = σp(E1), where E1 is a subexpression.

For the case of selection view, the condition required for the change propagation is Attrs(p) ⊆ G. In other

words, an aggregate-change table can be propagated through a selection operator only if the selection condition

is defined over the G attributes, which are the attributes that are not being updated by the update functions

of the refresh operator.

The second row depicts the case of projection on a set of attributes A. In the case of propagation through

the cross product (third row), the parameter θ of the refresh operator is changed to also include the condition

≡Attrs(E2) in the join conditions J 1 and J 2. If E2 has duplicates then the resulting refresh equation may

involve one tuple of 2V finding a match with multiple tuples in V . Based on the definition of the refresh

operator, one of the matches is picked randomly. No conditions are specified in the fifth column, hence, an

aggregate-change table can always be propagated through a cross product operator.

The fifth row considers propagation of an aggregate-change table through the bag union operator. In this

case, we need to first apply a set of deletions (5V = E2), followed by refreshing the result with the change

table (2V = 2E1), followed by inserting the set (4V = E2) into the result. For propagation beyond a union

operator using the given refresh equation, we need to algebraically apply the rest of the view expression to

the refresh equation, using the refresh equations when needed. One can derive a very efficient ’normal’ refresh

equation for the case of bag union operator, if the tuples in V are “tagged” L/R depending on whether they

come from the left operand E1 or the right operand E2. We omit the details here.

The sixth row depicts the case of propagation through a generalized projection (aggregate) operator. For

the purposes of aggregate-change tables, we assume that any subexpression involving an aggregate operator

stores with each tuple a count of the number of deriving base tuples. This count is stored in a general attribute

which we will call the count attribute. For example, NumCiSales and NumCaSales are count attributes in

the views CitySales and CategorySales of Example 1. After propagation through the aggregate operator,

the join conditions and the update specifications of the aggregate-refresh operator change as shown in the

11The case of changes occurring at both the subexpressions E1 and E2 can be handled by first propagating changes due to E1,

followed by propagating changes due to E2.

13

fourth column. The attribute named Cnt, used in defining p3 in the join conditions of θ3 represents the count

attribute of V . The condition in the fifth column says that each aggregate function fi is distributive, the set

of group-by attributes G′ is a subset of G, and the update list U used to change E1 contains (Ai, fi) for all

1 ≤ i ≤ k. Note that the duplicate-elimination operation is a special case of generalized projection, and is

covered by the sixth row.

The seventh row gives the refresh equation for the case of propagating an aggregate-change table through a

full outerjoin operation. In this case, the refresh operator specifications change as in the case of cross product.

For simplicity, we have assumed that the aggregate-change table 2E1 does not result in any deletions from

E1. Otherwise, a more extended refresh operator is required as discussed in Section 6.3.

Note that we do not give any change propagation equation for the case of monus, which makes monus

operator a singularity point (see paragraph below).

Singularity Points. We call the operator nodes in a view expression tree, where none of the refresh equations

in Table 4 apply, as singularity points. Aggregate-change tables cannot be propagated through singularity

points. For example, a selection on the result of an aggregate function is a singularity point, because it will not

satisfy the condition Attr(p) ⊆ G given in the first row of Table 4. Consider a view V and a singularity point

V1, which is a subexpression of V , in the expression tree of V . As the changes to V1 cannot be summarized

into a change table, we instead compute insertions (4V1) and deletions (5V1) into V1 and propagate the

insertions and deletions beyond V1. The tables 4V1 and 5V1 can be easily computed from the change table of

its descendant in the expression tree. The computed insertions and deletions at a singularity point can then

be propagated further upwards in the expression tree using techniques presented in [GL95] and this article (as

they may result in change tables further on). Hence, the presence of singularity points in an expression tree

does not preclude application of our change-table techniques for incremental maintenance.

Theorem 1 Assume that the refresh operator used in the expression of the third column in Table 4 is an

aggregate-refresh operator. Then,

(1) the change propagation equations given in Table 4 for propagation of aggregate-change tables are correct,

i.e., for each row, the expression in the third column is equivalent to the refresh equation in the fourth column,

and

(2) the refresh operator derived in the refresh equation (column 4) is an aggregate-refresh operator as

well.

Proof: We refer to the expression E1 t
U
θ 2E1 as the change equation throughout this proof. As shown in the

Table 4, the expression in the fourth column is referred to as the refresh equation.

Selection: V = σp(E1). It is easy to see that if a tuple v ∈ V is deleted or updated during the refresh equation

of the fourth column, then v ∈ E1 is also deleted or updated in the same manner by the change equation.

And as updates do not affect any attributes in Attrs(p), the updated v is retained in σp(E1 t
U
θ 2E1).

In this paragraph, we show that the refresh equation indeed captures all the updates or deletions required.

First, note that in the change equation E1 t
U
θ 2E1 if a tuple 2e1 ∈ 2E1 deletes/updates a tuple v ∈

σp(E1) ⊆ E1, then 2e1 ∈ σp(2E1). The above is true because the matched pair (v, 2e1) should have the

same G attributes, and as Attrs(p) ⊆ G, if v satisfies p then 2e1 must also satisfies p. Thus, such a tuple

2e1 in σp(2E1) = 2V would update/delete the corresponding tuple v ∈ V = σp(E1) in the refresh equation.

Therefore, all the updates or deletions that happen to tuples in σp(E1) due to the change equation are also

captured by the refresh equation. The update to a tuple v̄ /∈ σp(E1) due to the change equation is irrelevant,

as neither v̄ nor its updated form will satisfy the predicate p.

Let I be the set of tuples that is inserted into E1 due to the change equation. Now, we show that σp(I)

is inserted into V by the refresh equation, implying that the refresh equation doesn’t miss any legitimate

14

insertions into V . Note that I is the set of tuples in 2E1 that do not find a match in E1. As σp(I) ⊆

σp(2E1) = 2V , no tuple in σp(I) will find a match in V ⊆ E1. Hence, σp(I) will be inserted into V due to

the refresh equation.

Finally, we show that all the insertions into V due to the refresh equation are legitimate. A tuple 2v

matches with a tuple v only if they have the same G attributes. Hence, if a tuple 2v ∈ σp(2E1) is inserted

into V = σp(E1) in the refresh equation (due to a lack of match in V), then 2v will not find a match in E1

also. Hence, 2v ∈ 2E1 will be inserted into E1 by the change equation, and as 2v satisfies p, it will also be

retained in σp(E1 t
U
θ 2E1).

Projection: V = ΠA(E1). If Attrs(θ) ⊆ A, then the information needed to decide the effect of a tuple 2e1 ∈ 2E1

on a tuple e1 ∈ E1, if any, is available in ΠA(e1). Hence, ΠA(2E1) can be applied directly to V = ΠA(E1).

Also, note that the resulting refresh operator is also an aggregate-refresh operator.

