
Constructing Pairwise Disjoint Paths with Few

Links

Himanshu Gupta

SUNY, Stony Brook

and

Rephael Wenger

Ohio State University

Let P be a simple polygon and let {(u1, u′
1), (u2, u′

2), . . . , (um, u′
m)} be a set of m pairs of distinct

vertices of P where for every distinct i, j ≤ m, there exist pairwise disjoint (nonintersecting) paths

connecting ui to u′
i and uj to u′

j . We wish to construct m pairwise disjoint paths in the interior
of P connecting ui to u′

i for i = 1, . . . ,m, with minimal total number of line segments. We give

an approximation algorithm that constructs such a set of paths using O(M) line segments in
O(n logm + M log m) time, where M is the number of line segments in the optimal solution and

n is the size of the polygon.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: link paths, noncrossing, polygon, isomorphic triangulations

1. INTRODUCTION

Let P be a simple polygon and let u and u′ be two distinct vertices of P . The link
distance from u to u′ is the minimum number of line segments (also called links)
required to connect u to u′ by a polygonal path lying in P . A polygonal path that
uses the minimum number of required line segments is called a minimum link path.
Clearly, there may be more than one such path. Suri [1986a] gave a linear time
algorithm for determining the link distance and a minimal link path between two
vertices.

A minimum link path from u to u′ may intersect the boundary of P at many
points other than u and u′. The interior link distance from u to u′ is the minimum
number of line segments required to connect u to u′ by a polygonal path through
the interior of P . Such an interior polygonal path that uses the minimum number

Extended Abstract appeared in Proceedings of the Intl. Workshop on Algorithms and Data Struc-
tures (WADS), 1997.

Authors Address: Himanshu Gupta, SUNY, Stony Brook NY 11794. Rephael Wenger, Ohio State
University, Columbus, OH 43210 (supported by NSA grant MDA904-93-H-3026).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · H. Gupta and R. Wenger

of required line segments is called a minimum link interior path. The interior link
distance from u to u′ may differ greatly from the link distance between the two
points. (See Figure 1). The (interior) link diameter of a polygon is the greatest
(interior) link distance between any two points in the polygon.

u′u

Fig. 1. Minimum link and minimum interior link paths.

Let u1, u
′
1, u2, u

′
2 be four vertices lying in the given order around P . By virtue

of the relative locations of these four vertices, there are nonintersecting paths, ζ1

and ζ2, connecting u1 to u′
1 and u2 to u′

2, respectively. However, it is possible that
every minimum interior link path connecting u1 to u′

1 intersects every minimum
interior link path connecting u2 to u′

2. See Figure 2. To simultaneously connect u1

to u′
1 and u2 to u′

2 by nonintersecting interior paths requires more line segments. In
general, two additional line segments suffice to construct two such nonintersecting
interior paths [Gupta and Wenger 1997].

Pairwise Disjoint Link Paths (PDLP) Problem. A set {(u1, u
′
1), (u2, u

′
2), . . . , (um, u′

m)}
of m pairs of distinct vertices of P is untangled if there exists a set of pairwise disjoint
paths connecting each ui to u′

i. The pairwise disjoint link paths (PDLP) problem
can be defined as follows. Given an untangled set {(u1, u

′
1), (u2, u

′
2), . . . , (um, u′

m)}
of m pairs of distinct vertices of P , construct an optimal set of pairwise disjoint
(nonintersecting) interior paths that connects each ui to u′

i and uses minimum total
number of line segments. We were unable to give a polynomial time algorithm for
this problem or to determine if the problem is NP-hard. Instead we present an
algorithm in Sections 4 that finds a solution within a constant factor of the optimal
solution. We note here that the problem of finding m vertex-disjoint paths in a
planar graph for m arbitrary pairs of vertices is known to be NP-complete [Garey
and Johnson 1979]. For the case of m = 2, the above vertex-disjoint paths problem
in planar graphs is solvable in polynomial time [Shiloach 1980].

u1

u′1 u′2

u2

Fig. 2. Intersecting minimum link paths.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 3

Motivation. The motivation for reducing the number of links in a path comes
from environments such as motion planning, broadcasting transmission, or VLSI,
where a turn is more expensive than moving along a straight-line motion (see [Suri
1986b]). In particular, in VLSI circuits the number of bends corresponds to the
number of vias used. Thus, link distance problems have been studied extensively
in computational geometry [Suri 1986b; Aggarwal et al. 1993; 1994; Alsuwaiyel and
Lee 1993; Arkin et al. 1995; 1992]. Motivation for the noncrossing paths comes
from VLSI layout design ([Takahashi et al. 1992; 1996; 1993; Lee and Yang 1996;
Yang et al. 1997]). Our motivation for the PDLP problem comes from our earlier
work on constructing isomorphic triangulations between simple polygons in [Gupta
and Wenger 1997]. A triangulation TP of P (possibly with interior vertices) is
isomorphic to a triangulation TQ of Q if there is a one-to-one, onto mapping f
between the vertices of TP and the vertices of TQ such that p, p′, p′′ are vertices
of a triangle in TP if and only if f(p), f(p′), f(p′′) are vertices of a triangle in TQ.
The size of a triangulation is the total number of vertices, edges and triangles in
the triangulation. The main result in this paper improves the output size of our
approximation algorithm [Gupta and Wenger 1997] for constructing isomorphic
triangulations from O(M1 log n + n log2 n) to O(M1 logn), where n is the input
size and M1 is the size of the optimal solution. We outline this improvement in
Section 6.

Related Work. Takahashi et al. [1992; 1996] present an O(n logn) time optimal
algorithm for the problem of finding noncrossing paths between pairs of vertices on
two specified face boundaries (one outer and one inner face) of a planar graph of size
n. In their subsequent work, Takahashi et al. [1993] address the problem of finding
noncrossing rectilinear paths inside an outer rectangle with rectangular obstacles.
All of the above works have considered the problem of finding noncrossing paths
in limited contexts with the aim of minimizing the total geodesic distance, i.e., the
total Euclidean distance. For a simple polygon of n vertices, Papadopoulou [1999]
presents an O(n+m) time algorithm to optimally compute the set of m noncrossing
shortest (geodesically) paths between m pairs of points on the polygon’s boundary.
In all of the above cases, the paths are allowed to overlap but not cross. The
link distance related problems seem to more difficult to solve than corresponding
problems using the geodesic distance measure. The difficulties stem from the fact
that several minimum link paths may exist connecting a given pair of vertices, while
the minimum geodesic path is always unique.

In [Yang et al. 1997], the authors address the problem of finding two noncrossing
rectilinear paths within a rectilinear polygon, with an aim to minimize both the
total geodesic length and the number of bends. They present a linear time optimal
algorithm for the problem. A survey of finding noncrossing paths in rectangular
domain appears in [Lee and Yang 1996].

Prior Work. The PDLP problem was first discussed in [Gupta and Wenger 1997],
where we proposed an algorithm that returns a solution of size O(n + L + m log m)
in O(n+L+m logm) time, where L is the sum of the interior link distances between
each pair of given vertices. Note that the optimal size is at least L. In [Gupta and
Wenger 1997], we also claimed without proof that there are instances where the
optimal solution requires at least O(n + L + m logm) line segments. In this article,

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · H. Gupta and R. Wenger

we start with constructing a class of polygons wherein the optimal solution of the
PDLP problem requires O(n + L + m log m) links. The main result of this article
is an approximation algorithm that constructs pairwise disjoint paths using O(M)
line segments in O(n log m + M log m) time, where M is the minimum number of
line segments required. In essence, the approximation algorithm is an improvement
over our prior result in [Gupta and Wenger 1997] when M = o(m log m).

Notation {xi}. Throughout this article, we use the notation {xi} to denote the
set of elements {x1, . . . , xy}, where the value y is either evident from the context or
not relevant. For instance, we use {ui} to denote the set of vertices {u1, u2, . . . , uy}
where the value y depends on the context, {si} to to denote the set of segments
{s1, s2, . . . , sm}, etc.

Article Organization. The rest of the article is organized as follows. In the
next section, we present some definitions and notations related to visibility in a
polygon. In Section 3, we show by construction that there are instances of the
PDLP problem that require Ω(n logn) links where n is the size of the input polygon.
We note that subsequent sections do not depend on the discussion in Section 3.
In Section 4, we describe our approximation algorithm for the PDLP problem.
Section 5 contains the proof of a lemma (about partitioning a set of line segments)
used in Section 4.1. In Section 6, we use our approximation algorithm for the PDLP
problem to improve our prior result in [Gupta and Wenger 1997] on construction
of isomorphic triangulations between simple polygons.

2. VISIBILITY

The construction of pairwise disjoint paths uses many of the ideas and notation
developed in the study of polygon visibility. (See [Goodman and O’Rourke 1997,
Chapter 25].) In this section, we present some basic definitions and notation that
we will use throughout this paper.

Definition 1. (Interior of an Edge.) Interior of an edge e is the open line
segment of e without its end points. We use int(e) to denote interior of an edge e.
2

Definition 2. (Visibility; Clear Visibility.) Consider points p and p′ in a poly-
gon P . Point p is visible from point p′ if p = p′ or if P contains the open line
segment (p, p′). Point p is clearly visible from point p′ if p = p′ or if the interior of
P contains the open line segment (p, p′).

Let P be a simple polygon and TP be a triangulation of P . Let t1 be a point in
P , or an edge of P or TP , or a triangle of TP . Similarly, let t2 be a point in P , or
an edge of P or TP , or a triangle of TP . We say that t1 is (clearly) visible1 from t2
in P if there are points p1 ∈ t1 and p2 ∈ t2 such that p1 is (clearly) visible from
p2. 2

1This definition of visibility is sometimes called weak visibility as opposed to strong visibility where
every point in t1 must be visible from every point in t2. Throughout this paper, visibility refers

to weak visibility.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 5

e

Fig. 3. The clear visibility polygon bVis(e) for an edge e.

Definition 3. (Visibility Polygons.) The (clear) visibility polygon from a point
p in P is the set of points in P (clearly) visible from p. The (clear) visibility polygon
from a line segment e ⊆ P is the set of points in P (clearly) visible from e. (See
Figure 3.)

We denote the visibility polygons as VisP (p) and VisP (e) and the clear visibility

polygons as V̂isP (p) and V̂isP (e). We use Vis(p), Vis(e), V̂is(p), and V̂is(e) when-
ever the polygon P is evident from the context. Note that Vis(p) and Vis(e) are

closed sets, while V̂is(p) and V̂is(e) are not. 2

Constructing Clear Visibility Polygons. Chazelle [1991] gives a linear time al-
gorithm for constructing a triangulation TP of P (using no vertices other than those
of P). Using this triangulation, Guibas et al. [1987] give a linear time algorithm
for constructing Vis(e) for an edge e of P . The algorithm in [Guibas et al. 1987]

can be easily modified to construct a clear visibility polygon V̂is(e) in O(ne) time
(after the O(|P |) triangulation construction), where ne is the number of triangles

of TP intersected by V̂is(e). Below, we describe the modifications required.
For each vertex u of P , the algorithm by Guibas et al. constructs a representation

of the shortest (minimum Euclidean length) paths π1(u) and π2(u) to the two
endpoints of e. Then, it uses that information to determine the subsegment Vis(e)∩
d, for each diagonal (triangulation edge) d of the given triangulation TP of P .
Finally, it traverses P in clockwise order connecting these subsegments by segments
in P .

A diagonal d is visible but not clearly visible from e if and only if Vis(e) ∩ d

is a single point. Otherwise, V̂is(e) ∩ d equals Vis(e) ∩ d except perhaps for the
endpoints. Thus, Guibas et al.’s algorithm can also construct the subsegments
V̂is(e) ∩ d and then, connect these subsegments by segments in P to form V̂is(e).
Moreover, the algorithm by Guibas et al. also constructs the points on e that are
visible to d, for each diagonal d visible to e. Thus, their algorithm can also be used
to determine V̂is(d) ∩ e for all diagonals d of TP .

Time Analysis. Instead of first constructing the shortest paths from the endpoints
of e to all the vertices, we check for clearly visible diagonals as the shortest paths
are constructed. Whenever a diagonal d is found that is not visible to e, the entire
region that is separated from e by d is not visible to e and hence, does not need

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · H. Gupta and R. Wenger

40

1.0

e∗

u4

u3

u2

u1

Fig. 4. Polygon with link diameter two such that pairwise disjoint paths from u1 to u4 and u2 to

u3 require six line segments.

to be processed. Thus, the construction of V̂is(e) of e and the set of segments

{e ∩ V̂is(d) : d is a diagonal of TP)} as described above can be done in O(ne)
time. In summary, we have the following theorem.

Theorem 1. Let P be a simple polygon and e be an edge of P . Given a trian-
gulation TP of P , the clear visibility region V̂is(e) of e and the set {e ∩ V̂is(d) :
d is a diagonal of TP } can be constructed in O(ne) time, where ne is the number

of triangles in TP intersected by V̂is(e).

