Recap and Schedule

• Till Now:
 - Query Languages: Relational Algebra; SQL

• Today:
 - Datalog – A logical query language.
 - SQL Recursion.
Logical Query Languages

Motivation:

1. Logical rules extend more naturally to recursive queries than does relational algebra.
 - Used in SQL recursion.
2. Logical rules form the basis for many information-integration systems and applications.
Tables as Predicates

• The basic premise of logical data model is to view tables as *predicates*. E.g.,

• Table \(R(A,B,C) = \{<1,2,4>, <1,2,3>, <1,1,1>\} \) (i.e., a table with three tuples).

• **Predicate** \(R(x,y,z) \) is true/false depending on whether \(<x,y,z> \) is a tuple in \(R \). Therefore,
 - \(R(1,2,4) \) is TRUE
 - \(R(1,3,3) \) is FALSE
Datalog Terminology

Likes(drinker, beer); Sells(bar, beer, price); Frequentes(drinker, bar)

Happy(d) <- Frequentes(d,bar) AND Likes(d,beer) AND Sells(bar,beer,p)

• Above = rule.
• Left side = head.
• Right side = AND of subgoals = body

• Head and subgoals consist of:
 ➢ Predicates: Relation name or arithmetic predicate
 ➢ Arguments: Variables or constants.
• Subgoals (not head) may optionally be negated by NOT.
 ➢ “NOT X(..)” is true iff “X(..)” if false, and vice-versa.
Meaning of Rules

Head is true if:

- Some values for variables make all the subgoals true.
- Natural join of subgoals and project the head variables (for simple rules – without negations or arithmetic predicates)

Example

Previous rule equivalent to

\[\text{Happy}(d) = \pi_{\text{drinker}}(\text{Frequents} \Join \text{Likes} \Join \text{Sells}) \]
Datalog Rule: AND, OR, NOT

• The “AND” in the rule is implicit. So, we just write:

 Happy(d) <- Frequents(d,bar), Likes(d,beer),
 Sells(bar,beer,p)

• Multiple rules signify an “OR” or union. So,

 Good(d) <- Likes(d, “Miller”)
 Good(d) <- Likes(d, “Bud”)

A drinker “d” is “Good” if he likes Bud or Miller.

• Subgoals (not head) may optionally be negated by NOT.
 “NOT X(..)” is true iff “X(..)” if false, and vice-versa.

 Sad(d) <- Frequents(d,bar), NOT Sells(d, “Miller”)

 A drinker “d” is “Sad” if he frequents SOME bar that does not sell Miller.
Evaluation of (Non-Recursive) Rules

- Consider all possible assignments of values to variables.
- For each assignment:
 - If all subgoals are true, add the head to the result relation.

[Most important slide]
Evaluation: Example

S(x,y) <- R(x,z) AND R(z,y) AND NOT R(x,y)

\[R = \begin{array}{c|c}
A & B \\
\hline
1 & 2 \\
2 & 3 \\
\end{array} \]

First subgoal true for:
1. \(x \rightarrow 1, z \rightarrow 2 \).
2. \(x \rightarrow 2, z \rightarrow 3 \).

Case (1): \(y \rightarrow 3 \) makes 2\(^{nd}\) and 3\(^{rd}\) subgoals true.

- Thus, add \((x,y) = (1,3)\) to relation \(S\).
Evaluation: Example

\[S(x, y) <- R(x, z) \text{ AND } R(z, y) \text{ AND NOT } R(x, y) \]

\[
R = \begin{array}{c|c}
A & B \\
1 & 2 \\
2 & 3 \\
\end{array}
\]

2. \(x \rightarrow 2, z \rightarrow 3. \)

Case (2): No \(y \) value makes the 2\(^{nd} \) subgoal true.

- Thus, no other tuple added to \(S \).

- \(S = \{(1,3)\} \)
Safety

Examples

- \(S(x) \leftarrow R(y) \)
- \(S(x) \leftarrow \text{NOT } R(x) \)
- \(S(x) \leftarrow R(y) \text{ AND } x < y \)

In each case, the result is infinite, even if \(R \) is finite.

Safety: If \(x \) appears in either

1. The head,
2. A negated subgoal, or
3. An arithmetic comparison,

then \(x \) must also appear in a *nonnegated, relational* subgoal in the body.

Datalog Programs

• A collection of rules is a *Datalog program*.
• Relations divide into two classes:
 - EDB = *extensional database* = relation in DB.
 - IDB = *intensional database* = relation defined by one or more rules.