Cross Product: V = E1 × E2. Consider (E1 × E2) t
U
θ1

(2E1 × E2), the refresh equation. Let us partition

the tables (E1 × E2) and (2E1 × E2) by the tuple values of E2. As J 1 and J 2 in θ1 include≡Attrs(E2), each of

the partitions is refreshed independently by the refresh equation. It is easy to see that a tuple <2e1, e2> ∈ 2V

will match with a tuple <e1, e2> ∈ V due to θ1 in the refresh equation, if and only if the tuple 2e1 ∈ 2E1

matches with a tuple e1 ∈ E1 due to the parameter θ in the change equation. The matches will result in same

update to the E1 attributes or deletion in both the expressions. Also, a tuple 2e1 ∈ 2E1 doesn’t find a match

in E1 if and only if the tuples in (2e1 × E2) ⊆ 2V do not find a match in V .

It is easy to see that the refresh operator in the fourth column with the new specifications is also an

aggregate-refresh operator.

Join: V = E1 1J E2. Follows from the previous cases, but stated in the table for convenience.

Union: V = E1] E2. As ((E1] E2) −· E2) = E1, the equivalence of the expressions is obvious.

Aggregation: V = πG′,F (E1). Here, F = f1(A1), . . . , fk(Ak). Without loss of generality, we prove this case

when k = 1, i.e., we assume that F = f(A). In addition, we assume that (G′ ⊆ G), A ∈ Attrs(U), U =

<(A, f)>, and that f is a distributive function. Consider tuples e1, e2, . . . , en in E1 such that they have

the same G′ values and their attribute A values are a1, a2, . . . , an. Also, assume that the tuple ei matches

with some tuple 2ei ∈ 2E1 due to J 1 and that the aggregated attribute A value of 2ei is 2ai.
12 If ei

doesn’t find a match in 2E1, then assume that 2ai is such that f(a, 2ai) = a for simplicity of the proof.

Note that 2ei’s have the same G′ values too. The attribute value ai of ei is updated to f(ai, 2ai) due

to U in the change equation. Thus, due to the change equation the tuple e1, e2, . . . , en will result in an

aggregated value of f(f(a1, 2a1), f(a2, 2a2), . . . , f(an, 2an)) in the equation of the third column. Thus, we

need to show that the aggregated A value of the tuple v ∈ V = πG′,f(A)(E1) that is derived from e1, . . . , ek

changes from f(a1, a2, . . . , an) to f(f(a1 , 2a1), f(a2, 2a2), . . . , f(an, 2an)) in the refresh equation. By the

definition of 2V , the tuples 2e1, . . . , 2en ∈ 2E1 will be grouped to yield the aggregated attribute value

f(2a1, . . . , 2an)), and the refresh equation of V will change the aggregated value of the grouped value of

eis from f(a1, a2, . . . , an) to f(f(a1, a2, . . . , an), f(2a1, . . . , 2an)). As f is a distributive function, we have

f(f(a1, 2a1), f(a2, 2a2), . . . , f(an, 2an)) = f(f(a1, a2, . . . , an), f(2a1, . . . , 2an)), hence the refresh equation of

V correctly updates the aggregated attribute value of the tuple v in V .

All insertions into E1 due to 2E1 in the change equation will be converted to appropriate aggregated

insertions or updates into V by the refresh equation. The deletions from E1 need not necessarily result in any

deletions from V . A tuple is deleted from V only if its aggregated attributes become zero, which is independent

of the deletions of the deriving tuples from E1.

12If the match is due to J 2, then we need to show that the pair of values ai and 2ai is such that f(ai, 2ai, b) = f(b) for any

b. Once shown, the observation can be used to easily make the rest of the argument go through.

15

It is easy to see that the refresh operator in the fourth column with the new specifications is also an

aggregate-refresh operator.

Outerjoin: V = E1
fo
./J

E2. Suppose 2E1 induces a set of insertions I into the relation E1. Each tuple i ∈ I

results in a set of tuples Ei
2 = i lo

./J
E2 in 2V . No tuple ei

2 ∈ Ei
2 finds a match in V due to the predicate

(≡G ∧ ≡τ), because if it did, i would have found a match in E1 due to ≡G. Therefore, the refresh equation

results in Ei
2 being inserted into V for each i ∈ I.

Let us assume that M (⊆ 2E1) is a set of tuples that find a match in E1 due to ≡G, and thus result

in update of a tuple in E1. Each tuple m ∈ M results in a set of tuples Em
2 = m lo

./J
E2 in 2V . Note

that, Em
2 may consist of just one tuple <m, NULL>. If m ∈ M matches with a tuple e1 ∈ E1 due to both

having the same G attributes, then each tuple <m, e2> ∈ Em
2 would match with the corresponding tuple

<e1, e2> ∈ Ee1

2 = e1
lo
./J

E2. The tuple <e1, e2> exists in E1
ro
./J

e2, because the pair (m, e2) satisfies J and

Attrs(J) ⊆ G. Note that if Em
2 consists of only (m, NULL), then Ee1

2 consists of <e1, NULL> only. Also, as

Ee2

1 ⊆ V , the refresh equation of V affects the updates correctly. As noted before, if 2E1 results in deletions

from E1, then the refresh equation derived here would need to be modified using an extended refresh operator

as illustrated in Section 6.3.

EXAMPLE 4 In this example, we illustrate the techniques developed in this section on the views of Ex-

ample 1. Recall from Example 1 the definitions of SISales, CitySales, and CategorySales. For clarity of

presentation, we use V1, V2, and V3 to denote SISales, CitySales, and CategorySales respectively. Thus,

we have

V1 = πstoreID,itemID,SumSISales=sum(price),NumSISales=count(∗)(σdate>1/1/95sales)

V ′
2 = V1 1 stores

V2 = πcity,SumCiSales=sum(SumSISales),NumCiSales=sum(NumSISales)(V
′
2)

V ′
3 = V1 1 items

V3 = πcategory,SumCaSales=sum(SumSISales),NumCaSales=sum(NumSISales)(V
′
3)

where the (virtual) views V ′
2 and V ′

3 have been added for better illustration of how the aggregate-change

tables propagate. We use the change propagation equations of Table 4 to derive the maintenance expressions

for V2 and V3, in response to changes in sales, as follows. In all the equations below, U is of the form

<(SUM, f), (COUNT, f)> and p is of the form ((LHS.COUNT+ RHS.COUNT) = 0),13 where SUM is the aggregated

attribute (SumSISales, SumCiSales, or SumCaSales) in the corresponding view, COUNT is the count attribute

(NumSISales, NumCiSales, or NumCaSales) depending on the view, and f(x, y) = x + y for all x, y.

2V1 = πstoreID,itemID,SumSISales=sum(price),NumSISales=sum(count)(ΠstoreID,price, count=1(σdate>1/1/954sales)

] ΠstoreID, price= −price, count= −1(σdate>1/1/95
5sales)) [From Section 5.1]

V1 = V1 t
U
θ1

(2V1), where θ1 is (≡{storeID,itemID} ∧ ¬p, ≡{storeID,itemID} ∧ p)

2V ′
2 = 2V1 1 stores

V ′
2 = V ′

2 t
U
θ12

2V ′
2 , [From (4) in Table 4]

where θ12 is (≡{storeID,itemID} ∪ Attrs(stores) ∧ ¬p, ≡{storeID,itemID} ∪ Attrs(stores) ∧ p)

2V2 = πcity,SumCiSales=sum(SumSISales),NumCiSales=sum(NumSISales)(2V ′
2)

V2 = V2 t
U
θ2

2V2, where θ2 is (≡city ∧ ¬p, ≡city ∧ p) [From (6) in Table 4]

13Recall that LHS and RHS refer to the left and right operands of the join operation where p occurs.

