Query Processing

• $Q \rightarrow$ Query Plan

Example:

Select B,D
From R,S
Where R.A = “c” ∧ S.E = 2 ∧ R.C=S.C
How do we execute query?

One idea

- Do Cartesian product
- Select tuples
- Do projection
Relational Algebra - can be used to describe plans...

Plan I

\[\Pi_{B,D} \left(\sigma_{R.A=\text{"c"}} \land S.E=2 \land R.C=S.C} \right) \times \left(R \times S \right) \]

OR: \[\Pi_{B,D} \left[\sigma_{R.A=\text{"c"}} \land S.E=2 \land R.C=S.C } \right] (R \times S) \]
Another idea:

Plan II

\[\pi_{B,D} \sigma_{R.A = c} \sigma_{S.E = 2} \]

R \quad S

natural join
R

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>45</td>
</tr>
</tbody>
</table>

\(\sigma(R)\)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

\(\sigma(S)\)

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>z</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>y</td>
<td>3</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>z</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>y</td>
<td>3</td>
</tr>
</tbody>
</table>
Plan III

Use R.A and S.C Indexes

(1) Use R.A index to select R tuples with R.A = “c”

(2) For each R.C value found, use S.C index to find matching tuples

(3) Eliminate S tuples S.E ≠ 2

(4) Join matching R,S tuples, project B,D attributes and place in result
R

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>45</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>z</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>y</td>
<td>3</td>
</tr>
</tbody>
</table>

The diagram shows a query processing operation with conditions and outputs as follows:

- **A** = “c”
- **C**
 - `<c,2,10>`
 - `<10,x,2>`
- Check if `check = 2`?
 - Output: `<2,x>`
- Next tuple: `<c,7,15>`
<p>Query Processing</p>

SQL query → parse → parse tree → convert → logical query plan → apply laws → "improved" l.q.p

estimate result sizes → l.q.p. + sizes

More-Improved l.q.p → Enumerate physical plans

{(P1,C1),(P2,C2)…} → estimate costs → pick best → Pi → answer
Key Steps in Query Processing

Logical query plan(s)
→ Physical query plans
→ “Best” Physical plan.

- Improving logical/physical plans requires cost estimation – which in turn requires size estimation of intermediate results.
- Size estimation techniques: Keep data statistics, and use certain models (later slides).
Example

SELECT title
FROM StarsIn
WHERE starName IN (SELECT name
 FROM MovieStar
 WHERE birthdate LIKE '%%1960');

(Find the movies with stars born in 1960)
Example: Parse Tree

\(<\text{Query}>)
\(<\text{SFW}>\)

SELECT \(<\text{SelList}>\) FROM \(<\text{FromList}>\) WHERE \(<\text{Condition}>\)

\(<\text{Attribute}>\) \(<\text{RelName}>\) \(<\text{Tuple}>\) IN \(<\text{Query}>\)

\text{title} \text{StarsIn} \text{starName}

\select\text{name} \text{MovieStar} \text{birthDate}\text{\%1960}'
Example: Generating Relational Algebra

\[\Pi_{\text{title}} \]

\[\sigma \]

\[\text{StarsIn} \quad \text{<condition>} \]

\[\text{<tuple>} \quad \text{IN} \quad \Pi_{\text{name}} \]

\[\text{<attribute>} \quad \sigma_{\text{birthdate LIKE \text{‘%1960’}}} \]

\[\text{starName} \quad \text{MovieStar} \]
Example: Logical Query Plan

\[\Pi_{\text{title}} \sigma_{\text{starName}=\text{name}} \times \Pi_{\text{name}} \sigma_{\text{birthdate} \text{ LIKE} \ '%1960'} \times \Pi_{\text{name}} \sigma_{\text{birthdate} \text{ LIKE} \ '%1960'} \times \Pi_{\text{MovieStar}} \]
Example: Improved Logical Query Plan

\[\Pi_{\text{title}} \]
\[\star \text{starName}=\text{name} \]
\[\Pi_{\text{name}} \]
\[\sigma \text{birthdate LIKE `1960`} \]
\[\text{MovieStar} \]

Question: Push project to StarsIn?
Example: Estimate Result Sizes

StarsIn

Need expected size

\[\Pi \sigma \]

MovieStar
Example: One Physical Plan

Hash join

SEQ scan
StarsIn

Parameters: join order, memory size, ...

index scan
MovieStar

Parameters: Select Condition,...
Example: Estimate costs

\[
\begin{align*}
& \text{L.Q.P} \\
& P_1 \quad P_2 \quad \ldots \quad P_n \\
& \quad C_1 \quad C_2 \quad \ldots \quad C_n
\end{align*}
\]