3. WORST CASE BOUNDS

In this section, we construct polygons with n vertices, interior link diameter of
two, and (n + 1)/8 pairs of vertices, such that any set of pairwise disjoint paths
connecting the pairs requires a total of Ω(n log n) links. We first give a general
outline of the construction.

Our polygon P will have a set {u1, u2, . . . , u(n+1)/4} of (n + 1)/4 vertices on the
vertical line x = 0. These vertices will be endpoints for the (n + 1)/8 paths. One
edge e∗ of the polygon will lie on the vertical line x = 1. All other vertices and edges
of the polygon will be between these two vertical lines. See Figure 4. Each point
in this polygon is visible from e∗. The clear visibility polygon, V̂is(ui), from each
vertex ui is a “visibility” triangle with one edge on e∗. These visibility triangles,
V̂is(ui), intersect and “cross” over one another. Thus, every pair (ui, uj) can be

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 7

connected by a line segment from ui to a point p in V̂is(ui) ∩ V̂is(uj) and then
by a line segment from p to uj . On the other hand, given the two pairs (u1, u4)
and (u2, u3), either the path from u1 to u4 or the path from u2 to u3 must have

an additional vertex in V̂is(u1) ∩ V̂is(u2). Similarly, one of those paths must have

an additional vertex in V̂is(u3)∩ V̂is(u4). Thus, pairwise disjoint paths connecting
those pairs must use a total of six, not four, line segments.

More generally, we can imagine the set of vertices {ui} as leaves of a balanced

binary tree. The clear visibility polygons, {V̂is(ui)} will again be “visibility” tri-
angles which intersect and “cross” over one another. Each internal node of the
binary tree represents the intersections of the visibility triangles of the leaves of
the left subtree with the intersections of the visibility triangles of the leaves of the
right subtree. Each such set of intersections will be clustered in a quadrilateral.
Sweeping the polygon and quadrilaterals from left (x = 0) to right (x = 1) will
correspond to sweeping the binary tree from bottom to top. This arrangement of
the visibility triangles will force many of the pairwise disjoint paths to have Ω(logn)
line segments. It is easy to construct polygons as described above. Below, we give
a complete construction of such a polygon with precise coordinates.

Construction of Ω(n log n) case. We now give a formal construction of a polygon
P with n = 2k+1 − 1 vertices and (n + 1)/8 pairs of vertices such that any set of
pairwise disjoint paths connecting the pairs requires a total of Ω(n log n) links.
We start by defining two functions f and g that we will use in specifying the line
segments that bound the polygon P .

Definition 4. (Functions f(a) and g(a).) Each non-negative integer a < 2k

can be represented in binary as the sum of powers of two as follows.

a =

k−1∑

i=0

αi2
i, αi ∈ {0, 1}.

We define f(a) and g(a) as:

f(a) =

k−1∑

i=1

αi8
i,

g(a) =

k−1∑

i=0

(1 − αi)4
i.

Note that f(a) = f(a + 1) when a is even, as in the definition of f the summation
starts from i = 1. 2

Definition 5. (la, e∗, and the polygon P .) As shown in Figure 5, we define the
following. Here, we use [p, q] to denote the closed line segment connecting points p
and q.

— la = [(0, f(a)), (1, 2k−1g(a))].2

2Using (1, g(a)) will work just as well but the 2k−1 factor generates a more symmetric polygon.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · H. Gupta and R. Wenger

40

u4 = (0, f(6))

u3 = (0, f(4))

u2 = (0, f(2))

u1 = (0, f(0))
1.0

(1, 4g(7))

(1, 4g(6))

(1, 4g(5))

(1, 4g(4))

(1, 4g(3))

(1, 4g(2))

(1, 4g(1))

(1, 4g(0))

l0

l1

l2

l3

l4

l5
l6

l7

Fig. 5. Line segments la connecting the points (0, f(a)) to (1,2k−1g(a)) for a = 0, . . . , 7 for k = 3.
Note that (0, f(a)) = (0, f(a + 1)) for even a.

— e∗ = [(1, 2k−1g(0)), (1, 0)], i.e., joining the extreme points on x = 1.

— Polygon P is defined as the union of all the bounded regions in the arrange-
ment of {la : a = 0, . . . , 2k − 1} ∪ {e∗}. See Figure 4.

2

For even a, we have f(a) = f(a + 1) and thus, the line segments la and la+1

intersect on the y-axis. Let ui = (l2i−1 ∩ l2i−2). The vertices of P on the y-
axis are exactly these intersection points viz. {u1, u2, . . . , u2k−1}. Note that ui =
(0, f(2i− 1)) = (0, f(2i− 2)). Now, pair each vertex ui with the vertex u2k−1−(i−1)

for i = 1, . . . , 2k−2, constructing 2k−2 = (n + 1)/8 pairs of vertices of P . We
claim that any set of non-intersecting paths connecting these pairs in P requires at
least (1/32)n log2 n links for even k. We first show that the relative position of the
intersection points of two lines la and lb can be determined by the most significant
bit in which a and b differ.

Lemma 1. If the most significant bit in which a and b differ is less than the most
significant bit in which a′ and b′ differ, then la ∩ lb is to the left of la′ ∩ lb′ .

Proof: The intersection of segment la and lb has x-coordinate
(

1 + 2k−1 g(b) − g(a)

f(a) − f(b)

)−1

,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 9

whenever a 6= b (and hence, f(a) 6= f(b)). If a =
∑

i=0..k−1 αi2
i, αi ∈ {0, 1}, and

b =
∑

i=0..k−1 βi2
i, βi ∈ {0, 1}, then

f(a) − f(b) =
k−1∑

i=1

(αi − βi)8
i, and

g(b) − g(a) =
k−1∑

i=0

(αi − βi)4
i.

Let j > 0 be the most significant bit in which a and b differ. Then,

g(b) − g(a)

f(a) − f(b)
≤

4j + 4j−1 + 4j−2 + · · ·+ 4 + 1

8j + 8j−1 + 8j−2 + · · ·+ 8
=

7

3

(
4j+1 − 1

8j+1 − 8

)
, and

g(b) − g(a)

f(a) − f(b)
≥

4j − 4j−1 − 4j−2 − · · · − 4 − 1

8j − 8j−1 − 8j−2 − · · · − 8
=

7

3

(
2 × 4j + 1

6 × 8j + 8

)
.

Thus,

7

3

(
2 × 4j + 1

6 × 8j + 8

)
≤

g(b) − g(a)

f(a) − f(b)
≤

7

3

(
4 × 4j − 1

8 × 8j − 8

)
.

If j + 1 is the most significant bit in which a′ and b′ differ, then

g(b′) − g(a′)

f(a′) − f(b′)
≤

7

3

(
4 × 4j+1 − 1

8 × 8j+1 − 8

)
<

7

3

(
2 × 4j + 1

6 × 8j + 8

)
≤

g(b) − g(a)

f(a) − f(b)
.

Thus,
(

1 + 2k−1 g(b′) − g(a′)

f(a′) − f(b′)

)−1

>

(
1 + 2k−1 g(b) − g(a)

f(a) − f(b)

)−1

,

and the intersection point of la and lb is to the left of the intersection point of la′

and lb′ . This is also true if a and b differ only in the zero’th bit, since then la ∩ lb
lies on the y-axis (extreme right).

Recall that the polygon P is a union of all the bounded regions in the arrangement
of {la : a = 0, . . . , 2k − 1} ∪ {e∗}, where e∗ is the line segment joining the extreme
points on the line x = 1. (See Figure 4.) The vertices of P on the y-axis are
{u1, u2, . . . , u2k−1}, where ui = (0, f(2i − 1)).

Proposition 1.

(1) Polygon P has n = 2k+1 − 1 vertices.

(2) Polygon P has interior link diameter two.

(3) Any family of pairwise disjoint paths in P connecting ui to u2k−1−(i−1) for

i = 1, . . . , 2k−2 must contain Ω(k2k) = Ω(n log2 n) line segments.

Proof: Let {u1, u2, . . . , u2k−1}, the set of vertices of P on the y-axis.

Number of Vertices. Consider the vertices {ui} as leaves of a balanced binary
tree T , where the leaves are ordered by i. Associate the line segments l2i−2 and l2i−1

with the leaf containing ui. Also, associate each internal node µ with the set Iµ of
intersections of the line segments of the left subtree leaves with the line segments of

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · H. Gupta and R. Wenger

60

80

20

40

0.5 1.0

R3

R4

R1

R2

R5

Diamond containing Iµ

Rµ

Fig. 6. The diamond containing the intersection points in Iµ, and the subpolygon Rµ dividing
polygon P into subpolygons R1, R2, R3, R4 and R5. Here, k = 3 and µ is the root of T (i.e.,

h = k − 1).

the right subtree leaves. For each leaf µ, let Iµ = {ui = l2i−2∩ l2i−1}. By Lemma 1,
for each of the 2k−1 − 1 internal nodes Iµ, the intersection points of all pairs of
line segments of the left subtree leaves lie to the left of any point in Iµ. Thus,
the “lowest” and “highest” line segments of the left subtree leaves bound all the
points in Iµ. Similarly, the lowest and highest line segments of the right subtree
leaves bound all the points in Iµ. The intersection of these four lowest/highest
line segments gives four unique points in Iµ whose convex hull is a diamond (�)
containing Iµ. (See Figures 6 and 7). The three leftmost vertices of this diamond
are vertices of P . Thus the 2k−1 − 1 internal nodes generate 3(2k−1 − 1) polygon
vertices. Polygon P has 2k−1 vertices on the line x = 0 and two more vertices on
the line x = 1, so the total number n of vertices of P is 2k+1 − 1.

Interior Link Diameter. First, we show that for any pair of points q, q′ in
P , V̂is(q) ∩ V̂is(q′) 6= ∅. If q ∈ V̂is(ui) and q′ ∈ V̂is(uj) for some ui, uj, then

V̂is(q) ∩ V̂is(q′) 6= ∅, since V̂is(ui) and V̂is(uj) intersect for any ui, uj. If q (or q′)

doesn’t belong to V̂is(ui) for any ui, then e∗ ∈ V̂is(q) and hence, V̂is(q) ∩ V̂is(q′)

is not null. Thus, for any q, q′ in P , V̂is(q) ∩ V̂is(q′) 6= ∅. Now, q can be connected

to any other point q′ by a line segment from q to p ∈ V̂is(q) ∩ V̂is(q′) and then, by
a line segment from p to q′. Thus, the interior link diameter of P is two.

Pairwise Disjoint Paths. For each internal node µ in the balanced binary tree

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 11

e∗

u6

u3

u7

u2

u1

u8

u5

u4

h3210

The four vertices of

Rµ at h = 2

Diamond containing Iµ at h = 3

Fig. 7. Polygon P for k = 4, the diamond containing the intersection points in Iµ at h = 3, and
the subpolygon Rµ (the four vertices of Rµ pointed by the arrows shown) for a node µ at height

h = 2. The corresponding subpolygon R5 (not explicitly shown) contains the edge e∗ and the

vertices u5 to u8 .

T , let ql
µ and qr

µ be the leftmost and rightmost points in Iµ. As shown in Figure 6,

let Rµ be the simple polygon with vertices {ql
µ.left, qr

µ, ql
µ.right, ql

µ}, where µ.left
and µ.right are the left and right children of µ. Let {ζi} be a set of pairwise disjoint
paths connecting ui to u2k−(i−1) for i = 1, . . . , 2k−2. Let h be the height of µ in
the tree T . In the next paragraph, we will show that Rµ must contain at least
2h−2 path vertices of {ζi} when 1 < h < (k − 1), at least 2k−2 path vertices when
h = k − 1, and at least one path vertex when h = 1. Assume k is even. Since
the polygons Rµ where µ has odd height are pairwise disjoint and there are 2k−1−h

polygons Rµ at height h, we find that the polygons Rµ where µ has odd height
together contain at least 2k−2+((k−6)/2+1)2(h−2)+(k−1−h) +2k−2 = (k +4)2k−4

path vertices. Thus, the pairwise disjoint paths {ζi} contain at least (1/32)n log2 n
line segments. For odd values of k, a similar argument gives an Ω(n logn) lower
bound with a somewhat lower constant.

Minimum number of vertices of {ζi} in Rµ. To complete the proof, we now show

that Rµ must contain at least 2h−2 path vertices of {ζi} when 1 < h < (k − 1), at
least 2k−2 path vertices when h = k − 1, and at least one path vertex when h = 1.
Deleting polygon Rµ from polygon P divides P into five pieces, four to the left and

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · H. Gupta and R. Wenger

one to the right. Label the regions to the left R1, R2, R3, R4, from bottom to top,
and the region to the right R5.