16

V

û5 R

(First non-relational operator;
an aggregate operator)

(Base table)

(View)

�S

�V

û�∇

�

Aggregate-Refresh
operation

Propagation of
aggregate-change
tables

Only relational operators

(a) Aggregate-change Tables

V

û5 R

(First non-relational operator;
an outerjoin operator)

(Base table)

(View)

�S

�V

û�∇

�

Outerjoin-Refresh
operation

Propagation of
outerjoin-change
tables

Only relational operators

(b) Outerjoin-change Tables

Figure 3: Generation and Propagation of Change-Tables.

2V ′
3 = 2V1 1 items

V ′
3 = V ′

3 t
U
θ13

2V ′
3 , [From (4) in Table 4]

where θ13 is (≡{storeID,itemID} ∪ Attrs(items) ∧ ¬p, ≡{storeID,itemID} ∪ Attrs(items) ∧ p)

2V3 = πcategory,SumCaSales=sum(SumSISales),NumCaSales=sum(NumSISales)(2V ′
3)

V3 = V3 t
U
θ3

2V3, where θ3 is (≡category ∧ ¬p, ≡category ∧ p) [From (6) in Table 4]

As shown in Example 1, the above derived maintenance expressions for V2 and V3 are very efficient compared

to the expressions derived by previous approaches. 2

Overall Change-Table Technique. The overall technique of change-table incremental maintenance works

as follows. In a view expression tree, the insertions and deletions at the base tables are propagated through the

initial relational operators using techniques in [GL95]. If the first non-relational (aggregate or outerjoin) oper-

ator encountered during propagation of insertions/deletions is an aggregate operator as shown in Figure 3 (a),

then the insertions and deletions are used to generate an aggregate-change table at that aggregate operator,

and the aggregate-change table is propagated through various operators using the techniques developed in this

section. On the other hand, if the first non-relational operator encountered is an outerjoin operator as shown

in Figure 3 (b), then an outerjoin-change table is generated and propagated through various operators using

the techniques developed in Section 6. Thus, the choice of whether an aggregate-change table or outerjoin-

change table is used for the incremental maintenance process depends on the operator that is first encountered

in the view expression tree during propagation of insertions/deletions from the base tables to the root of the

expression tree.

6 Maintaining Outerjoin Views Efficiently

In this section, we show how our change-table technique can be used to derive efficient and simple algebraic

expressions for maintenance of view expressions involving outerjoin operators. Outerjoin is supported in SQL.

Further, outerjoins have recently gained importance because data from multiple distributed databases can

be integrated by means of outerjoin views [GJM96, GM95, RU96]. Outerjoins are also extensively used in

object-relational systems [BW89, BW90, BPP+93].

17

Definition 3 (Outerjoin-change table) A change table for a view involving outerjoin operators is defined

as an outerjoin-change table if the change table was either generated at an outerjoin operator or is a result

of propagation of an outerjoin-change table, using the propagation equations we will derive for propagating

outerjoin-change tables.

For example, the change tables, 2SSInfo and 2SSFullInfo, computed for the views SSInfo and SSFullInfo

respectively in Example 2 are outerjoin-change tables. 2

We start by showing how the changes to an outerjoin view (R fo
./J

S), in response to insertions into the

base table R, can be summarized into an outerjoin-change table. Computation of an outerjoin-change table

at an outerjoin view in response to deletions from a base table requires a more general refresh operator and

is briefly discussed in Section 6.3.

6.1 Generating Outerjoin-Change Table At An Outerjoin Node

Given tables R(A1, A2, . . . , An) and S(B1, B2, . . . , Bm), consider an outerjoin view V (A1, . . . , An, B1, . . . , Bm) =

R fo
./J

S, where J is an equi-join condition. Insertions into R, 4R, can result in some insertions and

deletions into view V . We summarize the set of changes to V in an outerjoin-change table 2V defined as

2V = 4R lo
./J

S. Note that the tables 2V and V have the same schema and attribute names. We show that

with the following specification of the refresh operator, the net changes in the outerjoin-change table 2V

can be applied to the view V to obtain the correctly refreshed V . The specifications, θ = (J 1,J 2) and U , of

the refresh operator used to apply 2V to V are:

• J 1 is (≡G ∧ p), where G = Attrs(S) and p = (
∧

1≤j≤n(V.Aj = NULL)).

• J 2 is FALSE.

• The update list U is <(A1, f), (A2, f), . . . , (An, f)>, where f(x, y) = y for all x, y.

Theorem 2 Consider the view V = R fo
./J

S and the outerjoin-change table 2V = 4R lo
./J

S. For the above

definition of the refresh operator specifications of θ = (J 1,J 2) and U , the following holds:

(R] 4R) fo
./J

S = (R fo
./J

S) tU
θ (2V)

Proof: Due to insertion of4R into R, the view V should change as follows. First, the set of tuples 4R lo
./J

S

should be inserted to V . Then, if there is a tuple 2v = <r1, r2, . . . , rn, s1, s2, . . . , sm> in (4R lo
./J

S), i.e., if

2v is being inserted into V , then the tuple <NULL, . . . , NULL, s1, s2, . . . , sm> ∈ V should be deleted from V .

The above effect can be achieved by updating a tuple v = <NULL, . . . , NULL, s1, s2, . . . , sm> in V to 2v =

<r1, r2, . . . , rn, s1, s2, . . . , sm> if such a tuple 2v exists in 2V = 4R lo
./J

S. The refresh of V would be

complete if the tuples 2v in 2V for which no such match occurs are inserted into V . By the definition of

the refresh operator and its specification, one can see that this is exactly what is achieved by the refresh

expression V tU
θ 2V .

6.2 Propagating Outerjoin-Change Tables

Only a special form of the generic refresh operator, which we call an outerjoin-refresh operator, is required

to refresh a view using its outerjoin-change table.

Definition 4 (Outerjoin-refresh operator) Let {A1, A2, . . . , An, B1, B2, . . . , Bm} be the set of attributes

in V and its outerjoin-change table 2V . A refresh operator tU
θ used to apply the outerjoin-change table

2V to its view V is said to be an outerjoin-refresh operator if:

18

• the join condition J 1 is (≡G ∧ p), where G = {B1, B2 . . . , Bm} and p is a predicate on the attributes

(LHS.A1, LHS.A2, . . . , LHS.An).

• the join condition J 2 is FALSE, and

• the update list U is <(A1, f), (A2, f), . . . , (An, f)>, where f(x, y) = y for all x, y. Note that (Attrs(U) ∩

G) = φ and (Attrs(U) ∪G) = Attrs(V). 2

The refresh equations given in Table 4 correctly propagate an outerjoin-change table as well, except for

the case of propagation through the outerjoin operator, for which we derive a different equation below.

Consider a view V = E1
fo
./ J

E2, where E1 and E2 are general view expressions. Suppose that the

expression E1 changes to to E1 t
U
θ 2E1 using its outerjoin-change table 2E1, where the refresh operator tU

θ

is an outerjoin-refresh operator. Let θ be (≡G ∧ p, FALSE), where p is a predicate, and G is a set of

attributes common to E1 and 2E1. The following row, which replaces the row (7) in Table 4, shows how to

propagate an outerjoin-change table 2E1 through the outerjoin operator.