Pick best!
Query Processing

SQL query

<table>
<thead>
<tr>
<th>parse</th>
<th>parse tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>convert</td>
<td></td>
</tr>
<tr>
<td>logical query plan</td>
<td></td>
</tr>
<tr>
<td>apply laws</td>
<td></td>
</tr>
<tr>
<td>"improved" l.q.p</td>
<td></td>
</tr>
<tr>
<td>estimate result sizes</td>
<td></td>
</tr>
<tr>
<td>l.q.p. + sizes</td>
<td></td>
</tr>
<tr>
<td>More-Improved l.q.p</td>
<td></td>
</tr>
</tbody>
</table>

More-Improved l.q.p

Enumerate physical plans

{(P1,C1),(P2,C2),...} → estimate costs

pick best

execute

Pi

answer

statistics
Rules: Joins, products, union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]

\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]

\[R \cup S = S \cup R \]
\[R \cup (S \cup T) = (R \cup S) \cup T \]
Rules: Selects

\[\sigma_{p_1 \land p_2}(R) = \sigma_{p_1} \left[\sigma_{p_2}(R) \right] \]

\[\sigma_{p_1 \lor p_2}(R) = \left[\sigma_{p_1}(R) \right] U \left[\sigma_{p_2}(R) \right] \]
Rules: \(\sigma + \bowtie \) combined

Let \(p = \) predicate with only R attribs
\(q = \) predicate with only S attribs
\(m = \) predicate with only R, S attribs

\[
\begin{align*}
\sigma_p (R \bowtie S) &= [\sigma_p (R)] \bowtie S \\
\sigma_q (R \bowtie S) &= R \bowtie [\sigma_q (S)]
\end{align*}
\]
Derived Rules: $\sigma + \bowtie$ combined

\[\sigma_{p \land q} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)] \]

\[\sigma_{p \land q \land m} (R \bowtie S) = \]

\[\sigma_{m} \left[(\sigma_p R) \bowtie (\sigma_q S) \right] \]

\[\sigma_{p v q} (R \bowtie S) = \]

\[\left[(\sigma_p R) \bowtie S \right] \cup \left[R \bowtie (\sigma_q S) \right] \]
Rules: π, σ combined

Let $x =$ subset of R attributes
$z =$ attributes in predicate P
(subset of R attributes)

$$\pi_x[\sigma_p(R)] = \pi_x\{\sigma_p[\pi_x(R)]\}$$
Rules: σ, U combined

$\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S)$

$\sigma_p(R - S) = \sigma_p(R) - S = \sigma_p(R) - \sigma_p(S)$
Which are “good” transformations?

- \(\sigma_{p1 \land p2} (R) \rightarrow \sigma_{p1} [\sigma_{p2} (R)] \)
- \(\sigma_p (R \bowtie S) \rightarrow [\sigma_p (R)] \bowtie S \)
- \(R \bowtie S \rightarrow S \bowtie R \)
- \(\pi_x [\sigma_p (R)] \rightarrow \pi_x \{ \sigma_p [\pi_{xz} (R)] \} \)
Bottom line:

- No transformation is *always* good
- Usually good: early selections
Query Processing

1. **SQL query**
 - **Parse**
 - Parse tree
 - **Convert**
 - Logical query plan
 - **Apply laws**
 - "Improved" l.q.p
 - **Estimate result sizes**
 - l.q.p. + sizes
 - More-Improved l.q.p
 - **Enumerate physical plans**
 - \(\{P_1, P_2, \ldots\} \)

2. **Estimate costs**
 - \(\{(P_1, C_1), (P_2, C_2), \ldots\} \)
 - **Pick best**
 - **Execute**
 - **Answer**
Estimating result size

- Keep statistics for relation R
 - $T(R)$: # tuples in R
 - $S(R)$: # bytes in each R tuple
 - $B(R)$: # blocks to hold all R tuples
 - $V(R, A)$: # distinct values in R for attribute A
Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
</tr>
</tbody>
</table>

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

\[T(R) = 5 \quad S(R) = 37 \]

\[V(R,A) = 3 \quad V(R,C) = 5 \]

\[V(R,B) = 1 \quad V(R,D) = 4 \]
Size estimates for $W = R_1 \times R_2$

\[T(W) = T(R_1) \times T(R_2) \]

\[S(W) = S(R_1) + S(R_2) \]
Size estimate for $W = \sigma_{A=a}(R)$

$S(W) = S(R)$

$T(W) = ?$
Example

\[W = \sigma_{z=\text{val}(R)}; \quad T(W) = \frac{T(R)}{V(R,Z)} \]

(under assumption of uniform distribution of values of \(Z \) over \(V(R,Z) \))
\[W = \sigma_{z \geq \text{val}} (R) \]. \quad T(W) = f \times T(R)