— When h = k − 1. In this case, µ is the root of T , as is the case in Figure 6. If
ζi has an endpoint in R1, then the other endpoint of ζi must be in R4. Such a
path ζi connecting a point in R1 to a point in R4 must contain a vertex in Rµ,
since any segment in P from R1 to R5 crosses (in Rµ) any segment from R4

to R5. Thus, the polygon Rµ must contain a vertex of each of the 2k−3 paths
connecting R1 to R4. Similarly, Rµ must contain a vertex of each of the 2k−3

paths connecting R2 to R3. Thus, Rµ contains at least 2k−2 path vertices.

— When 1 < h < k − 1. Any line segment in P with endpoints in R1 and R5

must intersect any line segment in P with endpoints in R4 and R5. See
Figure 7. Thus, if ζi and ζj are pairwise disjoint paths connecting R1 and R4

to R5 respectively, then either ζi or ζj has a vertex in Rµ. Now, if ζi has an
endpoint in R1, R2, R3 or R4, then the other endpoint of ζi must be in R5.
Since 2h−2 paths have endpoints in R1 and 2h−2 paths have endpoints in R4,
polygon Rµ contains at least 2h−2 vertices.

— When h = 1. If µ is an internal node of height one, then two paths ζi and
ζi+1 must cross Rµ. By reasoning similar to that given above, Rµ contains a
vertex (other than the endpoints) of at least one of these paths.

4. APPROXIMATION ALGORITHM

In this section, we design an approximation algorithm for the PDLP problem. We
develop our approximation algorithm using the following high-level steps.

(1) In Section 4.1, we motivate and define a function F for a partitioning of a given
set of line segments on a real line. We state (proof in Section 5) that there is
always a way to partition a given set of m line segments such that the value
of F for the partition is at least m/40. Such a partition of segments is key to
our design of an approximation algorithm for construction of disjoint paths in
a polygon.

(2) Section 4.2 contains the core idea of our article. Here, we design an approxi-
mation algorithm for the problem of constructing disjoint paths from a given
set of m vertices to a distinguished edge e∗ in a simple polygon P . We refer to
the above approximation algorithm as PathsToEdge. In Section 4.3, we use the
PathsToEdge algorithm to design an approximation algorithm for the PDLP
problem. The basic idea of PathsToEdge algorithm is as follows. First, we
construct appropriate segments (segments visible from diagonals bounding the

subpolygon V̂is(e∗)) on the distinguished edge e∗, and partition them using the
result of Section 4.1. The obtained partitioning of segments is used to construct
a subpolygon Γ in P that satisfies certain key properties. One of the properties
allows construction of disjoint paths in Γ from e∗ to required boundary chords
(m in number) using O(m) links; second property of Γ guarantees that at least
Ω(m) links are needed to construct such disjoint paths. Disjoint paths are con-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 13

structed recursively (and independently) in subpolygons obtained by deleting
Γ from P .

(3) In Section 4.3, we use the PathsToEgde algorithm to design an approximation
algorithm for the PDLP problem as follows. Given an instance of a PDLP
problem, viz., a polygon P and a set of vertex pairs, we determine a triangle
tu,u′ for each vertex pair (u, u′), and then, associate u and u′ with appropriate
edges of the triangle tu,v. We then use PathsToEdge algorithm to connect such
edge-vertex pairs by pairwise disjoint paths. Finally, the endpoints (on the
edges) of these paths are connected within the corresponding triangle.

4.1 The Function F – Partitioning of Visible Segments in an Edge-
Visible Polygon

Consider a polygon P such that every point in P is clearly visible from a distin-
guished edge e∗, and let {u1, u2, . . . , um} be a subset of vertices in (P − e∗) listed
in clockwise order around P starting from e∗. Consider the open non-null line seg-
ments {si = V̂is(ui)∩ e∗} on the edge e∗. In this section, we show how to partition
the line segments {si} in a way that helps us construct disjoint paths from {ui} to
e∗ using near-optimal number of links. In particular, we define a function F such
that a partitioning of {si} segments with large F value provides a way to construct
disjoint paths from {ui} to e∗ using near-optimal number of links. The algorithm
for such a partitioning of {si} is key to the design of our approximation algorithm
for the PDLP problem. As motivation, we consider two extremely specialized cases
based on the relative positions of the {si} line segments.

Fully Ordered Case. Assume that the midpoints of the line segments s1, . . . , sm

lie in counter-clockwise order3 around P . Then, each ui could be connected by
a single line segment to the midpoint of si, and these connecting line segments
would be pairwise disjoint. Actually, this condition is far too strong. As shown
in Figure 8 (a), we need to only choose some point γi ∈ si, not necessarily a
midpoint, such that the points γ1, . . . , γm lie in counter-clockwise order around P .
In particular, if the line segments {si} share some common interval, then the points
{ui} could be connected by disjoint line segments to points in the common interval.

Two Partitions in Reverse Order. Consider the case, where there is a point
γ that separates {s1, . . . , sbm/2c} from {sbm/2c+1, . . . , sm} such that the segments
from {sbm/2c+1, . . . , sm} precede γ which precedes {s1, . . . , sbm/2c} in counter-clockwise
order around P , as shown in Figure 8 (b). Let ζ1, . . . , ζm be a set of pairwise disjoint
paths connecting u1, . . . , um to e∗. The endpoints of ζ1, . . . , ζm on e∗ must lie in
counter-clockwise order around P . Now, either the endpoints of {ζ1, . . . , ζbm/2c} on
e∗ are separated by γ from {s1, . . . , sbm/2c}, or the endpoints on e∗ of {ζbm/2c+1, . . . , ζm}
are separated by γ from {sbm/2c+1, . . . , sm}. Thus, the {ζi} paths must contain at
least bm/2c bends/turns.

Functions f(γ,S) and F(γ,S,S ′). Of course, the arrangement of segments {si}
could be much more complicated than the simple cases above. We may need to

3Throughout this article, we consider counter-clockwise order on e∗, and clockwise order around

the rest of P .

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · H. Gupta and R. Wenger

s1

s2

s4
s3

γ1

γ4

γ2
γ3

s5

s6

s8

s7

γ5

γ8

γ6

γ7

e*

u1

u6

u5

u7

u8

u4

u3

u2

(a)

s1

s2
s4

s3

s8

s6

s7

s5

γ

e*

u1

u6

u5

u7
u8

u4

u3

u2

(b)

Fig. 8. Points ui lying in a clockwise order around P and segments si = bVis(ui) ∩ e∗ (s5 and

s2 illustrated in (a) and (b) respectively). (a) Fully ordered case. (b) Two partitions in reverse
order.

partition the sequence (s1, . . . , sn) into many subsequences. Below, we define func-
tions f and F that help measure the usefulness of a partition in construction of
disjoint paths with near-optimal number of links.

Definition 6. (Functions f(γ,S) and F(γ,S,S ′).) Consider a polygon P with
a distinguished edge e∗. Let S be a set of open non-null line segments on e∗. The
line segments may not be distinct, and in the extreme case, a line segment may be
a mere point. Let the endpoints of e∗ be q∗0 and q∗1 in counter-clockwise order. For
each point γ ∈ e∗, define

— f(γ,S) as the number of line segments of S that contain the point γ,

— f−(γ,S) as the number of line segments of S that fully precede γ in the
counter-clockwise order around P , i.e., the number of line segments of S that
are contained in the open interval (q∗0 , γ).

— f+(γ,S) as the number of line segments of S that fully follow γ in the counter-
clockwise order around P , i.e., the number of line segments of S that are
contained in the open interval (q∗1, γ).

For example, in Figure 8(a), if S = {s1, s2, . . . , s8}, then f(γ5,S) = 1, f−(γ5,S) =
4, f+(γ5,S) = 3. Note that f(γ,S) + f−(γ,S) + f+(γ,S) equals |S|.

For a pair of sets of line segments S and S ′ on e∗, we define F(γ,S,S ′) as

F(γ,S,S ′) = f(γ, (S ∪ S ′)) + min(f+(γ,S), f−(γ,S ′)).

2

General Partition of Segments. Let S = (s1, . . . , sj) and S ′ = (sj+1, . . . , sm)
be a partition of (s1, . . . , sm) into two contiguous subsequences. Then, f(γ,S ∪S ′)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 15

is the number of vertices ui that lie on the boundary of V̂is(γ). By using two line
segments4 per path, these f(γ,S∪S ′) vertices can be connected by pairwise disjoint
paths to e∗. On the other hand, the value min(f+(γ,S), f−(γ,S ′)) is a lower bound
on the number of the bends in the disjoint paths connecting {ui} to e∗. Thus if
F(γ,S,S ′) is large, then γ can either be used to connect many near-optimal paths
consisting of exactly two line segments or it can be used to show a lower bound on
the number of bends required.

However, there may be no single point γ that produces sufficiently large F(γ,S,S ′).
Instead, we may need to partition the sequence (s1, . . . , sm) into many pairs of con-
tiguous subsequences {(Sj,S ′

j)}, each pair associated with a γj , such that the sum
of F(γj ,Sj,S ′

j) is large. Lemma 2 below presents such a partition algorithm.

Partitioning Lemma. Since the partition algorithm applies to arbitrary segments
in R

1, we state the lemma without the context of a polygon. In the context of R
1,

f−(γ,S) and f+(γ,S) are the number of line segments of S that are contained in
the open intervals (−∞, γ) and (γ, +∞) respectively. We will prove the lemma in
Section 5.

Definition 7. (Point g(S), the Median of Line Segments’ Midpoints) Let S be
a set of open line segments (not necessarily distinct) in R

1. Let M be the list of
midpoints (ordered in increasing order on R

1) of line segments in S. The point
g(S) is defined as the d|M|/2eth point (median point) in M. 2

Lemma 2. Let {s1, . . . , sm} be a set of open non-null line segments on R
1. In

O(m log m) time, the sequence (s1, s2, . . . , sm) can be partitioned into 2h (for some
h > 0) non-empty contiguous5 subsequences S1,S ′

1,S2,S ′
2, . . . ,Sh,S ′

h viz. S1 =
(s1, s2, . . . , si1), S ′

1 = (si1+1, si1+2, . . . , si2),S2 = (si2+1, si2+2, . . . , si3), . . . ,S
′
h =

(si2h−1+1, . . . , sm), such that:

(1) |Sj| = |S ′
j| or |Sj| = |S ′

j| + 1,

(2) γ1, γ2, . . . , γh lie in increasing order on R
1 (counter-clockwise order on e∗ in

the context of a polygon P), where γj is g(Sj ∪S ′
j), the median of the midpoints

of line segments in Sj ∪ S ′
j ,

(3)
∑

j=1..h F(γj ,Sj,S ′
j) ≥ m/40.

Significance of Lemma 2. We use the above partitioning algorithm over {si}
segments on e∗ to construct near-optimal disjoint paths in a polygon P visible from
e∗ as follows. We start with constructing a subpolygon Γ (composed of triangles
of a triangulation of P) with the following two properties. First, any set of m
disjoint paths connecting e∗ to the appropriate boundary edges of Γ must contain
at least

∑
j F (γj ,Sj,S ′

j) (≥ m/40 by Lemma 2) bends. Second, we can construct
disjoint paths connecting e∗ to the appropriate boundary edges of Γ using 3 line

4We need two line segments to avoid intersection at γ.
5We require the subsequences to be contiguous for the working of our approximation algo-
rithm. In particular, contiguity of the subsequences is required to construct disjoint line segments

{λ1 , . . . , λm} and polygonal paths in Γ (see Lemma 3).

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · H. Gupta and R. Wenger

segments per path in linear time. (Lemma 4 and Lemma 3 in Section 4.2 prove the
above two properties respectively for an appropriately constructed subpolygon Γ.)
Recursively constructing disjoint paths in the subpolygons obtained by deletion of
Γ from P , we can construct full disjoint paths connecting {ui} to e∗ using 120M
line segments, where M is the minimum number of links required. In the next
subsection, we extend the above ideas to design an approximation algorithm for
constructing disjoint paths to a distinguished edge e∗ in a simple (not necessarily
edge-visible) polygon P .

4.2 Constructing Paths to a Polygon Edge

We now present an approximation algorithm to construct pairwise disjoint paths
to a distinguished edge e∗ in a simple polygon P . For the discussion in this section,
let TP be a triangulation of polygon P using no vertices other than those of P .
We use the term diagonal or chord to refer to a triangulation edge of TP . Also,
a subpolygon in P is a union of connected triangles of TP . We start with a few
definitions.

Definition 8. (Separating Diagonals or Triangles.) Let each u1 and u2 be
either a point in P , an edge of triangulation TP , or a triangle of TP . A diagonal or
a triangle t separates u1 from u2 if every path that connects u1 to u2 through the
interior of P must intersect t. 2

Definition 9. (First Separating Diagonals.) Let u be a point in P . A diagonal d
of triangulation TP first separates u from an edge e∗ if d lies on a triangle containing
u and separates u from e∗. It can be shown by induction on |P | that d is unique
for any given e∗ and u, as long as u is not in the triangle (of TP) containing e∗. 2

Definition 10. (Connectors.) Consider a polygon P with a distinguished edge
e∗, a point ui on the boundary of P , and a subpolygon Γ of P such that e∗ ∈ Γ.