7b E1
fo
./J

E2 (E1 t
U
θ 2E1)

fo
./J

E2 V tU1

θ1
(2E1

lo
./J

E2) (2E1
lo
./J

E2) Attrs(J) ⊆ G

As already mentioned, θ is (≡G ∧ p, FALSE) in the row above. Also,

• θ1 = (J 1, FALSE), where J 1 is ≡Attrs(E2) ∧ ((≡G ∧ p) ∨ (
∧

e1∈Attrs(E1)
LHS.e1 = NULL)), and

• U1 = <(A1, f), (A2, f), . . . , (Ak, f)>, where {A1,A2, . . . ,Ak} = Attrs(E1) and f(x, y) = y for all x, y.

Theorem 3 Assume that the refresh operator used in the expression of the third column in Table 4 is an

outerjoin-refresh operator.

(1) The change propagation equations given in Table 4, with the following two changes, correctly propagate

outerjoin-change tables.

• Disregard the condition in column 6 of the first row (selection view)

• Replace the seventh row by row (7b) given above

(2) The refresh operator derived in each of the refresh equations (column 4) is also an

outerjoin-refresh operator, except for the case of propagation through an aggregate operator (sixth row)

where the derived operator is an aggregate-refresh operator.

Proof: It is easy to see that the refresh operator in the fourth column with its new specifications is also an

outerjoin-refresh operator, except for in the sixth row where the derived operator is an aggregate-refresh

operator. As before, we refer to the expression E1 t
U
θ 2E1 as the change equation throughout this proof.

Selection: V = σq(E1). We use the characteristics of the outerjoin-refreshoperator to show that σq(E1 t
U
θ 2E1) =

σq(E1) t
U
θ σq(2E1).

First, we show that the refresh equation of V doesn’t miss any legitimate insertions into V affected by the

change equation E1 t
U
θ 2E1 . Let I be the set of tuples that is inserted into E1 due to the change equation.

We will show that σq(I) is inserted into V by the refresh equation, implying the result. Note that I is the set

of tuples in 2E1 that do not find a match in E1. As σq(I) ⊆ σq(2E1) = 2V , no tuple in σq(I) will find a

match in V ⊆ E1. Hence, σq(I) will be inserted into V using the refresh equation.

Now, we show that all insertions into V due to the refresh equation are legitimate. The refresh equation

may induce an insertion of the tuple 2v ∈ 2V into V if 2v doesn’t find a match in V . If 2v ∈ I, where I is

the set of tuples in 2E1 that don’t find a match in E1, then the insertion is obviously legitimate. Suppose,

2v /∈ I. This implies that 2v ∈ 2E1 found a match with a tuple e1 ∈ E1. Because of the specifications of

the outerjoin-refresh operator, the match results in the tuple e1 in E1 being updated to 2v by the change

equation E1 t
U
θ 2E1. Now note that as 2v ∈ 2V , it satisfies the selection condition q, and hence the tuple

19

2v (updated from e1 in E1) will be included in the expression σq(E1 t
U
θ 2E1) of the third column. Thus, the

insertion of 2v into V by the refresh equation is correct. As the match between tuples is one-to-one, the tuple

2v results in only one update in the table E1 due to the change equation, which as shown above corresponds

to the insertion of 2v into V due to the refresh equation.

In the refresh equation, if a tuple v ∈ V is updated by a tuple 2v ∈ 2V = σq(2E1), then v ∈ E1 would

have been updated by 2v ∈ 2E1 by the change equation too. According to the update characteristics of the

outerjoin-refresh operator, the tuple v is updated to 2v by 2v. Now, 2v satisfies the predicate p, hence

the updated tuple 2v is correctly retained in V by the refresh equation. This shows that the updates to V in

the refresh equation are legitimate.

The only updates the refresh equation might miss are of the kind where a tuple 2e1 ∈ 2E1 matches with

a tuple e′ ∈ σq(E) in the change equation. The match results in the tuple e′ being updated to 2e1. If 2e1

satisfies the condition p, then it is included in V by the change equation. In the refresh equation, as 2e1 ∈ 2V

doesn’t find a match in V , it is inserted into V . Hence, the desired effect is achieved.

Projection: V = ΠA(E1). If Attrs(θ) ⊆ A, then the information needed to decide the effect of a tuple 2e1 ∈ 2E1

on a tuple e1 ∈ E1, if any, is available in ΠA(e1). Hence, ΠA(2E1) can be applied directly to V = ΠA(E1).

Cross Product: V = E1 × E2. Consider (E1 × E2) t
U
θ1

(2E1 × E2), the refresh equation. Let us partition

the tables (E1 × E2) and (2E1 × E2) by the tuple values of E2. As J 1 and J 2 in θ1 include Attrs(E2), each of

the partitions is refreshed independently by the refresh equation. It is easy to see that a tuple <2e1, e2> ∈ 2V

will result in a match with a tuple <e1, e2> ∈ V due to θ1 in the refresh equation, if and only if the tuple

2e1 ∈ 2E1 matches with a tuple e1 ∈ E1 due to the parameter θ in the change equation. The match will

result in the same updates to the E1 attributes in both the expressions. Also, a tuple 2e1 ∈ 2E1 doesn’t find

a match in E1 if and only if the tuples in (2e1 × E2) ⊆ 2V do not find a match in V .

Join: V = E1 1J E2. Follows from the previous cases.

Union: V = E1] E2. As ((E1] E2) −· E2) = E1, the equivalence of the expressions is obvious.

Aggregation: V = πG′,f(A)(E1). Without loss of generality, we prove this case when k = 1. Let f1 = f and

A1 = A, the aggregated attribute. We assume that (G′ ⊆ G), A ∈ Attrs(U), U = <(A, f)>, and that f is a

distributive function. Consider tuples e1, e2, . . . , en in E1 such that they have the same G′ values, and let their

attribute A values be a1, a2, . . . , an. Assume that the tuples e1, . . . , el find matches with tuples 2e1, . . . , 2el in

2E1 due to the join condition J 1. Thus, ai = NULL and 2ei’s have the same G′ values as ei’s for 1 ≤ i ≤ l.

Also, the attribute A value of ei is updated to 2ai, for 1 ≤ i ≤ l, due to the update parameter U in the change

equation. Hence, due to the change equation the tuples e1, e2, . . . , en will result in an aggregated value of

f(2a1, 2a2, . . . , 2al, al+1, al+2, . . . , an) in the expression of the third column. Thus, we need to show that the

aggregated A value of the tuple v that is derived from e1, . . . , en in the view V = πG′,f(A)(E1) changes from

f(a1, a2, . . . , an) to f(2a1, 2a2, . . . , 2al, al+1, al+2, . . . , an) in the refresh equation. Now, by the definition of

2V , the tuples 2e1, . . . , 2el ∈ 2E1 will be grouped to yield the aggregated attribute value f(2a1, . . . , 2al) in

a tuple in 2V . The refresh equation of V then updates the aggregated value of the grouped value of eis from

f(a1, a2, . . . , ak) to f(f(a1, a2, . . . , an), f(2a1, . . . , 2al)) = f(al+1 , . . . , an, 2a1, . . . , 2al), as a1 to al are NULL.