• A relation must be IDB or EDB, not both.
 - Thus, EDB cannot appear as a head.
SQL to Datalog Conversion

Beers(name, manf); Sells(bar, beer, price)

Find the manufacturers of the beers Joe sells.

```
SELECT manf
FROM Beers
WHERE name IN(SELECT beer
    FROM Sells
    WHERE bar = 'Joe''s Bar');
```

Equivalent Datalog program

```
JoeSells(b) <- Sells('Joe''s Bar', b, p)
Answer(m) <- JoeSells(b) AND Beers(b,m)
```

EDBs: Beers, Sells
IDBs: JoeSells, Answer
Class Exercise: Graphs

• Node(v) : v is a node.
• Edge(x, y): (x,y) is an edge

• Write Datalog Programs for:
 ➢ Find pairs of nodes connected by a path of length 2.
 ➢ Find isolated nodes (no edges).
 ➢ Find pair of nodes that are \textit{at least} 4 hops apart.
Expressive Power of Datalog

• Nonrecursive Datalog = Core relational algebra.
• Datalog simulates SQL select-from-where without aggregation and grouping.
• Recursive Datalog (next) expresses queries that cannot be expressed in SQL.
• But none of these languages have full expressive power (*Turing completeness*).
Recursion

Example

\[
\text{Sib}(x,y) \leftarrow \text{Par}(x,p) \text{ AND } \text{Par}(y,p) \text{ AND } x \neq y
\]

\[
\text{Cousin}(x,y) \leftarrow \text{Sib}(x,y)
\]

\[
\text{Cousin}(x,y) \leftarrow \text{Par}(x,xp), \text{Par}(y,yp), \text{Cousin}(xp,yp)
\]

• IDB predicate \(P \) depends on predicate \(Q \) if there is a rule with \(P \) in the head and \(Q \) in a subgoal.
• Draw a graph:
 - Nodes = IDB predicates
 - Arcs = \(P \rightarrow Q \) means \(P \) depends on \(Q \).
• Cycles if and only if recursive.
Evaluation of Recursive Rules
(Assume NO NEGATIONS)

Start
IDB = ∅

Apply rules to IDB, EDB

Change to IDB?

yes

no
done

Start
Example

EDB \text{Par} =

Note: \textbf{Sib} and \textbf{Cousin} are symmetric
- We mention only \((x,y)\) when both \((x,y)\) & \((y,x)\) are meant.
<table>
<thead>
<tr>
<th>Round</th>
<th>Sib</th>
<th>Cousin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Round 1</td>
<td>((b, c), (c, e))</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>add:</td>
<td>((g, h), (j, k))</td>
<td></td>
</tr>
<tr>
<td>Round 2</td>
<td>((b, c), (c, e))</td>
<td>((b, c), (c, e))</td>
</tr>
<tr>
<td>add:</td>
<td>((g, h), (j, k))</td>
<td>((g, h), (j, k))</td>
</tr>
<tr>
<td>Round 3</td>
<td>((f, g), (f, h))</td>
<td>((f, g), (f, h))</td>
</tr>
<tr>
<td>add:</td>
<td>((g, i), (h, i))</td>
<td>((g, i), (h, i))</td>
</tr>
<tr>
<td></td>
<td>((i, k))</td>
<td>((i, k))</td>
</tr>
<tr>
<td>Round 4</td>
<td>((k, k))</td>
<td>((k, k))</td>
</tr>
<tr>
<td>add:</td>
<td>((i, j))</td>
<td>((i, j))</td>
</tr>
</tbody>
</table>
Negation + Recursion: I

1. Negation “within” a recursion makes no sense.

E.g.: \(P(x) \leftarrow Q(x), \text{ NOT } P(x) \)

- \(Q = \{1,2\} \).
- Compute \(P \) iteratively?
 - Initially, \(P = \emptyset \).
 - Round 1: \(P = \{1,2\} \). Stopping here doesn’t seem right.
 - Round 2: \(P = \emptyset \)? Leads to a never-ending loop.
Negation + Recursion: II

2. However, the below is fine:

\[P(x) \leftarrow Q(x), P(x), \text{NOT } R(x) \]

The above is just equivalent to:

\[P(x) \leftarrow P(x), T(x) \]

where \(T = Q - R \).

So, when is negation ok with recursion?

- **Stratified negation.** It is an additional restraint on recursive rules (like safety) that tells us what programs are valid and how to evaluate them.
If the negation (i.e., NOT) is only over the EDBs, then the program can be evaluated using the classic approach (replacing NOT R by “R complement”)

GIVEN Tables

First Level Queries
(no “-” arcs inside)
Stratified Negation: Intuition

Second Level Queries

First-level COMPUTED Queries

GIVEN Tables
Stratum Graph

- Stratum graph:
 - Nodes = IDB predicates.
 - Arc $P \rightarrow Q$ if Q appears in the body of a rule with head P.
 - Label that arc “–” if Q is in a negated subgoal.

Example

$$P(x) \leftarrow Q(x) \text{ AND NOT } P(x)$$
Computing Strata (Levels)

- **Stratum** of an IDB predicate $A = \text{maximum number of } \neg \text{ arcs on any path from } A \text{ in the stratum graph.}
 - In Example 1, stratum of P is ∞.
 - In Example 2, stratum of Reach is 0; of NoReach is 1.