The connector in Γ for ui is denoted as ξi and is defined as follows. If ui ∈ Γ,
then ξi = ui, else ξi is the chord c on the boundary of Γ that separates ui from e∗.
Note that any path connecting e∗ to ui must intersect ξi. 2

Below, we present the PathsToEdge Algorithm that constructs pairwise disjoint
interior paths connecting a set of vertices in a polygon P to the interior of an edge
e∗ in P using O(M) line segments where M is the optimal number of line segments
required.

PathsToEdge Algorithm

Given: Let P be a simple polygon on n vertices with distinguished edge e∗. Let
{u1, u2, . . . , um} be a subset of vertices of P labeled in clockwise order around P
starting at e∗. We assume that no ui is an endpoint of e∗.

Output: A set of pairwise disjoint paths connecting the points {ui} to e∗ through
the interior of P , using at most 120M total links where M is the optimal number
of links required.

Basic Idea. As suggested in the previous subsection, the basic idea of the Path-
sToEdge Algorithm is to construct a subpolygon Γ containing e∗ such that it sat-
isfies the following two properties. Here, ξi is the connector in Γ for the point
ui.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 17

d4d6 d7
d5

d2

u5

u6

u7

u1
u2

u3

u4

d3

d1

e∗

Fig. 9. The triangles of TP visible from e∗. The diagonal di is the farthest diagonal visible from
e∗ that separates ui from e∗.

(1) Using O(m) line segments, we can construct a set of disjoint paths that connect
e∗ to {ξi}.

(2) Any set of disjoint paths connecting e∗ to {ξi} uses at least Ω(m) bends. Here,
we count each end point ui as one bend too.

Let {Pc} be the set of subpolygons formed by deleting such a Γ from P . Once such a
subpolygon Γ has been constructed, we can recursively and independently construct
disjoint paths in each subpolygon Pc connecting {ui} points to the boundary of Γ.
See Figure 13. The second property of Γ will ensure the near-optimality of the
number of links used by our recursive algorithm.

The intuition behind the construction of the subpolygon Γ that satisfies both
the properties is as follows. Observe that Γ = V̂is(e∗) satisfies the second property
(since if ui /∈ Γ, then no point in ξi is visible from e∗), but may not satisfy the first

property (consider polygon P of Section 3 as Γ). On the other hand, Γ = V̂is(γ) for
some γ ∈ e∗ satisfies the first property (since each ξi can be connected to a point in
the neighborhood of γ using two links), but not the second property. However, if S
and S ′ is a partition of appropriate segments on e∗ such that F(γ,S,S ′) = Ω(m),
then it can be shown (as in Lemma 4) to satisfy the second property also. More
generally, we construct an appropriate segment si ∈ e∗ for each ui, and use Lemma 2
to partition the segments {si}. Using the resulting points γ1, . . . , γh on e∗, we
construct Γ as the union of triangles that are visible from some γj and separate a
corresponding ui from e∗. We will show that such a subpolygon Γ satisfies both
the above mentioned properties. A full description of the PathsToEdge Algorithm
follows.

Algorithm Description

Throughout the description, we use the polygon of Figure 9 as our running ex-
ample to illustrate various steps of PathsToEdge Algorithm. We start with con-
structing a triangulation TP of P . For now, lets assume that no ui belongs to the
triangle containing e∗.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · H. Gupta and R. Wenger

d3

d1

d6

d2

d4
d5d7

s5

s4

s3

s7s6

s1 s2

Fig. 10. Line segments si = int(e∗) ∩ bVis(di).

Determine Diagonals di. For each ui, let di be the “farthest” diagonal visible from
e∗ that separates ui from e∗. More formally, consider the set D of diagonals that are
visible from e∗ and separate ui from e∗. The diagonal di is the “farthest” diagonal
in D from e∗, i.e., di is such that every other diagonal in D separates di from e∗.
See Figure 9.

Determine Segments si; Apply Lemma 2. Let si = int(e∗) ∩ V̂is(di). Each si is a

non-null open line segment6 lying on e∗. See Figure 10. Now, use Lemma 2 to
partition the sequence (s1, . . . , sm) of line segments into 2h non-empty contiguous
subsequences S1,S ′

1,S2,S ′
2, . . . ,Sh,S ′

h, and let γ1, . . . , γh be the points in counter-
clockwise order on e∗ as derived in Lemma 2. Finally, define

Uj = {ui : si ∈ (Sj ∪ S ′
j)}.

Construct Subpolygon Γ. We construct a subpolygon Γ as follows. A triangle t of

TP is in Γ iff it intersects V̂is(γj) and separates a point in Uj from e∗ for some
1 ≤ j ≤ h. See Figure 11 - 13, where we assume that U1 = {u1, u2, . . . , u5} and
U2 = {u6, u7}. We will show that the above defined subpolygon Γ allows us to
construct disjoint paths from e∗ to connectors {ξi} (of {ui} in Γ) using total 3m
line segments, while an optimal solution must use at least m/40 bends (including
the end points ui; see Lemma 4). Recall that m is the total number of ui vertices.

Define Subpolygons Pc; Apply Recursion. Let chord c be a triangulation edge of
TP that bounds Γ. Each such chord separates P into two subpolygons. Let Pc

be the subpolygon not containing Γ. Recursively, construct pairwise disjoint paths
connecting the {ui : ui ∈ (Pc − c)} points to c. See Figure 13.

Construct Paths in Γ. For each point ui ∈ (Pc−c) for some c, let u0
i be the endpoint

on c of the path connecting ui to c. For all other points ui, which are in Γ, let
u0

i = ui. We now show how to construct pairwise disjoint paths from points {u0
i }

on the boundary of Γ to the edge e∗ using three line segments each. We start with
an informal description of the construction of paths.

6Note that si may equal sj (and di may equal dj) for many distinct points ui, uj .

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 19

u5

u6

γ1

u7

u4

u1
u2

u3

Fig. 11. Triangles in TP that intersect bVis(γ1) and separate some point in U1 = {u1, u2 , . . . , u5}
from e∗ .

u5

u6

γ2

u7

u4

u1
u2

u3

Fig. 12. Triangles in TP that intersect bVis(γ2) and separate some point in U2 = {u6, u7} from e∗ .

u5

u6

γ2

u7

γ1

u1
u2

u3

u4

Fig. 13. Partition of P into Γ (shaded and formed by the union of triangles shown in Figure 11
and Figure 12) and three subpolygons Pc (non-shaded), and (recursively constructed) paths in Pc

to the boundary of Γ.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · H. Gupta and R. Wenger

u5

u6

u7

u1
u2

u3

u4

γ1

γ2

δ1 δ2

δ4

δ3

Fig. 14. Diagonals {δ1, . . . , δl}, which separate a single triangle of Γ from e∗, and line segments
{λ1 , . . . , λm}.

δ2

δ4

δ3

δ1

u0
8

u0
9

Fig. 15. Illustrating the responsible function. Here, δ3 is responsible for u0
8 , while δ4 is

responsible for u0
9.

Basic Idea. Let {δ1, δ2, . . . , δl} be the diagonals that separate from e∗ a single
triangle of Γ as well as some point ui. The diagonals are labeled in clockwise order
around P starting from e∗. See Figure 14. For simplicity, lets assume that none of
the given ui vertices is in Γ, i.e., each of the u0

i point is on a chord c of TP (and
not on an edge of the polygon P) bounding Γ. For such a case, construction of
disjoint paths from {u0

i} to e∗ can be done in a relatively straightforward way as
follows. First, we constuct total m disjoint line segments from {δ1, . . . , δl} to the
points {γ1, . . . , γh} on e∗, with appropriate number of segments from each δk to
some γj . See Figure 14. Each u0

i can be easily connected to one of the above m
segments, since each u0

i lies in a triangle containing a diagonal δk. See Figure 16.
The above construction of paths can be generalized to the case when some of the
ui vertices may be in Γ; we formally describe the general case below.

Formal Construction. To generalize the above idea, we need to define a term and
introduce some additional notations.

— Defining Responsible. Let d0
i be the diagonal that first separates u0

i from
e∗. For each u0

i , we designate a certain δk, that is separated by d0
i from e∗

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 21

u3
3

u5

u6

u7

u1

u2
3

u2

u3

u4 u0
3

u1
3

Fig. 16. Pairwise disjoint paths connecting {ui} to e∗.

and is “closest” to u0
i , as responsible for constructing a path from u0

i to e∗.
More formally, if u0

i ∈ δk or d0
i = δk for some k, then δk is designated as

responsible for u0
i . Otherwise, among the diagonals δk that are separated

by d0
i from e∗, pick the one that is closest (preceding or following) to u0

i in the
clockwise order around Γ starting at e∗ as the responsible diagonal. Note
that such a δk exists (see Lemma 3). See Figure 15.

— Constructing Segments from {δ1, . . . , δl} to e∗. For each diagonal δk in {δ1, . . . , δl},
choose the minimum j such that δk is clearly visible to γj and separates a point
in Uj from e∗. Since, δk is a diagonal of Γ, such a j exists. Construct R dis-
tinct line segments connecting the interior of δk to γj in the interior of Γ,
where R is the number of u0

i points for which δk is responsible as defined
above. A total of m line segments are thus constructed. Label these line
segments λ1, λ2, . . . , λm, as their endpoints appear in clockwise order around
P starting at e∗. See Figure 14. We show in Lemma 3 that the line segments
{λ1, . . . , λm} intersect only at their endpoints.

— Constructing Paths From {u0
i} to e∗. Let u1

i be d0
i ∩λi, where d0

i (as defined
before) is the diagonal that first separates u0

i from e∗. Lemma 3 observes that
u1

i exists. Let u2
i be the intersection of λi with an edge (other than e∗) of the

triangle containing e∗. Place m points equally spaced on e∗; let u3
i be the ith

such point on e∗, ordered counter-clockwise around P . Now, connect u0
i to e∗

using a path of three links connecting the points u0
i , u

1
i , u

2
i , u

3
i . See Figure 16.

We show in Lemma 3 that these polygonal paths do not intersect.

Finally, to relax the assumption made earlier that no ui is in the triangle contain-
ing e∗, we can now connect such a vertiex ui to e∗ using at most 2 line segments.

This completes the description of PathsToEdge Algorithm. In the following
lemmas, we prove the correctness (Lemma 3), near-optimality of the output size
(Lemma 5), and time complexity of the PathstoEdge Algorithm (Lemma 6).

Lemma 3. PathsToEdge Algorithm constructs pairwise disjoint paths connecting
{ui} to e∗ in the interior of P . Note that PathsToEdge Algorithm uses 3 line
segments per path to connect e∗ to u0

i .

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · H. Gupta and R. Wenger

Proof: Since the subpolygons Pc and Γ are mutually disjoint, it suffices to show
that the polygonal path connecting {u0

i} to e∗ do not intersect, i.e., for any i 6= j,
(u0

i , u
1
i , u

2
i , u

3
i) doesn’t intersect any other polygonal path (u0

j , u
1
j , u

2
j , u

3
j). Below,

we show the above in parts.

Disjointness of {λ1, . . . , λm}. We claim that the line segments {λ1, . . . , λm} con-
necting the diagonals {δ1, . . . , δl} to e∗ intersect only at their endpoints. Let λi

and λi′ be line segments connecting distinct γj and γj′ to diagonals δk and δk′

respectively. Without loss of generality, assume that j is less than j ′. Note that
diagonal δk separates some point of Uj from e∗, and diagonal δk′ separates some
point of Uj′ from e∗. Since j is less than j′, points γj , γj′ lie in counter-clockwise
order on e∗, while Uj,Uj′ lie in clockwise order around P (since {U1, . . . ,Uh} are
contiguous subsequences). Thus, λi and λi′ don’t intersect.

Existence of u1
i . Consider d0

i , the diagonal that first separates u0
i from e∗. Either

d0
i = δk for some k, or d0

i separates more than one triangle from e∗. In the latter
case, d0

i separates one or more diagonal in {δ1, . . . , δl} from e∗. Thus, for each
u0

i , a diagonal δk exists that can be designated as responsible. Since diagonals
{δ1, . . . , δl} and segments {λ1, . . . , λm} are ordered clockwise around P and by
the definition of responsible, we see that λi does originate from the diagonal δk

responsible for u0
i . Thus, λi ∩ d0

i = u1
i exists.

Disjointness of {(u0
i , u

1
i)}. We now claim that the line segment (u0

i , u
1
i) does not

intersect any (u0
j , u

1
j) for i 6= j. Without loss of generality, let us assume that i < j.