Hence the refresh equation of V correctly updates the aggregated attribute value of the tuple v in V .

All insertions into E1 due to 2E1 will be converted to aggregated insertions into V by the refresh equation.

Outerjoin: V = E1
fo
./J

E2. Let M (⊆ 2E1) be the set of tuples in 2E1 that find a match in E1 in the change

equation due to J 1 = (≡G ∧ p). Note that G is a set of attributes in E1 and p is a predicate over the rest

of the attributes in E1. Consider m ∈ M and that m finds a match with a tuple e1 in E1 due to J 1. Each

m results in a set of tuples Em
2 = m lo

./J
E2 in 2V = 2E1

fo
./J

E2, where Em
2 may consist of just one tuple

<m, NULL>. Each tuple em
2 = <m, e2> ∈ Em

2 will find a match with the corresponding tuple v = <e1, e2> ∈ V

20

(note that e2 may be NULL) due to the join condition J 1 ∧ ≡Attrs(E2). As Attrs(J) ⊆ G and <m, e2> ∈ Em
2 ,

the tuple v exists in V (even if e2 = NULL). The tuple <e1, e2> gets updated to <m, e2> due to the update

list U1 in the refresh equation of V . This update affected in V by the refresh equation is correct because

m ∈ 2E1 also updates e1 ∈ E1 to m in the change equation, as Attrs(G) ∪Attrs(U) = Attrs(E1), and m and

e1 have the same G attributes. Thus, all the updates of tuples in E1 due to the change equation are correctly

applied to V by 2V in the refresh equation.

Lets consider the other set of tuples I in 2E1, that are inserted into E1 (because they didn’t find a match

in E1). Let i ∈ I. The tuple i results in the set of tuples Ei
2 = i lo

./J
E2 in 2V . Tuple <i, e2> ∈ Ei

2 may find

a match v in V due to the condition ≡Attrs(E2) ∧ (
∧

e∈Attrs(E1)
LHS.e = NULL) in J 1. In that case the tuple

v is correctly updated to <i, e2>. All the other unmatched tuples in 2V are correctly inserted into V .

As the propagation of an outerjoin-change table through an aggregate operator results in an aggregate-refresh

operator, the resulting change table is an aggregate-change table. This is an exception to Definitions 1 and 3,

not mentioned earlier to avoid confusion.

EXAMPLE 5 Consider a view V = πA,B,F=sum(D),H=sum(E),Num=Count(∗)(σA>5((R
fo
./C=D

S) 1 T)), where

R(A, B, C), S(D, E), and T (A, B, L) are base relations, and 1 is the natural join operation, i.e., a join with

the join condition (≡{A,B}). Recall that for computing the SUM aggregates, the attribute value of NULL is taken

as 0, provided at least one tuple has a non-NULL value.

For clarity of presentation, assume that V1 = R fo
./C=D

S, V2 = V1 1 T, V3 = σA>5(V2). Let us define

a predicate p as ((LHS.D = NULL) ∧ (LHS.E = NULL)), a predicate q as ((LHS.Num + RHS.Num) = 0),

an update list U1 as <(F, f), (H, f)>, and U as <(D, g), (E, g), (Num, g)>. Here, f(x, y) = y for all x, y,

g(x, y) = x + y for all x, y 6= NULL, and g(NULL, y) = y. We illustrate our techniques of maintaining views

involving outerjoin operators by deriving maintenance expressions for V in response to insertions, 4S, into

S. The first equation used for computing 2V1 is similar to that derived in Theorem 2. In this case, we have

insertions into S and hence, we use a right outerjoin operation instead.

2V1 = (R ro
./C=D

4S)

V1 = V1 t
U1

θ1
2V1, where θ1 is (≡Attrs(R) ∧ p, FALSE) [From Theorem 2]

2V2 = 2V1 1 T

V2 = V2 t
U1

θ2
2V2, where θ2 is (≡Attrs(R) ∪ Attrs(T) ∧ p, FALSE) [From (4) in Table 4]

2V3 = σA>5(2V2)

V3 = V3 t
U1

θ2
2V3 [From (1) in Table 4]

Now, in order to propagate the outerjoin-change table 2V3 through an aggregate operator, we need to replace

function f by g in the update parameter U1 = <(F, f), (H, f)> of the above refresh equation. Actually,

it is valid to replace f by g in U1, because an outerjoin-change table results in an update of only NULL

values. Hence, f in U1 could be restricted to having the first parameter as NULL, in which case f behaves

exactly as g. Note that g is essentially the SUM aggregate function extended for NULL input values. Thus, if

U2 = <(F, g), (H, g)>:

V3 = V3 t
U2

θ2
2V3

2V = πA,B,F=Sum(D),H=Sum(E),Num=Count(∗)(2V3)

V = V tU
θ 2V, where θ is (≡{A,B} ∧ ¬q, ≡{A,B} ∧ q) [From (6) in Table 4]

A similar analysis allows propagation of outerjoin-change tables through other aggregate functions. Note that

2V is an aggregate-change table, as tU
θ is an aggregate-refresh operator. Hence, propagation of 2V (for

21

views that use V as a subview) would be in accordance with change propagation equations for aggregate-change

tables (Theorem 1). 2

6.3 Propagation of Deletions through Outerjoin Operators

The changes in an outerjoin V = R fo
./J

S due to deletions from a base relation R cannot be summarized

in an outerjoin-change table within our restricted definition of the refresh operator. In this section, we

show that by using an extended definition of the refresh operator, we can apply changes summarized in an

appropriately defined change table to V in response to deletions from a base table.

Consider a simple outerjoin view V = R fo
./J

S. Let 5R be the set of deletions from R, and let Sset =

πAttrs(S),Num=Count(∗)(S). We define the OJDeletion-change table 2V that succinctly represents changes to

V in response to 5R as

2V = 5R lo
./J

Sset.

The view V is refreshed using the refresh equation V tU
θ 2V , where tU

θ is the OJDeletion-refreshoperator as

defined in Algorithm 1. Here, θ = (≡Attrs(V), (≡Attrs(S) ∧ Attrs(S) 6= NULL)) and U = <(A1, f), . . . , (An, f)>,

where f(x, y) = NULL for all x, y and {A1, . . . , Ak} = Attrs(R).

The OJDeletion-refresh algorithm (Algorithm 1) used to refresh the view V works as follows. A tuple

(r, s, l) in 2V comes from l copies of s in S and a tuple r in 5R. Thus, the tuple r belonged to R before

deletions and V has at least l copies of (r, s). Now, if there is another tuple v′ = (r1, s) ∈ V , then the l copies

of (r, s) can be deleted from V as a result of deletion of r from R. But, if no such v′ exists in V , then each of

the copies of (r, s) in V should be changed to (NULL, s), as the tuple s ∈ S now becomes a dangling tuple after

deletions from R. Thus, the l copies of (r, s) are updated accordingly in Algorithm 1. One can see that it is

essential to store in 2V the number of copies l of s from S. Also, note that the OJDeletion-refresh algorithm

doesn’t need to query any sources, and hence, can be executed very efficiently.