<table>
<thead>
<tr>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Min = 1 \quad V(R, Z) = 10
Max = 20

\[f = \frac{20 - 15 + 1}{20} = \frac{6}{20} \] (fraction of range)
Size estimate for $W = R_1 \times \square R_2$

Let $x =$ attributes of R_1
$y =$ attributes of R_2

Case 1

$X \cap Y = \emptyset$

Same as $R_1 \times R_2$
Case 2

\[W = R_1 \Join R_2 \quad X \cap Y = A \]

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R2</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
</table>

Assumption (containment of values):

\[V(R_1, A) \leq V(R_2, A) \implies \text{Every A value in R1 is in R2} \]
\[V(R_2, A) \leq V(R_1, A) \implies \text{Every A value in R2 is in R1} \]
Computing $T(W)$ when $V(R1,A) \leq V(R2,A)$

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R2</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take 1 tuple

1 tuple matches with $\frac{T(R2)}{V(R2,A)}$ tuples...

so $T(W) = \frac{T(R2) \times T(R1)}{V(R2, A)}$
• \(V(R_1,A) \leq V(R_2,A) \) \(T(W) = T(R_2) T(R_1) \frac{V(R_2,A)}{V(R_1,A)} \)

• \(V(R_2,A) \leq V(R_1,A) \) \(T(W) = T(R_2) T(R_1) \frac{V(R_2,A)}{V(R_1,A)} \)

[A is common attribute]
In general, \(W = R_1 \bowtie R_2 \)

\[
T(W) = \frac{T(R_2) T(R_1)}{\max \{ V(R_1, A), V(R_2, A) \}}
\]
In all cases:

$$S(W) = S(R1) + S(R2) - S(A)$$

size of attribute A
Similarly, we can estimate sizes of:

\[\Pi_{AB} (R); \quad \sigma_{A=a \land B=b} (R); \]

\[R \bowtie S \] with common attributes. A,B,C;

Union, intersection, diff, Sec. 16.4.7
Note: for complex expressions, need intermediate T,S,V results.

E.g. \(W = \left[\sigma_{A=a} (R1) \right] \bowtie R2 \)

Treat as relation \(U \)

\[
\begin{align*}
T(U) & = T(R1)/V(R1,A) \\
S(U) & = S(R1) \\
V(U,\ast) & = ?? \quad \text{(Needed for } T(W)\text{)}
\end{align*}
\]
To estimate V_s

E.g., $U = \sigma_{A=a}(R1)$

Say $R1$ has attributes A,B,C,D

$V(U, A) = 1$ \hspace{1cm} (exact)

$V(U, B) = V(R1, B)$ \hspace{1cm} (guess)

$V(U, C) = V(R1,C)$ \hspace{1cm} (guess)

$V(U, D) = V(R1,D)$ \hspace{1cm} (guess)
For Joins \[U = R1(A,B) \bowtie R2(A,C) \]

\[
V(U,A) = \min \{ V(R1, A), V(R2, A) \}
\]
\[
V(U,B) = V(R1, B)
\]
\[
V(U,C) = V(R2, C)
\]

[called “preservation of value sets” assumption]
Example:

$$Z = R_1(A,B) \bowtie R_2(B,C) \bowtie R_3(C,D)$$

<table>
<thead>
<tr>
<th>R1</th>
<th>T(R1) = 1000</th>
<th>V(R1,A)=50</th>
<th>V(R1,B)=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>T(R2) = 2000</td>
<td>V(R2,B)=200</td>
<td>V(R2,C)=300</td>
</tr>
<tr>
<td>R3</td>
<td>T(R3) = 3000</td>
<td>V(R3,C)=90</td>
<td>V(R3,D)=500</td>
</tr>
</tbody>
</table>
Partial Result: \(U = R \bowtie S \)

\[
\begin{align*}
T(U) &= 1000 \times 2000 \\
&= 200 \\
V(U,A) &= 50 \\
V(U,B) &= 100 \\
V(U,C) &= 300
\end{align*}
\]
$$Z = U \bowtie R3$$

$$T(Z) = \frac{1000 \times 2000 \times 3000}{200 \times 300}$$

\begin{align*}
V(Z,A) &= 50 \\
V(Z,B) &= 100 \\
V(Z,C) &= 90 \\
V(Z,D) &= 500
\end{align*}
Recap

• Estimating size of results is an “art”
• Computing Statistics: Scan, Sample.
• Also, statistics must be kept up to date…

• Other Statistics:
 – Histograms (equi-height, equi-width, most-freq.)
• Next: Using size estimates to improve an LQP.
Improve LPQ with Size

- Size estimates can also help improve the LQP.
 - But, need some heuristic to estimate costs.
 - Good heuristic: Cost = Sum of intermediate-result sizes.
 - Next Slide: Example.
Ex: Improve LQP with Sizes

- $R(a,b)$: $T(R)=5000$, $V(R,a)=50$, $V(R,b)=100$
- $S(b,c)$: $T(S) = 2000$, $V(S,b)=200$, $V(S,c)=100$.