If (u0
i , u

1
i) intersects (u0

j , u
1
j), then u0

i and u0
j lie in the same triangle t of TP and

d0
i = d0

j . Now, in the triangle t, u0
i and u0

j lie in clockwise order, while u1
i and u1

j

lie in counter-clockwise order. Thus, (u0
i , u

1
i) doesn’t intersect (u0

j , u
1
j).

Disjointness of (u0
i , u

1
i) and λj . Let us show that the line segment (u0

i , u
1
i) does not

intersect any λj for i < j. Without loss of generality, let us assume that i < j.
Suppose λj originates from δk. If diagonal δk separates u0

i from e∗, then (u0
i , u

1
i)

and λj are trivially disjoint (since δk separates them from each other). Let us
assume that δk doesn’t separate u0

i from e∗. Then, δk fully follows u0
i in clockwise

order around Γ (since i > j). On the other hand, intersection of λi and λj on d0
i ,

i.e., u1
i and (λj ∩ d0

i), lie in a counter-clockwise order (since λi intersects λj only
at e∗, and i < j). Now, since (u0

i , u
1
i) lies completely in the triangle containing d0

i

and separated by d0
i from e∗, (u0

i , u
1
i) does not intersect λj .

Conclusion: Disjointness of full paths. Since (u1
i , u

2
i) ⊆ λi, and line segments {λ1, . . . , λm}

are disjoint, (u1
i , u

2
i) also doesn’t intersect any (u1

i , u
2
j) for i 6= j. Finally, note that

all the line segments (u2
i , u

3
i) lie in a single triangle of TP that doesn’t contain any

other line segments. Thus, the polygonal path (u0
i , u

1
i , u

2
i , u

3
i) doesn’t intersect any

other polygonal path (u0
j , u

1
j , u

2
j , u

3
j) for i 6= j.

The above lemma shows that the constructed subpolygon Γ satisfies its first de-
sired property. In particular, it proves that the correctness of the PathsToEdge
Algorithm. The following lemma shows that Γ also satisfies the second desired
property, i.e., any set of disjoint paths connecting e∗ to {ξi} uses at least Ω(m)
bends. We will use the following lemma to show the near-optimality of the Path-
sToEdge Algorithm (Lemma 5).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 23

Lemma 4. Any set of pairwise disjoint paths connecting e∗ to connectors {ξi} in
Γ must use at least m/40 bends. As mentioned before, we count the end point ui

as one bend too.

Proof: Let {ηi} be the optimal set of disjoint paths connecting e∗ to {ξi}. Below,
we restrict our attention to paths {ηi} that correspond to points ui such that the
corresponding line segment si is in Sj, and consider two cases based on the location
of line segment si with respect to γj on e∗.

When γj ∈ si. For this case, we show that ηi contains at least one bend. If ui ∈ Γ,

then ηi trivially contains one bend (since we count the end point ui as one bend).
Thus, let us assume that ui /∈ Γ. Now, the diagonal di is clearly visible from γj

(since si = e∗ ∩ V̂is(di)), and hence, di is a diagonal of Γ. Now, di separates ui from
e∗ (by definition of di), ξi separates ui from e∗ (since ui /∈ Γ), and di separates ξi

from e∗ (as di is a diagonal of Γ and ξi is on Γ’s boundary). Thus, by definition
of di, ξi is not visible from e∗, and the path ηi from e∗ to ξi contains at least one
bend.

When si ∈ Sj fully follows γj counter-clockwise. For this case, consider another point

ui′ such that si′ ∈ S ′
j and si′ , γj , si lie in counter-clockwise order around P . Here,

neither si nor si′ contain γj . Note that ui and ui′ lie in clockwise order around P ,
and hence, ξi and ξi′ lie in clockwise order around Γ. See Figure 17. We show that
either ηi or ηi′ must contain at least one bend. If either ui or ui′ is in Γ, the claim is
trivial. So, lets assume that ui, ui′ /∈ Γ. Thus, ξi and ξi′ are chords on the bound-
ary of Γ. Since paths ηi and ηi′ are pairwise disjoint, either the endpoint of ηi on
e∗ must precede γj or endpoint of ηi′ on e∗ must follow γj in the counter-clockwise
order around P . Without loss of generality, let us assume that the endpoint ρi of ηi

on e∗ precedes γj in the counter-clockwise order as in Figure 17. In that case, γj lies
between ρi and si. Let d be the farthest diagonal of P clearly visible from ρi and
separating ui from ρi. Since ρi is not clearly visible from di (as ρi /∈ si), diagonal
d must separate di from e∗ and hence, d is clearly visible to si. Now, since γj lies
between ρi and si, diagonal d is also clearly visible to γj and hence, d is a diagonal
of Γ (since, d also separates ui ∈ Uj from e∗). Thus, d also separates ξi from e∗,
and hence, the path ηi (connecting ρi to ξi) must contain at least one bend (since,
d is the farthest diagonal visible from ρi, and ξi is a diagonal in P). Similarly it
can be shown that if the endpoint of ηi′ on e∗ follows γj in the counter-clockwise
order, the path ηi′ must contain at least one bend. Thus, it follows that either ηi

or ηi′ must contain at least one bend.
By the analysis of the above two cases, the optimal set of paths {ηi} connecting

the connectors {ξi} to e∗ must contain at least

f(γj ,Sj) + f(γj ,S
′
j) + min(f+(γj ,Sj), f

−(γj ,S
′
j)) = F(γj ,Sj,S

′
j)

bends. Here, as defined before, f(γj ,Sj) is the number of line segments of Sj

that contain the point γj , f+(γj ,Sj) is the number of line segments of Sj that
follow γj , and f−(γj ,S ′

j) is the number of line segments of S ′
j that precede γj in

the counter-clockwise order around P . Thus, the total number of bends contained
in the optimal set of paths {ηi} is at least

∑
j=1..h F(γj ,Sj ,S ′

j) (≥ m/40, from
Lemma 2).

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · H. Gupta and R. Wenger

si

λj

si’

ρi

uiui’

Fig. 17. The case when si ∈ Sj , si′ ∈ S
′
j , si′ , γj , si lie in counter-clockwise order, and the end

point ρi of the path ηi precedes γj in the counter-clockwise order around P .

Lemma 5. The PathsToEdge Algorithm connects {ui} points to e∗ using a total
of at most 120M line segments where M is the minimum number of line segments
used by an optimal solution.

Proof: Consider the set {Oi} of disjoint paths connecting e∗ to {ui} in an optimal
solution. Let ηi ⊆ Oi be the subpath of Oi from e∗ to ξi. From Lemma 4, we know
that the subpaths {ηi} contain at least m/40 bends. In contrast, our PathsToEdge
Algorithm uses at most 3m line segments (and hence, bends) in Γ to connect {ξi}
to e∗. As each subpolygon Pc is disjoint from Γ, each path Oi is broken into only
disjoint subpaths for the above comparison. Thus, the PathsToEdge solution size
(in terms of bends or line segments) is at most 120 times the optimal size.

Lemma 6. The PathstoEdge Algorithm runs in O(n logm+M log m) time, where
n is the size of the polygon P , m is the total number of points in {ui}, and M is
the total number of line segments in an optimal solution.

Proof: Constructing the initial triangulation TP takes O(n) time and is done only
once. Let n∗ be the number of triangles in TP that are visible from e∗.

Non-Recursive Steps. By Theorem 1, the visibility region V̂is(e∗), the diagonals
di, and the segments si can all be constructed in O(n∗ + m) time. By Lemma 2,
partitioning the set of segments {si} takes O(m log m) time. The subpolygon Γ
can be constructed in O(n∗) time as follows. Using Theorem 1, we first construct

int(e∗) ∩ V̂is(d) for every diagonal d visible from e∗ in O(n∗) time. Now, a diag-
onal d visible from e∗ is an internal diagonal of Γ if and only if d is visible from
some point γj and separates a point in Uj from e∗, which can be determined in
constant time per diagonal. Thus, Γ can be constructed in O(n∗) time. Construc-
tion of {δ1, . . . , δl}, finding responsible diagonals, and the construction of the line
segments {λ1, . . . , λm} and the polygonal paths {(u0

i , u
1
i , u

2
i , u

3
i)} can all be done

in O(n∗ + m) time. Thus, the non-recursive steps of the PathsToEdge Algorithm
(apart from construction of TP) take k1n

∗ + k2m log m time for some constants
k1, k2.

Total Running Time. We show that the total running time of the algorithm is
less than k0(n log m + M logm) for some constant k0. Let C is the set of chords
that bound Γ. For each subpolygon Pc, let nc be the number of vertices of Pc,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 25

U(c) = {ui : ui ∈ (Pc − c)}, mc = |U(c)|, and Mc be the size of an optimal solution
connecting U(c) to c. By induction, we have

Total Running Time = k1n
∗ + k2m logm +

∑

c∈C

k0(nc logmc + Mc log mc).

We partition the above expression into T1 and T2 as defined below.

T1 = k2m log m +
∑

c∈C

k0(Mc logmc),

T2 = k1n
∗ +

∑

c∈C

k0(nc logmc).

We show that T1 ≤ k0M log m and T2 ≤ k0n log n for k0 > max(40k2, k1/ log 1.5).

Bounding T1. Since any optimal solution must have at least m/40 line segments
contained in Γ, we have m/40 +

∑
c∈C Mc ≤ M. Since k0 > 40k2,

T1 ≤ (40k2m/40 +
∑

c∈C

k0Mc) log m ≤ k0M logm.

Bounding T2. Let Γ∗ be the subpolygon (set of triangles) visible from e∗. The
difficulty in bounding T2 is that the triangles in Γ − Γ∗ may be processed multiple
times during recursion. Fortunately, we can absorb the running time contribution
of these triangles in the

∑
c∈C k0(nc logmc) term.

Let C∗ be the set of chords that bound Γ as well as Γ∗. Since, the sets of triangles
in Γ∗ and Pc for c ∈ C∗ are mutually disjoint, we have

n∗ ≤ n −
∑

c∈C∗

nc = n − (
∑

c∈C

nc −
∑

c∈C\C∗

nc).

We show in Lemma 7 that mc is at most 2m/3 for each c ∈ (C \ C∗). Thus, we get
∑

c∈C

nc log mc ≤
∑

c∈C

nc logm −
∑

c∈C\C∗

nc log 1.5.

Multiplying the above two equations by k1 and k0 respectively, adding the results,
and rearranging terms, we get

T2 ≤ k1(n −
∑

c∈C

nc) + k0

∑

c∈C

nc logm +
∑

c∈C\C∗

nc(k1 − k0 log 1.5)

≤ k1(n −
∑

c∈C

nc) + k0

∑

c∈C

nc logm as k0 log 1.5 ≥ k1

≤ k0 log m(n −
∑

c∈C

nc) + k0

∑

c∈C

nc logm as k0 logm ≥ k1

≤ k0n logm.

Thus, the total running time (T1 + T2) of PathsToEdge Algorithm is O(n log m +
M logm).

We now prove the claim used in the above Lemma 6.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · H. Gupta and R. Wenger

Lemma 7. Using the notation from Lemma 6: For each c ∈ (C\C∗), |U(c)|(= mc)
is at most 2m/3.

Proof: Consider a chord c ∈ (C\C∗). Let sc be the open line segment int(e∗)∩V̂is(c)
lying on e∗. We make the following observations.

(1) si ⊆ sc for every ui ∈ U(c), since c lies in Γ.

(2) If (Uj ∩U(c)) is not empty, then γj /∈ sc. This can be proved by contradiction.
If γj ∈ sc, then c would be clearly visible to γj and would lie in the interior of
Γ. But, c lies on the boundary of Γ.

(3) Uj 6⊆ U(c) for any j. To prove this, assume the contrary. Since γj is a midpoint
of some si ∈ (Sj ∪ S ′

j) and si ⊆ sc, we have γj ∈ sc (and thus, contradicting
(2) above).

From (3) above, the points in U(c) must be split between exactly two sets Uj and
Uj+1. Without loss of generality, assume that Uj contains at least half the points
of U(c). If |U(c)| > 2m/3, then | Uj ∩ U(c)| > m/3 and | Uj − U(c)| < m/3. The
line segments si for ui ∈ (Uj ∩ U(c)) lie on one side of γj , since si ⊆ sc and γj

does not lie in sc (from (1) and (2) above). Since | Uj −U(c)| < m/3, there are less
than m/3 other segments of Sj ∪ S ′

j, so γj would not evenly split the midpoints of
Sj ∪ S ′

j , contrary to the definition of γj . We conclude that |U(c)| is at most 2m/3
for each c ∈ (C \ C∗).

4.3 Constructing Paths between Pairs of Vertices

In this section, we use PathsToEdge Algorithm to design an approximation algo-
rithm that constructs pairwise disjoint paths connecting given pairs of vertices in
a polygon P using O(M) links where M is the number of links used by an optimal
solution.