Algorithm 1 OJDeletion-Refresh Algorithm

Used to apply an OJDeletion-change table to its view

Input

View V (A1, . . . , An, B1, . . . , Bm)

OJDeletion-change Table 2V (A1, . . . , An, B1, . . . , Bm, Num)

Characteristics of the OJDeletion-refresh Parameters

θ = (J 1,J 2).J 1 is ≡Attrs(V) and J 2 is ≡G, where G = {B1, B2, . . . , Bm}

U = <(A1, f1), (A2, f2), . . . , (An, fn)>.

Output

Refreshed table V , i.e., V tU
θ 2V .

BEGIN

for each tuple 2v = (r, s, l) in 2V /∗ r is the value of U attributes, ∗/

/∗ s is the value of the G attributes, and l is an integer. ∗/

Let {v1, . . . , vl} be the tuples in V that match 2v due to the join condition J 1.

/∗ Note that there are at least l tuples in V that will match 2v due to J 1. ∗/

if there is a tuple v′ ∈ V such that v′ /∈ {v1, . . . , vl} and

v′ matches with 2v due to the join condition J 2

then Delete tuples v1, v2, . . . , vl from V ;

else Update each tuple v1, v2, . . . , vl in V using the specifications in U ;

end if;

end for;

22

New V

No. V θ = (J 1,J 2) Refresh Equation 2V Conditions

J 1 is ≡V

J 2 is ≡G

1 σq(E1) σq(E1 tU
θ 2E1) V tU

θ σq(2E1) σq(2E1) Attrs(q) ⊆ G

2 ΠA(E1) ΠA(E1 tU
θ 2E1) V tU

θ ΠA(2E1) ΠA(2E1) G ⊆ A

V tU
θ1

(2E1 × E2)

3 E1 × E2 (E1 tU
θ 2E1) × E2 θ1 = (J 1 ∧ ≡τ ,J 2 ∧ ≡τ) 2E1 × E2

τ = Attrs(E2)

V tU
θ1

(2E1 1J E2)

4 E1 1J E2 (E1 tU
θ 2E1) 1J E2 θ1 = (J 1 ∧ ≡τ ,J 2 ∧ ≡τ) 2E1 1J E2 Attrs(J) ⊆ G

τ = Attrs(E2)

5 E1] E2 (E1 tU
θ 2E1)] E2 ((V −· E2) tU

θ 2E1)] E2) 2E1

V tU
θ1

(2E1
lo
./

J
E2)

6 E1
fo
./

J
E2 (E1 tU

θ 2E1)
fo
./

J
E2 θ1 = (J 1 ∧ ≡τ ,J 2 ∧ ≡τ) (2E1

lo
./

J
E2) Attrs(J) ⊆ G

τ = Attrs(E1)

Table 5: Change propagation equations for propagating OJDeletion-change tables

return V ;

END. 3

Table 5 presents change propagation equations that are used to propagate an OJDeletion-change table

through various operators. The proof of Theorem 4 is omitted and can be found in [Gup00].

Theorem 4 Assume that the refresh operator used in the expression of the third column in Table 5 is an

OJDeletion-refresh operator. Then,

(1) the change propagation equations given in Table 5 for propagation of OJDeletion-change tables are

correct, i.e., for each row, the expression in the third column is equivalent to the refresh equation in the fourth

column, and

(2) the refresh operator derived in the refresh equation (column 4) is an OJDeletion-refresh operator

as well. 2

7 Optimality Issues

In this section, we discuss the optimality of our change-table incremental maintenance algorithm. In particular,

we show that our developed techniques result in the minimum number of sources (base relations) being queried.

Note that in a data warehouse, the dominant cost is the cost incurred in querying the sources.

Let us consider change-table techniques presented in this article for incremental maintenance of general

view expressions along with the following two minor optimizations:

23

• In computing a view, we tag the tuples in the result of a union operator with L/R depending on whether

the tuple comes from the left operand or the right operand. The above improvement makes propagation

of an aggregate and outerjoin-change table through a union operator very efficient. In essence, the refresh

equation of the fifth row in Table 4 will not involve E1 or E2.

• When computing the refresh equation, the view contents are used, whenever possible, to compute a

required subexpression using minimum number of source queries. For e.g., consider V = R× (S × T).

In response to insertions into R, to compute changes at V , we need to query (S × T) according to the

propagation equations in Table 4. Instead, we query R and compute (S × T) using the value of V ,

minimizing the number of source queries.

We incorporate the above two improvements into our change-table techniques and prove the following

result (see [Gup00] for the proof).

Theorem 5 Given an expression tree of a view V , the change-table technique queries the minimum number

of sources required in order to compute changes at each node in the expression tree. 2

We define an algorithm to be a change-propagating algorithm if it computes changes (in some form) at

each node in the given expression tree of the view. The above theorem shows that our change-table technique

is better than any change-propagating maintenance algorithm for a given expression tree (even in the presence

of singularity points). Although it is not necessary for an incremental maintenance algorithm to be change-

propagating, all the previously proposed maintenance algorithms fall in this category.

An interesting open problem is to design a provably optimal incremental maintenance algorithm under the

above cost model for maintenance of general view expressions (without restricting ourselves to the class of

change-propagating algorithms). We have focussed our recent work on adapting the maintenance algorithm

based on our change-table techniques to obtain an optimal approach. We conjecture that the change-table

technique with some minor improvements/optimizations can be translated into an optimal incremental main-

tenance algorithm under the above cost model.

8 Related Work

A large body of work exists describing different algorithms for incrementally maintaining materialized views [BLT86,

RK86, Han87, BCL89, CW91, QW91, GMS93, GLT94, GL95, CGL+96, GJM97, Qua97, GK98, LVM99, LV01,

KR02, ESWDR02, PSCP02]. Each work applies to different classes of views and has various advantages and

disadvantages. Below, we discuss some of the above algorithms.

Qian and Wiederhold in [QW91] present a technique (later corrected in [GLT94]) to propagate sets of

insertions and deletions through relational algebra operators without duplicates. The techniques in [QW91]

were extended to bag algebra by Griffin and Libkin in [GL95]. While [QW91] did not deal with aggregates

at all, [GL95] did consider aggregates when they are applied as the last operator in an expression, and when

there are no groupby columns. The work of [GL95] was further extended by Quass [Qua97] to include general

expressions involving aggregation. However, as illustrated in Section 1, the technique of [Qua97] works with

insertions and deletions, and is thereby less efficient, and more complex, than the change table technique

presented in this paper. None of [QW91, GL95, Qua97] can deal with outerjoins.

Gupta et al. [GMS93] also present algorithms for incrementally maintaining views with duplicates. Aggre-

gation is considered only for the case where a view is materialized at each aggregation node. Mumick et al. in

[MQM97] give an algorithm for efficiently maintaining a set of summary tables, where a summary table is the

result of applying a single aggregation over an SPJ expression over star schema tables in a data warehouse.

24

Thus, [MQM97] does not consider general view expressions involving aggregate operators. In this article, we

have generalized the concept of summary tables to our concept of aggregate-change tables to facilitate prop-

agation through various relational, aggregation, and outerjoin operators. Palpanas et al. in [PSCP02] extend

the above works ([GMS93, MQM97, Qua97]) by including non-distributive aggregate functions and optimizing

maintenance by efficiently recomputing only the set of affected groups. However, the views considered in

[PSCP02] are restricted to view expressions that have at most one aggregate operator as the last operator.