$\delta(\sigma_p(R \ JOIN \ S))$. Where p is $(R.a=20)$.

Two choices:
1. $\delta(\sigma_p(R)) \ JOIN (\delta (S))$
2. $\delta(\sigma_p(R) \ JOIN \ S)$

Cost Model = Sum of the sizes of intermediate results. [1100 vs 1150]
Query Processing

1. SQL query
2. Parse
 - Parse tree
3. Convert
4. Logical query plan
5. Apply laws
 - "Improved" L.Q.P.
6. Estimate result sizes
 - L.Q.P. + sizes
7. More-Improved L.Q.P.
8. Enumerate physical plans
 - \{P1,P2,\ldots\}
9. Estimate costs
10. Pick best
11. Execute
12. Answer

Statistics

\{\,(P1,C1),(P2,C2),\ldots,\}\
Chapter 15

SQL query

parse

parse tree

convert

logical query plan

apply laws

“improved” l.q.p

estimate result sizes

l.q.p. + sizes

More-Improved l.q.p

Enumerate physical plans

\{P1, P2, \ldots\}

\{(P1, C1), (P2, C2), \ldots\}

Pi

pick best

estimate costs

execute

answer

statistics

Himanshu Gupta
SQL query → parse → parse tree → convert → logical query plan → apply laws → “improved” l.q.p → estimate result sizes → l.q.p. + sizes → More-Improved l.q.p

Done (previous slides)

Pi

answer

statistics

execute

pick best

{P1,P2,.....}

Enumerate physical plans

estimate costs
SQL query

parse

parse tree

convert

logical query plan

apply laws

“improved” l.q.p

estimate result sizes

l.q.p. + sizes

More-Improved l.q.p

Enumerate physical plans

{(P1,C1),(P2,C2).....}

answer

pi

execute

pick best

estimate costs

statistics

Next few slides …
LQP vs. PQP

• LQP is a high-level expression-tree.
• PQP is (LQP + more execution details such as):
 – Order/grouping of join, union, intersection, etc.
 – Choice of join algorithm, etc.
 – Additional operators such as scanning, sorting, etc.
 – Intermediate steps between two operations. E.g., sorting, storage, pipelining, etc.
Generating and comparing physical plans

LQP \rightarrow PQP

Generate
Pruning
Estimate Cost
Select

Pick Min
PQP Enumeration Heuristics

1. Various techniques (details skipped):
 - Top-down
 - Bottom-up
 - Heuristics
 - Branch and Bound
 - Hill Climbing
 - Dynamic Programming
 - Selinger-style Optimization (Improved DP)
Join Ordering

• R1 x R2 x R3 x ….. Rn (join of n tables).

• How many possible orderings?
• Join-selectivity.
• Left-deep, Right-deep trees.
• Dynamic Programming approach.
PQP Selection Example

Pipelining vs. Materialization

• (R join S) join U
• 5000, 10000, 10000 blocks respectively.
• (R join S) is of size k (we’ll consider different k)
• We’ll only use hash-joins
• Memory size: 101 blocks.
Example (contd)

• (R join S) join U.

R join S

• 100 buckets at most.

• R-buckets have 50 tuples each. So, need 51 buffers for the second pass.

• **Pipeline:** Use remaining 50 buffers to join the result with U.

 – If k < 49, then keep (R join S) in memory, and read U one block at a time.
Example (continued)

- If \(k < 49 \), then read \(U \) one block at a time, and do everything in main memory. \(\text{Cost} = 55k \).
- If \(k > 49 \), but \(< 5000 \):
 - First, hash all tables. \(\text{Hash U with 50 buckets} \).
 - When doing \(R \) join \(S \), use the remaining 50 buffers to “hash” \((R \) join \(S) \) result into the 50 buckets.
 - Each bucket of \((R \) join \(S) \) is of size 100.
 - Then, do two-pass hash join of \((R \) join \(S) \) with \(U \).
 - \(\text{Cost} = 50000 + 15000 + (k + (10000 + k)) \)
Example – contd.

• If $k > 5000$:
 – Last step will require a 3-pass join, since each bucket of $(R \text{ join } S)$ as well as U is more than 100 blocks (buckets of U are 200 blocks each).
 – Better: **No pipelining.** Write $(R \text{ join } S)$. Then, do 2-pass hash-join with U (now the buckets of U are 100 blocks each).

Cost $= 45000 + k + 3(10000 + k) = 75000 + 4k$