Theorem 2. Let P be a simple polygon on n vertices and U = {(u, u′)} be
an untangled set of m pairs of distinct vertices of P . A set of m pairwise dis-
joint interior paths connecting u to u′ for each (u, u′) in U can be constructed in
O(n logm + M log m) time using O(M) line segments where M is the minimum
number of line segments used by an optimal solution.

Proof: We start with describing the approximation algorithm.

Algorithm. Construct a triangulation TP of P , and arbitrarily choose an edge e∗

of P . Consider the dual tree τ of the triangulation TP with the triangle containing
e∗ as the root. For each (u, u′) ∈ U , let tu,u′ be the least common ancestor in τ of
the triangles7 containing u and u′. See Figure 18. Now, for each point u, where
(u, u′) or (u′, u) is in U , we define eu as follows. If u ∈ tu,u′ then eu is an edge
of tu,u′ containing u, else eu is the edge of tu,u′ that separates tu,u′ from u. We
observe the following properties of tu,u′ and eu.

. P1: If u /∈ eu, then eu separates u from e∗. This is true because tu,u′ separates
u from e∗ (as tu,u′ is a proper ancestor of the triangles containing u in the dual tree
τ), and eu separates tu,u′ from u.

7Note that more than one triangle may contain a point u.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 27

u5

u6

u1
u2

tu1 ,u4

eu1

eu4 u3

u4tu5,u6

eu5

eu6

e∗

Fig. 18. The triangle tu,u′ is the least common ancestor of triangles containing u and u′, and the
edge eu is an edge of tu,u′ that separates tu,u′ from u. The figures corresponds to the following

instance of vertex pairs: {(u1, u4), (u2, u3), (u5 , u6)}. Here, eu2
= eu1

, eu3
= eu4

, and tu2 ,u3
is

the same as the shown tu1 ,u4
.

. P2: A path from u to eu, that intersects eu only at the path’s endpoint, does
not intersect the interior of tu,u′. This follows from the definition of eu.

. P3: Any closed path from u to u′ in P must intersect the closed triangle tu,u′ .

Let Π be the set of m′(= 2m) pairs (u, eu), where (u, u′) or (u′, u) is in U . We
construct m′ pairwise disjoint interior paths {ζu} from u to eu for each pair (u, eu) ∈
Π as follows. Let Π∗ be the set of points for which eu is the distinguished edge e∗.
If Π∗ is empty (which is actually the case initially), let Γ be the triangle containing
e∗. Otherwise, construct the region Γ as in the PathsToEdge Algorithm using only
the points in Π∗. Removing Γ subdivides P into subpolygons Pc. Recursively solve
the problem of connecting vertex-edge pairs in each subpolygon Pc. Finally, as in
PathsToEdge Algorithm, connect each path with endpoint on the boundary of Γ
to the appropriate edge in Γ. The only difference with PathsToEdge Algorithm is
that if u ∈ eu then the path ζu is just the point u itself. Otherwise, due to property
P1, the edge eu separates u from e∗, and hence, the connection is not to e∗ but to
eu on the way to e∗.

Now, for each (u, u′) ∈ U , connect the paths ζu and ζu′ by a line segment from eu

to eu′ in tu,u′ (this is possible due to property P2). See Figure 19. This completes
the construction of pairwise disjoint interior paths connecting each pair of vertices
(u, u′) in U .

Output Size Analysis. Let M ′ be the minimum total number of line segments
necessary to connect the vertex-edge pairs in Π by pairwise disjoint paths. As
argued in Lemma 5, the constructed paths connecting e∗ to Π∗ use 3|Π∗| line
segments in Γ while the optimal solution requires at least |Π∗|/40 line segments
before leaving Γ. Each path whose endpoint is not on e∗ but on some other edge
lying in Γ may also require three line segments. Since this can happen only once
per path, the ζu paths use a total of at most 120M ′ + 3m′ line segments.

Let M be the minimum total number of line segments necessary to connect the
(u, u′) pairs in U . Because of property P3, the m paths connecting pairs of vertices

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · H. Gupta and R. Wenger

u5

u6

u4

u1

u3

u2

Fig. 19. Pairwise disjoint interior paths connecting the following pairs of vertices:
{(u1, u4), (u2, u3), (u5 , u6)}.

in U can be cut to form m′ = 2m pairwise disjoint paths connecting vertex-edge
pairs in Π using at most M +m line segments. Thus, M ′ ≤ M +m. Our algorithm
uses at most 120M ′ + 3m′ line segments to connect the vertex-edge pairs in Π and
at most 120M ′ + 3m′ + m line segments to connect the vertex-vertex pairs in U .
Thus, our solution uses at most 120M + 127m line segments.

Time Analysis. Since least common ancestor queries can be answered in constant
time after linear processing of the tree [Harel and Tarjan 1984; Bender and Farach-
Colton 2000], we can determine tu,u′ for all pairs in U in O(n + m) time. Now,
it follows from Lemma 6 that the above described algorithm runs in O(n logm +
M logm) time.

5. PARTITIONING A SEQUENCE OF LINE SEGMENTS

In this section, we describe and analyze the Partition-Segments Algorithm that
partitions a sequence of line segments as suggested in Lemma 2. We recall the
relevant definitions from before. Given a sequence of line segments S and a point
γ in R

1, f(γ,S) is the number of line segments of S that contain the point γj ,
f−(γ,S) and f+(γ,S) are the number of line segments of S that are contained
in the open intervals (−∞, γ) and (γ, +∞) respectively. Given two sets of line
segments Sj and S ′

j , F(γ,Sj ,S ′
j) is defined as

F(γ,Sj ,S
′
j) = f(γ, (Sj ∪ S ′

j)) + min(f+(γ,Sj), f
−(γ,S ′

j)).

Also, g(S) is the median of the midpoints of the segments in S. We use γj to denote
g(Sj ∪ S ′

j).

Partition-Segments Algorithm

Given: A sequence of open line segments S = (s1, s2, . . . , sm) in R
1.

Output: A partitioning of S into contiguous subsequences S1 = (s1, s2, . . . , si1),
S ′

1 = (si1+1, si1+2, . . . , si2),, S2 = (si2+1, si2+2, . . . , si3), . . ., S
′
h = (si2h−1+1, si2h−1+2, . . . , sm),

such that

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 29

Partition-Segments(S)
/* S = a sequence of line segments (s1, s2, . . . , sm) */
/* Returns a linked list of contiguous subsequences of S */

1. Initialize linked list A to ∅;

2. FOR i = 1 TO m DO

3. Create new node a where a.seq = (si) and a.size = 1;

4. Add a to the end of linked list A;

5. WHILE ∃a ∈ A such that g(a.seq) > g(a.next.seq) DO

6. Merge a and a.next to form a new node a′ in A;

7. BALANCE-NEXT(a′);

8. BALANCE-PREV(a′);

/* Now, evenly split the jth node to create Sj and S′j (without changing A). */

9. a = A.f irst;

10. j = 0;

11. REPEAT

12. IF (j 6= 0) a = a.next;

13. j = j + 1;

14. Partition a.seq = (si, . . . , si′) to create two new approximately equal sized sequences
Sj = (si, . . . , sd(i+i′)/2e) and S′j = (sd(i+i′)/2e+1 , . . . , si′).

15. UNTIL a = A.last;

16. h = j;

17. Return((S1,S
′
1 ,S2 , . . . ,Sh ,S′h)).

Fig. 20. Partition-Segments Algorithm.

(1) |Sj| = |S ′
j| or |Sj| = |S ′

j| + 1 for 1 ≤ j ≤ h;

(2) γ1 ≤ γ2 ≤ · · · . . . γh, where γj = g(S1 ∪ S ′
1);

(3)
∑

j=1..h F(γj ,Sj,S ′
j) ≥ m/40.

Basic Idea. The general idea of our algorithm is to start with a total partition
of one element per set, and merge adjacent sets Si and Si+1 whenever g(Si) and
g(Si+1) are in the wrong order. If Si and Si+1 are approximately the same size, then
F(g(Si∪Si+1), Si, Si+1) can be shown to be large (see Lemma 10). Thus, we ensure
that any two adjacent sets are of approximately the same size, by appropriately
rebalancing neighboring sets after each merge. Sets created in the rebalancing
process (after the merge of Si and Si+1) may not generate large values of F , but
we can bound their total size by the size of Si. Once all the g(Si) are in the proper
order, each set Si is evenly split into two, Si and S ′

i, for the desired partition. A
detailed description of the algorithm follows.

Algorithm Description. We start with splitting S into m distinct subsequences,
(si), consisting of one element each. Store the m sets in a linked list A in the order
they appear in S. Each set is stored in a separate node a in the linked list where
a.seq contains the subsequence stored at a, a.size = |a| is the number of elements

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · H. Gupta and R. Wenger

BALANCE-NEXT(a)

/* a = node in linked list. Ensure all nodes a′ after a are balanced. */

1. If a = A.last THEN RETURN;

2. a′ ← a;

3. WHILE a′.next 6= A.last AND |a′| > 3|a′.next| DO

4. REPEAT

5. Merge a′.next and a′.next.next;

6. UNTIL |a′| ≤ 3|a′.next| OR a′.next = A.last;

7. IF a′.next = A.last THEN RETURN;

8. IF |a′.next| ≤ 3|a′.next.next| THEN RETURN;

9. IF |a′.next| > (2/3)|a′| THEN

10. Split a′.next into two equal sized sets;

11. RETURN;

12. a′ ← a′.next;

BALANCE-PREV(a)
/* a = node in linked list. Ensure all nodes a′ before a are balanced. */

1. If a = A.f irst THEN RETURN;

2. a′ ← a;

3. WHILE a′.prev 6= A.f irst AND |a′| > 3|a′.prev| DO

4. REPEAT

5. Merge a′.prev and a′.prev.prev;

6. UNTIL |a′| ≤ 3|a′.prev| OR a′.prev = A.f irst;

7. IF a′.prev = A.f irst THEN RETURN;

8. IF |a′.prev| ≤ 3|a′.prev.prev| THEN RETURN;

9. IF |a′.prev| > (2/3)|a′| THEN

10. Split a′.prev into two equal sized sets;

11. RETURN;

12. a′ ← a′.prev;

Fig. 21. BALANCE-NEXT and BALANCE-PREV Procedures.

in the a.seq, a.next is the next node in the linked list, and a.prev is the previous
node in the linked list. Let A.first and A.last be the first and last nodes in A.

Definition 11. (Balanced node/list) We call a node a in A balanced if 3|a| ≥
|a.next| and 3|a| ≥ |a.prev|. The linked list A is balanced if all nodes a in A −
{A.first,A.last} are balanced. 2

Clearly,A is initiallybalanced. WhileA contains some node a such that g(a.seq) >
g(a.next.seq), repeat the following. First, merge node a with a.next, storing the
result in a new node a′. Next, call procedures BALANCE-NEXT and BALANCE-
PREV to rebalance the linked list by merging and splitting nodes near a′. Repeat
this while loop until g(a.seq) ≤ g(a.next.seq) for each a in A. See Figure 20.

Procedure BALANCE-NEXT rebalances nodes after a′ as follows. Note that a′

is balanced, since it was formed by merging balanced nodes. However, a′.next may
have become unbalanced due to 3|a′.next| becoming less than |a′|. If 3|a′.next|

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 31

is less than |a′|, then merge nodes a′.next and a′.next.next storing the result in
a′.next. Continue merging a′.next and a′.next.next until 3|a′.next| is greater than
or equal to |a′|. Now, a′.next is balanced, but a′.next.next may have become un-
balanced. If a′.next.next is balanced, i.e., 3|a′.next.next| ≥ |a′next|, then stop. If
|a′.next| is greater than (2/3)|a′|, then split a′.next into two nodes of approximately
equal size and stop (Lemma 8 shows that this splitting balances the nodes). Other-
wise, let a′ equal a′.next and start again. In a similar manner, BALANCE-PREV
rebalances nodes before a. See Figure 21. This completes the description of our
Partition-Segments Algorithm.

Proof Plan. In the following lemmas, we prove the correctness and time com-
plexity of the Partition-Segments algorithm. As a general outline, we follow the
following plan.

(1) Lemma 8 shows that the Partition-Segments Algorithms keeps the list balanced.

(2) For any two sets of segments Sj and S ′
j such that |Sj| is |S ′

j | or |S ′
j| + 1, we

show that

F(γj ,Sj,S
′
j) ≥ min(f(γj ,Sj) + f+(γj ,Sj), f(γj ,S

′
j) + f−(γj , cS

′
j)).

The above follows from the definition of F , and is shown in Lemma 9.

(3) Let aj be the jth node in the final A used to create the subsequences Sj and
S ′

j. If aj was created by merging two nodes a and a.next such that g(a.seq) >
g(a.next.seq), then F(γj ,Sj,S ′

j) ≥ (1/8)|aj|. Intuitively, the above is true due
to Lemma 9 and the approximately equal sizes of a and a.next. See Lemma 10.