Also, views are not permitted to have duplicate rows. Based on some of the above techniques, Oracle 8.1

[BDD+98] and DB2 [LSPC00] support incremental maintenance for views that are formed by a single aggre-

gate over an equi-join view, but support only full refresh mode (i.e., complete recomputation) for general view

expressions involving aggregate operators. None of the above described works ([GMS93, MQM97, PSCP02])

considers outerjoin operators in view expressions.

Gupta et al. in [GJM97] present maintenance and self-maintenance algorithms to compute the incremental

changes to a materialized outerjoin view R fo
./ S, where R and S are base tables. The algorithms presented

in [GJM97] are procedural rather than algebraic, and do not apply to general view expressions containing

outerjoin operators. Similarly, Oracle 8.1 [BDD+98] supports incremental maintenance of equi-outerjoin

views, but supports only complete recomputation for general view expressions involving outerjoin operators.

In work done concurrently with ours, Griffin and Kumar in [GK98] extend the techniques of [GJM97] by

deriving propagation equations through outerjoin operators. As [GK98] propagates changes in the form of

insertions and deletions, their incremental algorithm is less efficient than our change-table techniques for

general view expressions, as illustrated in Example 1.

The problem of incremental view maintenance is closely related to the problem of self-maintainability

of views [GJM94, QGMW96, GJM97]. A view is defined as self-maintainable with respect to certain kinds

of changes if the view can be updated using the old view value and the changes, without accessing any base

relations. The change-table technique presented in this articles, in most cases, derives maintenance expressions

that do not refer to the base tables, even when such self-maintenance expressions were not possible using only

insertions and deletions as types of updates. Hence, the techniques presented in this article help in deriving

efficient self-maintenance expressions.

In other related works, Ali et al. [AFP00] solve the incremental maintenance problem for a large class

of views expressed in Object Query Language (OQL). Liu and Vincent in [LVM99, LV01] derive incremental

expressions for the general nested relational model which is used in warehouses and in XML data. El-Sayed

et al. in [KR02, ESWDR02] present an algebraic approach for incremental maintenance of materialized views

expressed in XQuery, an XML query language.

9 Conclusions

In this article, we have developed a change-table technique for incremental maintenance of general view

expressions involving aggregate and outerjoin operators. To the best of our knowledge, this is the first paper

to present algebraic expressions for maintaining general views involving aggregate and outerjoin operators.

Traditional maintenance techniques [QW91, GL95, Qua97] propagate insertions and deletions from the base

relations to the view through each of its operators. In contrast, we compute change tables at an aggregate

or outerjoin operator, and use change propagation equations to propagate the change tables through the

relational, aggregate and outerjoin operators. We show that the changes represented in change tables can be

applied to its corresponding materialized view using an appropriately defined refresh operator. The resulting

maintenance expressions for general view expressions are simple and very efficient compared to previous

techniques.

25

The change-table technique presents a new paradigm for view maintenance using change tables. The

maintenance expressions derived by the change-table techniques are usually self-maintenance expressions, as

they usually refer only to the view and the changes to the base tables, minimizing the number of queries to

the base tables. Such a paradigm is likely to encourage research into developing more efficient maintenance

and self-maintenance expressions than are possible using the insertion/deletion paradigm. For example, the

change-table technique can be used to (1) efficiently propagate certain kinds of deletions, and (2) for propa-

gating certain kinds of updates directly, without querying the sources. These extensions of our techniques are

discussed in [Gup00].

References

[AFP00] M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. Incremental maintenance of materialized

oql views. In Proceedings of the third ACM international workshop on Data warehousing and OLAP,

2000.

[BCL89] J. Blakeley, N. Coburn, and P. Larson. Updating derived relations: Detecting irrelevant and autonomously

computable updates. ACM Transactions on Database Systems, 14(3):369–400, September 1989.

[BDD+98] R. Bello, K. Dias, A. Downing, J. Feenan Jr., J. Finnerty, W. Norcott, H. Sun, A. Witkowski, and

M. Ziauddin. Materialized views in oracle. In Proceedings of International Conference on Very Large

Data Bases, pages 659–664, 1998.

[BLT86] J. Blakeley, P. Larson, and F. Tompa. Efficiently Updating Materialized Views. In Carlo Zaniolo, editor,

Proceedings of ACM SIGMOD 1986 International Conference on Management of Data, pages 61–71,

Washington, D.C., May 28-30 1986.

[BM90] Jose A. Blakeley and Nancy L. Martin. Join index, materialized view, and hybrid hash join: A performance

analysis. In Proceedings of the Sixth IEEE International Conference on Data Engineering, pages 256–263,

Los Angeles, CA, February 5-9 1990.

[BPP+93] B.Mitschang, H. Pirahesh, P. Pistor, B. Lindsay, and N. Sudkamp. Sql/xnf - processing composite objects

as abstractions over relational data. In Proceedings of the Ninth IEEE International Conference on Data

Engineering, Vienna, Austria, April 1993.

[BW89] T. Barsalou and G. Wiederhold. Knowledge based mapping of relations into objects. In Proceeding of

Computer Aided Design, 1989.

[BW90] B.S.Lee and G. Wiederhold. Outer joins and filters for instantiating objects from relationals databases

through views. Technical report, CIFE - Stanford University, 1990.

[CGL+96] L. Colby, T. Griffin, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred view maintenance. In

Proceedings of ACM SIGMOD 1996 International Conference on Management of Data, pages 469–480,

1996.

[CKL+97] L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting multiple view maintenance

policies. In Proceedings of ACM SIGMOD 1997 International Conference on Management of Data, pages

405–416, 1997.

[CW91] Stefano Ceri and Jennifer Widom. Deriving production rules for incremental view maintenance. In Guy M.

Lohman, Amilcar Sernadas, and Rafael Camps, editors, Proceedings of the Seventeenth International

Conference on Very Large Databases, pages 108–119, Barcelona, Spain, September 3-6 1991.

[ESWDR02] Maged EL-Sayed, Ling Wang, Luping Ding, and Elke A. Rundensteiner. An algebraic approach for

incremental maintenance of materialized xquery views. In Proceedings of the fourth international workshop

on Web information and data management, 2002.

26

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: A powerful approach to aggregation. In

Proceedings of the 21st International Conference on Very Large Databases, Zurich, Switzerland, September

11-15 1995.

[GJM94] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data integration using self-maintainable

views. Technical Memorandum 113880-941101-32, AT&T Bell Laboratories, November 1994.

[GJM96] A. Gupta, H. Jagadish, and I. S. Mumick. Data integration using self-maintainable views. In Proceedings

of the Fifth International Conference on Extending Database Technology, pages 140–144, Avignon, France,

March 1996. Industrial Session.

[GJM97] A. Gupta, H.V. Jagadish, and I.S. Mumick. Maintenance and self-maintenance of outerjoin views. In

Proceedings of the NGITS, Tel Aviv, Israel, June 1997.

[GK98] T. Griffin and B. Kumar. Algebraic change propagation for semijoin and outerjoin queries. SIGMOD

Record, 27(3), September 1998.