Stratified Negation

- A Datalog program is *stratified* if every IDB predicate has a finite stratum.

Stratified Model of Computation

- For stratified Datalog programs, we can compute the relations for the IDB predicates *lowest-stratum-first*.
Example

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)

NoReach

\[\xrightarrow{\text{Reach}}\]

- EDB:
 - Source = \{1\}
 - Arc = \{(1,2), (3,4), (4,3)\}
 - Target = \{2,3\}

- Compute \textbf{Reach} = \{1,2\}
- Compute \textbf{NoReach} = \{3\}
Datalog Recap

• Non-Recursive Datalog
 ➢ Equivalent to SQL without aggregates.
 ➢ Evaluate by considering all attribute-value combinations (see slide #7).

• Recursive Datalog (without NOTs)
 ➢ Evaluate “iteratively” until no change.

• Datalog with recursion and NOTs
 ➢ Assign “levels” to defined IDBs, and evaluate them one level at a time.
Class Exercise: Graphs

• Nodes(G, v) : Graph G has a node v
• Edge(G, x, y): Graph G has an edge (x,y)

• Write Datalog Programs for:
 ➢ Find all nodes reachable from “A” in each graph
 ➢ Find all “connected” graphs
 ➢ Find distance between each pair of nodes in each graph. Distance = length of shortest path
SQL Recursion
SQL Recursion: Example

- Find Sally’s cousins, using EDB Par(child, parent).

 WITH

 Sib(x,y) AS

 SELECT p1.child, p2.child
 FROM Par p1, Par p2
 WHERE p1.parent = p2.parent AND p1.child <> p2.child,

 RECURSIVE Cousin(x,y) AS

 Sib

 UNION

 (SELECT p1.child, p2.child
 FROM Par p1, Par p2, Cousin
 WHERE p1.parent = Cousin.x AND p2.parent = Cousin.y)

 SELECT y
 FROM Cousin
 WHERE x = 'Sally';
Stratified SQL: Intuition

• The key problem with “recursion + negation” in Datalog was:
 ➢ Negation over a changing (during evaluation) table can result in “invalidation of a previously valid explanation” (and hence, *deletion* of already-added tuples from IDBs) – leading to an infinite loop.

• In SQL, the set of operations that can result in such deletions – are many. We identify them using the concept of “monotonicity”.

Stratified SQL: High Level Plan

1. Define “monotonicity,” to identify operators that may result in deletions of added tuples.
2. Generalize stratum graph to apply to SQL queries.
 - Non-monotonicity replaces Datalog NOT
3. Define legal SQL recursions in terms of stratum graph.
Monotonicity Example

Monotonicity

If relation P is a function of relation Q (and perhaps other things), we say P is monotone in Q if adding tuples to Q cannot cause any tuple of P to be deleted.

SELECT AVG(price) FROM Sells
WHERE bar = 'Joe''s Bar';

• Adding a tuple to Sells may change a tuple in result.
• Hence, the old tuple in result may be lost.
• Thus, the above query is non-monotonic in Sells.
Monotonicity: More Examples

• $Q = R - S$.
 ➢ Q is monotonic in R, but is non-monotonic in S.

• ‘“NOT”’ in where clause doesn’t imply non-monotonicity. E.g.,

 Select *
 From R
 Where NOT R.a = 5.

 The above query is monotonic in R.
NOT Doesn’t Mean Nonmonotone

RECURSIVE Cousin(x,y) AS
 Sib
 UNION
 (SELECT p1.child, p2.child
 FROM Par p1, Par p2, Cousin
 WHERE p1.parent = Cousin.x AND NOT (p2.parent = Cousin.y))

• Does SQ depend negatively on Cousin? No.
 ➢ An added tuple to Cousin doesn’t delete tuples from SQ.
 ➢ May add new tuples to SQ.
Generalizing Stratum Graph to SQL

- Nodes in the stratum graph: relations, subqueries.
- Arc $P \rightarrow Q$ if P “depends” on Q.
- Label the arc – if P is *not* monotone in Q.
- Requirement for legal SQL recursion: finite strata.
Example

- For the Sib/Cousin example, there are three nodes: **Sib**, **Cousin**, and **SQ** (the second term of the union in the rule for **Cousin**).

- No nonmonotonicity, hence legal.
A Nonmonotonic Example

RECURSIVE Cousin(x,y) AS
 Sib
 EXCEPT
 (SELECT p1.child, p2.child
 FROM Par p1, Par p2, Cousin
 WHERE p1.parent = Cousin.x AND p2.parent = Cousin.y)

 • Now, adding to the result of the subquery can delete Cousin facts; i.e., Cousin is nonmonotone in SQ.
 • Infinite number of ’s in cycle, so illegal in SQL.
SQL Recursion

Syntax

WITH

<stuff that looks like Datalog rules>
<an SQL query about EDB, IDB>

• Rule =

[RECURSIVE] \(R(<\text{arguments}>) \) AS

<SQL query>