(4) Lemma 11 shows that the total size of all the nodes aj that are created in the
BALANCE-NEXT or BALANCE-PREV procedures is at most 4/5m.

(5) Now, a node aj in the final list A is created either by merging two nodes (as
considered in (3) above), or in the BALANCE-NEXT or BALANCE-PREV
procedures. The rest of the nodes aj consist of a single element (si), and satisfy
F(γj ,Sj,S ′

j) ≥ (1/8)|aj|. Thus, using (3) and (4) above, there are at least
m/5 line segments in nodes aj with the property that F(γj ,Sj,S ′

j) ≥ (1/8),
and hence, the final subsequences satisfy the property

∑
j=1..h F(γj ,Sj,S ′

j) ≥
m/40. It is easy to see that the final subsequences also satisfy the other desired
properties. The above is formally proven in Lemma 12.

Lemma 8. The Partition-Segments Algorithm maintains the balance of the linked
list A, except in steps 6-8 (step 6 creates a new node, and step 7-8 are calls to the
BALANCE-PREV/NEXT procedures).

Proof: We show that completion of Step 10 in BALANCE-NEXT ensures that all
nodes after a′ are balanced.

Let b1, b2, b3 be the three nodes after a′ at the completion of Step 10 of
BALANCE-NEXT, where b1 = a′.next, b2 = b1.next and b3 = b2.next. Nodes
b1 and b2 were created by splitting a node whose size is greater than (2/3)|a′| and
3|b3|. It is easy to see that nodes a′, b1, and b2 are balanced after the split.8 Since

8Since, 3|b1| ≥ |a
′| and 3|b2| ≥ |b3|. Also, nodes b1 and b2 have approximately the same size, so

3|b2| ≥ |b1| and 3|b1| ≥ |b2|.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · H. Gupta and R. Wenger

nodes b3 and beyond have not been touched, we need to only ensure that b3 is
balanced due to |b2|. In particular, we need to show that 3|b3| ≥ |b2|,

Proving |b3| ≥ |b2|/3. Let b′ be the node split to create b1 and b2. Node b′ was

created by merging a sequence of nodes b′1, b
′
2, . . . , b

′
k, where a′.next = b′1 and

b′i.next = b′i+1. The total number of elements in b′1, b
′
2, . . . , b

′
k−1 is less than |a′|/3

or b′k would not have been added to b′. The value of |b′k| must be greater than |a′|/3
or else |b′| would not be greater than (2/3)|a′|. Thus, we have

|b′k| > |a′|/3, (1)

|a′|/3 >
∑

i=1..k−1

|b′i|. (2)

Since the list was initially balanced, we have

|b3| ≥ |b′k|/3 = |b′k|/6 + |b′k|/6

≥ (|b′k| +
∑

i=1..k−1

|b′i|)/6 From equations (1), (2)

≥ (2|b2|)/6 = |b2|/3

The last inequality follows because the node b2 is formed by splitting the node b′,
which was creating by merging the sequence of nodes b′1, b

′
2, . . . , b

′
k.

The above shows that new list is balanced after the completion of of Step 10
in BALANCE-NEXT. Similarly, it can be shown that after completion of Step 10
in BALANCE-PREV, all nodes before a′ are balanced. Following the description
of the balance procedures, it is now easy to see that the BALANCE-NEXT and
BALANCE-PREV procedures are successful in balancing the linked list A, that
might have become unbalanced due to step 6 of Partition-Segments Algorithm.
Thus, the linked list A is balanced at each step (except steps 6 to 8) of the Partition-
Segments Algorithm.

Lemma 9. For any two sets of segments Sj and S ′
j such that |Sj| is |S ′

j| or
|S ′

j|+1, we have F(γj ,Sj,S ′
j) ≥ min(f(γj ,Sj)+f+(γj ,Sj), f(γj ,S ′

j)+f−(γj , cS
′
j)).

Proof: For simplicity, let m0, m−, m+ denote f(γj ,Sj), f−(γj ,Sj), and f+(γj ,Sj)
respectively, while m′

0, m
′
−, m′

+ denote f(γj ,S ′
j), f−(γj ,S ′

j), and f+(γj ,S ′
j) respec-

tively. By the choice of point γj ,

m0 + m− + m′
0 + m′

− ≥ |Sj ∪ S ′
j |/2.

Since |Sj | equals |S ′
j| or |S ′

j| + 1,

m0 + m− + m′
0 + m′

− ≥ |Sj|. (3)

On the other hand,

m0 + m− + m+ = |Sj|. (4)

Subtracting (4) from (3), we get

m′
0 + m′

− ≥ m+. (5)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 33

Thus,

m0 + m′
0 + min(m+, m′

−) = min(m0 + m′
0 + m+, m0 + m′

0 + m′
−)

≥ min(m0 + m′
0 + m+, m0 + m+) From 5

= m0 + m+ (6)

Similarly, we can show that m0 + m+ ≥ m′
−, and

m0 + m′
0 + min(m+, m′

−) ≥ m′
0 + m′

−. (7)

Recalling the definition of F , we have

F(γj ,Sj,S
′
j) = m0 + m′

0 + min(m+, m′
−)

≥ min(m0 + m+, m′
0 + m′

−) From (6), (7)

We now present two lemmas that are used in Lemma 12 to prove the correctness
of the Partition-Segments Algorithm. Let aj be the jth node in A at the completion
of Partition-Segments Algorithm used to create the subsequences Sj and S ′

j .

Lemma 10. If node aj was created in step 6 of Partition-Segments Algorithm
(by merging two nodes a and a.next such that g(a.seq) > g(a.next.seq)), then
F(γj ,Sj,S ′

j) ≥ (1/8)|aj|.

Proof: Let us assume that |a.next| ≥ |a|. Since, the sequence a.seq is a subse-
quence of Sj , we get

f(γj ,Sj) ≥ f(γj , a.seq), (8)

f+(γj ,Sj) ≥ f+(γj , a.seq). (9)

Since, aj.seq = (a.seq ∪ a.next.seq), the point γj = g(aj .seq) must lie between
g(a.seq) and g(a.next.seq). So, we get

f(γj , a.seq) + f+(γj , a.seq) ≥ f(g(a.seq), a.seq) + f+(g(a.seq), a.seq)

≥ |a|/2. (10)

Since |a.next| ≤ 3|a|, we have |aj| ≤ 4|a|. Thus, from above equations (8, 9, 10),
we get

f(γj ,Sj) + f+(γj ,Sj) ≥ (1/8)|aj|. (11)

In the case that |a.next| < |a|, similar reasoning gives

f(γj ,S
′
j) + f−(γj ,S

′
j) ≥ (1/8)|aj|. (12)

From Lemma 9 and equations (11), (12), we get

F(γj ,Sj,S
′
j) ≥ (1/8)|aj|.

Lemma 11. At most (4/5)m line segments lie in the nodes aj that are created
in the BALANCE-NEXT or BALANCE-PREV procedures.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · H. Gupta and R. Wenger

Proof: Recall that aj is the jth node in A and the size of A is equal to h at the
completion of Partition-Segments Algorithm.

Let b1, b2, . . . , bk be nodes created in a call BALANCE-NEXT(a) where a.next =
b1 and bj.next = bj+1 for j ≤ k. Since BALANCE-NEXT stops whenever
|a′.next| > (2/3)|a′|, we have the following:

— |b1| ≤ (2/3)|a|,

— |bj| ≤ (2/3)|bj−1| for all 2 ≤ j ≤ k − 1, and

— |bk| ≤ (4/3)|bk−1|. We prove this in the next paragraph.

Thus, we get

∑

i=1..k

|bj| ≤

(
∑

i=1..k−1

(2/3)i|a|

)
+ (4/3)(2/3)k−1|a| ≤ 2|a|.

Similarly, the total size of the nodes created in a call BALANCE-PREV(a) is at
most 2|a|. Since each line segment in a corresponds to at most 4 line segments in
nodes created in BALANCE-NEXT(a) and BALANCE-PREV(a), there are at most
(4/5)m line segments in nodes created in the BALANCE-NEXT and BALANCE-
PREV procedures.

Proof of |bk| ≤ (4/3)|bk−1|. Let b′1, b
′
2, . . . , b

′
h be the nodes merged to form bk, where

b′j.next = b′j+1, j ≤ h. The total number of elements in b′1, b
′
2, . . . , b

′
h−1 is less than

|bk−1|/3 or b′h would not have been added to bk. In particular, |b′h−1| must be less
than |bk−1|/3. Since the list was initially balanced, we have

|b′h| ≤ 3|b′h−1| ≤ 3(|bk−1|/3) = |bk−1|.

Thus,

|bk| = |b′h| +
∑

j=1..h−1

|b′j| ≤ (4/3)|bk−1|

.

Lemma 12. Partition-Segments Algorithm is correct, i.e., the set of subsequences
{S1,S ′

1,S2, . . . ,S ′
h} returned by Partition-Segments Algorithm have the desired

properties.

Proof: Initially, the line segments sj are stored in A in sorted order of their sub-
scripts. The merging and splitting steps in the main algorithm and in the subrou-
tines BALANCE-NEXT and BALANCE-PREV preserve the order of the si, so the
subsequences Sj ,S ′

j returned properly partition S into contiguous subsequences.
Sets Sj and S ′

j are created by partitioning aj.seq into two equal sized sequences,
so property 1 is satisfied. Recall that γj is g(Sj ∪ S ′

j) = g(aj .seq). The while loop
of Partition-Segments only terminates when γ1 ≤ γ2 ≤ · · · ≤ γh, so property 2 is
clearly satisfied.

To show that property 3 holds, note that a node aj is either an initial node or it
is created in step 6 of Partition-Segments or it is created in the BALANCE-NEXT
or BALANCE-PREV procedures. If aj is an initial node, then F(γj ,Sj,S ′

j) ≥ 1 ≥
(1/8)|aj| (as aj.seq = {s} for some s ∈ S, Sj = {s},S ′

j = ∅, and point γj is the
midpoint of s). Now, using Lemma 10 and Lemma 11, there are at least m/5 line

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 35

segments in nodes aj with the property that F(γj ,Sj ,S ′
j) ≥ (1/8)|aj|. Thus, we

get
∑

j=1..h F(γj ,Sj,S
′
j) ≥ m/40.

Lemma 13. The Partition-Segments Algorithm runs in O(m log m) time.

Proof: Steps 1-4 of Partition-Segments Algorithm take O(m) time. Step 6 can
be implemented in constant time.9 Steps 9-17 take O(m) time. Below, we show
that the total running time of step 5 and the balance procedures (steps 7 and 8) is
O(m log m). First, we observe that the number of iterations of the WHILE loop of
Partition-Segments Algorithm is at most (m − 1).

Merging two nodes decreases the number of nodes in A by one. Procedures
BALANCE-NEXT and BALANCE-PREV never increase the number of such
nodes.10 Since list A starts with m nodes, step 6 is executed at most m − 1
times. Similarly, procedures BALANCE-NEXT and BALANCE-PREV are called
at most m − 1 times.

Running Time of Balance Procedures. The running time of BALANCE-NEXT is
dominated by the inner loop in step 5 and the time to execute step 10. Each
execution of step 5 reduces the number of nodes in A by one. Step 10 increases the
number of nodes in A by one, but it is only executed once per call to BALANCE-
NEXT. Since BALANCE-NEXT is only called m − 1 times and there are at most
m nodes in A, step 5 is executed at most 2m − 2 times.

The time to split node a′.next in step 10 of BALANCE-NEXT is proportional
to |a′.next|. As argued in Lemma 11, the total size of the nodes created in the call
BALANCE-NEXT(a′) is at most 2|a′|. Thus, the total running time of step 10 is
proportional to the sum of the sizes of nodes created in step 6 of Partition-Segments.
Step 6 merges nodes a and a.next to create a new node a′. The size of a′ is at
least 4/3|a| and 4/3|a.next|. Since each time a node is merged in step 6, its size
increases by 4/3, any given line segment s is in O(logm) merge steps. Thus, the
sum of the sizes of nodes created in step 6 of Partition-Segments and the total
running time of step 10 of BALANCE-NEXT is O(m logm). A similar analysis
applies to BALANCE-PREV.

Running Time of Step 5 of Partition-Segments. We are left with analyzing the run-
ning time of step 5 of Partition-Segments. Step 5 checks if a.next.g < a.g for
some a ∈ A. We can accomplish this by keeping a set A∗ of nodes in A to be
checked. For each node a ∈ A∗, we check that g(a.seq) ≤ g(a.next.seq) and that
g(a.seq) ≥ g(a.prev.seq). The points g(a.seq), g(a.next.seq) and g(a.prev.seq) can
be found in time proportional to |a|, |a.next| and |a.prev|, respectively, using a
linear median find algorithm. Since |a.next| ≤ 3|a| and |a.prev| ≤ 3|a|, computing
g(a.seq), g(a.next.seq) and g(a.prev.seq) takes O(|a|) time. Node a can be created
as a merge of two nodes in step 6 of Partition-Segments or in BALANCE-NEXT or
BALANCE-PREV. As previously argued, the sum of the sizes of the nodes created
in step 6 of Partition-Segments is O(m log m). Each node a′ created in step 6 can
cause the creation of nodes in BALANCE-NEXT(a′) and BALANCE-PREV(a′)
with a total of 4|a′| elements. Thus, the sum of the sizes of created nodes is
O(m log m) and the running time of step 5 is O(m log m).