[GL95] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 316–327, San Jose, California, May

1995.

[GLT94] Timothy Griffin, Leonid Libkin, and Howard Trickey. A correction to “incremental recomputation of active

relational expressions” by Qian and Wiederhold. Technical report, AT&T Bell Laboratories, Murray Hill

NJ, 1994.

[GM95] A. Gupta and I. Mumick. Maintenance of materialized views: Problems, techniques, and applica tions.

Special Issue on Materialized Views and Data Warehousing, IEEE Data Engineering Bulletin, 18(2):3–19,

June 1995.

[GMS93] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incrementally. In Proceedings of ACM

SIGMOD 1993 International Conference on Management of Data, Washington, DC, May 26-28 1993.

[Gup00] H. Gupta. Selection and Maintenance of Views in a Data Warehouses. PhD thesis, Stanford University,

Department of Computer Science, 2000. Chapter 4.

[Han87] E. Hanson. A performance analysis of view materialization strategies. In Umeshwar Dayal and Irv

Traiger, editors, Proceedings of ACM SIGMOD 1987 International Conference on Management of Data,

pages 440–453, San Francisco, CA, May 27-29 1987.

[KR02] Andreas Koeller and Elke A. Rundensteiner. Incremental maintenance of schema-restructuring views. In

Proceedings of the International Conference on Extending Database Technology (EDBT), 2002.

[LSPC00] W. Lehner, R. Sidle, H. Pirahesh, and R. Cochrane. Maintenance of automatic summary tables. In

Proceedings of the ACM Conference on Management of Data (SIGMOD), pages 512–513, 2000.

[LV01] Jixue Liu and Millist Vincent. Derivation of incremental equations for nested relations. In Proceedings of

the 12th Australasian conference on Database technologies, 2001.

[LVM99] Jixue Liu, Millist Vincent, and Mukesh Mohania. Incremental maintenance of nested relational views. In

Proceedings of the International Symposium on Database Engineering and Applications (IDEAS), 1999.

[MQM97] I. Mumick, D. Quass, and B. Mumick. Maintenance of data cubes and summary tables in a warehouse.

In Proceedings of the ACM SIGMOD International Conference of Mangement of Data, Tucson, Arizona,

June 1997.

[PSCP02] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental maintenance for non-distributive

aggregate functions. In Proceedings of the International Conference on Very Large Data Bases, 2002.

[QGMW96] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making views self-maintainable for data warehousing.

In Proceedings of the Fifth International Conference on Parallel and Distributed Information Systems

(PDIS), 1996.

27

[QM97] D. Quass and I. Mumick. Optimizing the refresh of materialized views. Unpublished Manuscript, 1997.

[Qua97] D. Quass. Materialized Views in Data Warehouses. PhD thesis, Stanford University, Department of

Computer Science, 1997. Chapter 4. Preliminary version appears as Maintenance Expressions for Views

with Aggregation in the ACM Workshop on Materialized Views, 1996.

[QW91] Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active relational expressions. IEEE

Transactions on Knowledge and Data Engineering, pages 337–341, 1991.

[RK86] N. Roussopoulos and H. Kang. Principles and techniques in the design of ADMS±. IEEE Computer,

pages 19–25, December 1986.

[RU96] A. Rajaraman and J. Ullman. Integrating information by outerjoins and full disjunctions. In Proceedings

of the Fifteenth Symposium on Principles of Database Systems (PODS), Montreal, Canada, June 1996.

Recommended by Yannis Ioannidis, Area Editor.

A Maintenance expressions derived using techniques in [Qua97]

For our purposes, its not important to understand the maintenance expressions given below and they are given

here primarily to show their complexity. We have used 1 to denote a natural join operation, 1G to denote an

equi-join operation on a set of attributes G, >< to denote an anti-semijoin operation, and πA to denote the

generalized projection symbol, which represent the groupby operation of SQL as described in [GHQ95] and

Section 1. Also, l.a and r.a refer to the attribute a of the left and right operands respectively.

Let A1 = {storeID, itemID, SumSISales, NumSISales}

Let A1,ins = {storeID, itemID, price, count = 1}

Let A1,del = {storeID, itemID, price = −price, count = −1}

Let A1,δ = {storeID, itemID, SumSISales = sum(price), NumSISales = sum(count)}

δsales = ΠA1,ins
(σ(date>1/1/95)(4sales))] ΠA1,del

(σ(date>1/1/95)(5sales))

5(SISales) = Πr.a|a∈A1
(πA1,δ

(δsales) 1storeID,itemID SISales)

4(SISales) = Π{(r.a+l.a)|a∈A1}(σr.NumSISales+l.NumSISales>0(πA1,δ
(δsales) 1storeID,itemID SISales))

] σl.NumSISales>0 (πA1,δ
(δsales) ><storeID,itemID SISales)

Let A2 = {city, SumCiSales, NumCiSales}

Let A2,ins = {city, SumSISales, NumSISales}

Let A2,del = {city, SumSISales = −SumSISales, NumSISales = −NumSISales}

Let A2,δ = {city, SumCiSales = sum(SumSISales), NumCiSales = sum(NumSISales)}

δ2 = ΠA2,ins
(4SISales 1 stores)] ΠA2,del

(5SISales 1 stores)

5(CitySales) = Πr.a|a∈A2
(πA2,δ

(δ2) 1storeID,itemID CitySales)

4(CitySales) = Π{(r.a+l.a)|a∈A2}(σr.NumCiSales+l.NumCiSales>0(πA2,δ
(δ2) 1city CitySales))

] σl.NumCiSales>0 (πA2,δ
(δ2) ><city CitySales)

28

Let A3 = {category, SumCaSales, NumCaSales}

Let A3,ins = {category, SumSISales, NumSISales}

Let A3,del = {category, SumSISales = −SumSISales, NumSISales = −NumSISales}

Let A3,δ = {category, SumCaSales = sum(SumSISales), NumCaSales = sum(NumSISales)}

δ3 = ΠA3,ins
(4SISales 1 items)] ΠA3,del

(5SISales 1 items)

5(CategorySales) = Π3.a|a∈A3
(πA3,δ

(δ3) 1storeID,itemID CategorySales)

4(CategorySales) = Π{(r.a+l.a)|a∈A3}(σr.NumCaSales+l.NumCaSales>0(πA3,δ
(δ3) 1category CategorySales))

] σl.NumCaSales>0 (πA3,δ
(δ3) ><category CategorySales)

Computing Tuple Accesses. As SISales is not materialized, computing tuples of 4SISales requires that

for each tuple in πA1,δ
(δsales), we must look up all tuples of sales that have the same storeID and itemID

values. Given the database sizes of Table 1, assume that each tuple of SISales is derived from 1,000 tuples

of sales on an average. Thus, computing 600 tuples of 4SISales requires 600,000 tuple accesses. We need

11,000 accesses to read the base relations stores and items into main-memory. Even assuming that rest

of the computation can be done in main memory, the total number of tuples accesses to refresh the views

CitySales and CategorySales is 10, 000 + 600, 000 + 11, 000 + 2, 020, where 2,020 tuple accesses are due to

the final tuple updates in CitySales and CategorySales. Note that each update requires a read and a write

access.

29