9The sequences a.seq can be stored as linked lists with first and last pointers.
10Node a′.next is split only in step 10 when it is the result of multiple merges.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · H. Gupta and R. Wenger

6. CONSTRUCTING ISOMORPHIC TRIANGULATIONS

In this section, we use our approximation algorithm for the PDLP problem to
improve our earlier result [Gupta and Wenger 1997] on construction of isomorphic
triangulations between simple polygons.

A triangulation TP of P (possibly with interior vertices) is isomorphic to a trian-
gulation TQ of Q if there is a one-to-one, onto mapping f between the vertices of TP

and the vertices of TQ such that p, p′, p′′ are vertices of a triangle in TP if and only
if f(p), f(p′), f(p′′) are vertices of a triangle in TQ. An isomorphic triangulation of
P and Q also defines a piecewise linear homeomorphism between P and Q. The
size of a triangulation is the total number of vertices, edges and triangles in the
triangulation.

Algorithms for constructing isomorphic triangulations between labeled point sets
are described in [Saalfeld 1987] and [Souvaine and Wenger 1994]. Algorithms for
isomorphic triangulations between simple polygons are given in [Aronov et al.
1993], [Kranakis and Urrutia 1995], and [Gupta and Wenger 1997]. In [Gupta
and Wenger 1997], we designed an algorithm to construct isomorphic triangula-
tions of simple polygon P and Q consisting of O(M1 logn + n log2 n) triangles in
O(M1 logn + n log2 n) time, where M1 is the size of an optimal (minimum size)
solution and n is the number of vertices of the polygons. The result in Theorem 2
leads directly to an improvement in the above result of [Gupta and Wenger 1997]
when M1 = o(n log n). We outline the improved algorithm here. Readers are re-
ferred to [Gupta and Wenger 1997] for more complete details and figures of the
original algorithm.

Theorem 3. Let P be a simple polygon with vertices {p1, p2, . . . , pn} and Q be
a simple polygon with vertices {q1, q2, . . . , qn}. Let M1 be the minimum number of
triangles in any isomorphic triangulation of P and Q mapping pi to qi. Isomor-
phic triangulations mapping pi to qi using O(M1 logn) edges can be constructed in
O(M1 logn) time. Moreover, no new vertices are added to the boundary of P and
Q in these triangulations.

Proof: We start with a description of the algorithm.

Algorithm Description. As in [Gupta and Wenger 1997], construct a triangula-
tion TP of P using no vertices other than those of P and choose a set of edges CP

from TP as follows. Arbitrarily, pick an edge e∗ of P . Let ΨP be the union of the
set of triangles of TP that intersect V̂is(e∗). The boundary of ΨP is composed of
edges and chords of the original polygon P . Add all the chords bounding ΨP to
CP . Each such chord c divides P into two polygons. Let P (c) be one not containing
e∗. Recursively apply this procedure to each such polygon P (c) starting at its edge
c, to choose a set of edges from P (c) and add them to CP . Let k be the size of CP .

For each diagonal (pi, pj) in P , there is a corresponding pair of vertices (qi, qj)
in Q. Let ΠQ be the set of k pairs of distinct vertices of Q corresponding to the
diagonals in CP . Note that the pairs of vertices in ΠQ are untangled. By Theorem 2,
a set of k pairwise disjoint interior paths connecting each pair in (qi, qj) ∈ ΠQ can
be constructed in O(n logk+M2 log k) time using at most 120M2+127k total links,
where M2 is the minimum total number of line segments necessary to connect all
pairs (qi, qj) ∈ ΠQ by pairwise disjoint paths. For each new vertex q′ on the path

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 37

from qi to qj, create a corresponding new vertex p′ on the diagonal (pi, pj).
The k diagonals in CP split polygon P into k + 1 subpolygons P1, P2, . . . , Pk+1.

The interior paths split polygon Q into k+1 corresponding subpolygons Q1, Q2, . . .,
Qk+1. Each subpolygon Pi has an edge e that lies within link distance two of every
point in Pi. Thus, each Pi has link diameter at most five. By Lemma 3.4 in [Gupta
and Wenger 1997], isomorphic triangulations of Pi and Qi can be constructed in
O(ni logni) time using 40niblog2 nic + O(ni) edges, where ni is the number of
vertices of Pi and Qi. Since these isomorphic triangulations do not contain any
new boundary vertices, their union is an isomorphic triangulation of P and Q.

Output Size Analysis. The total number of edges in the isomorphic triangu-
lations of P and Q is at most

∑k+1
i=1 (40niblog2 nic + O(ni)). Since each edge

of Qi is either an edge of Q or an edge on one of the k disjoint interior paths,∑k+1
i=1 ni < n + 2(120M2 + 127k). Bounding log2 ni by log2 n and k by n gives a

bound of

40(240M2 + 254n)blog2 nc + O(M2 + n) = O(M2 logn + n logn).

Let T ∗
P and T ∗

Q be an optimal pair of isomorphic triangulations of P and Q
mapping pi to qi and let M1 be the number of triangles in T ∗

P (which equals the
number of triangles in T ∗

Q). In the next paragraph, we show that M2 ≤ 3M1. Now
since M1 ≥ n − 2, we conclude that the total number of edges in the constructed
isomorphic triangulations of P and Q is M2 log n + n log n = O(M1 logn).

Proving M2 ≤ 3M1. As isomorphic triangulations define a piecewise linear mapping
between P and Q [Gupta and Wenger 1997], each diagonal (pi, pj) ∈ CP has a
mapping, induced by the isomorphic triangulations T ∗

P and T ∗
Q, in Q. In particular,

the set of diagonals CP get mapped to a set of disjoint link paths ζ in Q. By the
choice of CP , no triangle of T ∗

P intersects more than three diagonals of CP . Hence,
no triangle of T ∗

Q intersects more than three link paths from ζ. Since, each path in
ζ uses at most one line segment within a triangle of T ∗

Q, the set of paths ζ use at
most 3M1 total line segments. As M2 is the number of line segments in an optimal
construction of link paths, we get M2 ≤ 3M1.

Time Complexity. As in [Gupta and Wenger 1997], it can be shown that the
running time of the above algorithm is O(M1 logn), since the additional time is
only O(n logk + M2 logk) = O(M1 logn) for constructing disjoint paths for ΠQ.

7. CONCLUSIONS

Let P be a simple polygon on n vertices, let Π be an untangled set of m pairs of
distinct vertices of P , and let L be the sum of the interior link distances between
pairs in Π. In [Gupta and Wenger 1997], we proved that pairwise disjoint interior
paths connecting the pairs can be constructed using L + O(m log m) line segments.
In this paper we showed that L+Ω(m log m) line segments are sometimes required.
We gave an approximation algorithm for constructing pairwise disjoint paths in
O(n + M + m log m) time using O(M) line segments where M is the minimum
number required. We applied this approximation algorithm to construct isomorphic
triangulations of two polygons in O(M1 log n) time using O(M1 logn) edges where
M1 is the size of the optimal solution. This improved our result in [Gupta and
Wenger 1997].

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · H. Gupta and R. Wenger

We still do not know if constructing pairwise disjoint paths using the fewest line
segments is an NP-complete problem or whether it can be solved in polynomial
time. We also do not know of an ε-approximation scheme for constructing such
paths. Possibly the techniques of Arora [1996] for the Euclidean Traveling Salesman
Problem could apply.

Kahan and Snoeyink [1996] show that a polygon on n vertices with bit complex-
ity n log n may have a minimal link path with Θ(n2 log n) bit complexity. Similar
problems plague pairwise disjoint paths with the minimum number of line segments.
Because the algorithms in this paper are approximation algorithms, the bit com-
plexity of coordinates in the output is a constant factor times the bit complexity of
input coordinates.

REFERENCES

Aggarwal, A., Schieber, B., and Tokuyama, T. 1993. Finding a minimum weight k-link path

in graphs with Monge property and applications. In Proc. 9th Annu. ACM Sympos. Comput.
Geom. 189–197.

Aggarwal, A., Schieber, B., and Tokuyama, T. 1994. Finding a minimum-weight k-link path

in graphs with the concave Monge property and applications. Discrete Comput. Geom. 12,
263–280.

Alsuwaiyel, M. H. and Lee, D. T. 1993. Minimal link visibility paths inside a simple polygon.

Comput. Geom. Theory Appl. 3, 1, 1–25.

Arkin, E. M., Mitchell, J. S. B., and Suri, S. 1992. Optimal link path queries in a simple
polygon. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms. 269–279.

Arkin, E. M., Mitchell, J. S. B., and Suri, S. 1995. Logarithmic-time link path queries in a

simple polygon. Internat. J. Comput. Geom. Appl. 5, 4, 369–395.

Aronov, B., Seidel, R., and Souvaine, D. 1993. On compatible triangulations of simple poly-
gons. Comput. Geom. Theory Appl. 3, 1, 27–35.

Arora, S. 1996. Polynomial time approximation schemes for Euclidean TSP and other geometric
problems. In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci. 2–11.

Bender, M. A. and Farach-Colton, M. 2000. The lca problem revisited. In LATIN ’00:

Proceedings of the 4th Latin American Symposium on Theoretical Informatics. Springer-Verlag,
88–94.

Chazelle, B. 1991. Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 5,

485–524.

Garey, M. R. and Johnson, D. S. 1979. Computer and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Goodman, J. E. and O’Rourke, J., Eds. 1997. Handbook of Discrete and Computational Ge-

ometry. CRC Press LLC, Boca Raton, FL.

Guibas, L. J., Hershberger, J., Leven, D., Sharir, M., and Tarjan, R. E. 1987. Linear-
time algorithms for visibility and shortest path problems inside triangulated simple polygons.

Algorithmica 2, 209–233.

Gupta, H. and Wenger, R. 1997. Constructing piecewise linear homeomorphisms of simple
polygons. J. Algorithms 22, 142–157.

Harel, D. and Tarjan, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM

J. Comput. 13, 2, 338–355.

Kahan, S. and Snoeyink, J. 1996. On the bit complexity of minimum link paths: Superquadratic
algorithms for problems solvable in linear time. In Proc. 12th Annu. ACM Sympos. Comput.

Geom. 151–158.

Kranakis, E. and Urrutia, J. 1995. Isomorphic triangulations with small number of Steiner
points. In Proc. 7th Canad. Conf. Comput. Geom. 291–296.

Lee, D. T. and Yang, C. D. 1996. Rectilinear paths among rectilinear obstacles. Discrete Applied

Mathematics 70, 185–215.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Constructing Pairwise Disjoint Paths with Few Links · 39

Papadopoulou, E. 1999. k-pairs non-crossing shortest paths in a simple polygon. International
Journal of Computational Geometry and Applications 9, 6.

Saalfeld, A. 1987. Joint triangulations and triangulation maps. In Proc. 3rd Annu. ACM
Sympos. Comput. Geom. 195–204.

Shiloach, Y. 1980. A polynomial solution to the undirected two paths problem. J. ACM 27, 3,

445–456.

Souvaine, D. and Wenger, R. 1994. Constructing piecewise linear homeomorphisms. Technical

Report 94–52, DIMACS, New Brunswick, New Jersey.

Suri, S. 1986a. A linear time algorithm for minimum link paths inside a simple polygon. Comput.

Vision Graph. Image Process. 35, 99–110.

Suri, S. 1986b. A linear time algorithm with minimum link paths inside a simple polygon.
Computer Vision Graphics and Image Processing 35, 1, 99–110.

Takahashi, J., Suzuki, H., and Nishizeki, T. 1992. Algorithms for finding non-crossing paths
with minimum total length in plane graphs. In International Symposium on Algorithms and

Computation (ISAAC).

Takahashi, J., Suzuki, H., and Nishizeki, T. 1993. Finding shortest non-crossing rectilinear

paths in plane regions. In International Symposium on Algorithms and Computation (ISAAC).
98–107.

Takahashi, J., Suzuki, H., and Nishizeki, T. 1996. Shortest noncrossing paths in plane graphs.

Algorithmica 16, 3, 339–357.

Yang, C. D., Lee, D. T., and Wong, C. K. 1997. The smallest pair of noncrossing paths in a

rectilinear polygon. IEEE Transactions on Computers 46, 8, 930–941.

ACM Journal Name, Vol. V, No. N, Month 20YY.

