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ABSTRACT
In this paper we present HearSay, a system for browsing hyper-
text Web documents via audio. The HearSay system is based on
our novel approach to automatically creating audio browsable con-
tent from hypertext Web documents. It combines two key tech-
nologies: (1) automatic partitioning of Web documents through
tightly coupled structural and semantic analysis, which transforms
raw HTML documents into semantic structures so as to facilitate
audio browsing; and (2) VoiceXML, an already standardized tech-
nology which we adopt to represent voice dialogs automatically
created from the XML output of partitioning. This paper describes
the software components of HearSay and presents an initial system
evaluation.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; H.4.3
[Information Systems Applications]: Communications Applica-
tions—information browsers

General Terms
Algorithms, Design, Experimentation

Keywords
World Wide Web, HTML, VoiceXML, structural analysis, semantic
analysis, audio browser, user interface

1. INTRODUCTION
As the World Wide Web has matured, an enormous amount of

information, ranging from news to entertainment to scientific dis-
coveries, has been made readily accessible to the general public.
Recently Google announced that its search engine has indexed 4.3
billion Web pages. Furthermore, it is estimated that the Web is still
constantly growing at a rapid pace, doubling in size every 8 months.
However, most Web documents are designed primarily for graphi-
cal display and interaction. This means that individuals with visual
disabilities and/or highly mobile individuals have reduced access
to the many resources the Web provides.

Creating audio browsable Web content has become the focus
of intensive research efforts by industrial enterprises (e.g., IBM,
AT&T, Microsoft) and standardization organizations (e.g., W3C).
New markup languages, such as VoiceXML [4] and SALT [3],
and new voice browser systems, such as IBM’s WebSphere Voice
Server and Lucent Technologies’ MiLife VoiceXML Gateway, are
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emerging to facilitate the creation, publishing, and exchange of au-
dio browsable Web content.

However, adapting to voice browser technology still remains a
significant burden for many Web content providers. In order to de-
liver their content to different browsers with different visual and
audio modalities, Web content providers have to design and encode
their Web content in different forms using various standard markup
languages such as HTML, VoiceXML, and WML [5] — a tremen-
dous development and maintenance overhead. Such diversity in
content formats has become an obstacle to the wide adoption of
voice browser technology by Web content providers.

Although voice browsers that can read HTML documents ex-
ist (e.g., [2]), they do not adequately convey to users the logical
structure and semantics of content in Web documents, nor do they
provide users with easy ways to select which parts of a document
to listen to. Consequently, users who are visually disabled and/or
mobile waste a considerable amount of time and attention listening
to irrelevant information.

Our goal is to develop intelligent systems that can enable peo-
ple to interact directly, quickly, and easily with Web content using
non-visual modalities, primarily audio. In this paper we present
the HearSay system, a prototype audio Web browser we have de-
veloped. HearSay is based on a novel technology, partitioning, for
structural and semantic analysis of HTML documents. HearSay
is completely speech driven. It supports interactive exploratory
browsing, presenting information about an HTML document’s log-
ical structure and content and permitting users to select which parts
of the document to listen to and when to navigate to a new page.
The key ideas underlying this system are:

1. Novel structural analysis techniques that leverage the struc-
tural annotations of HTML documents to partition Web con-
tent into semantic units, which are organized and then pre-
sented to users as a concept hierarchy (or partition tree). We
have also developed efficient heuristics to identify semantic
labels for nodes in the partition tree.

2. Novel semantic analysis techniques that are tightly coupled
with structural analysis. We use lexical associations derived
from WordNet, combined with ontologies, to more accurately
separate semantic units and to assign informative labels to
partitions. In addition, we have proposed effective heuristics
to propagate semantic associations based on structural cues
in HTML documents, further improving the performance of
our techniques.

3. Template-based automatic VoiceXML dialog creation using
partition trees. This permits on-the-fly generation of dialogs
for efficient, user-directed interactive audio browsing. An
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initial evaluation of this system has been conducted to demon-
strate its utility for real-life browsing tasks and identify areas
for further improvement.

The rest of this paper is organized as follows. In Section 2 we
discuss related work. A use scenario of the HearSay system is pre-
sented in Section 3. Section 4 presents the software architecture
of HearSay and gives an overview of our novel partitioning algo-
rithms. In Section 5 we describe an initial system evaluation. We
conclude in Section 6.

2. RELATED WORK

2.1 Audio Browsers
The issue of promoting Web accessibility for persons with vi-

sual disabilities has become increasingly prominent. In 1997, W3C
launched the Web Accessibility Initiative (WAI) [26] to promote
the development of browser standards and guidelines (e.g., HTML
authoring guidelines and authoring tool guidelines) to make the
Web more accessible to individuals with visual disabilities. Similar
initiatives have been developed by industry: examples include Mi-
crosoft’s accessibility initiative [29], IBM’s Special Needs Systems
program [25], and Sun Microsystem’s Java accessibility API [32].

Several studies have highlighted the ineffectiveness of existing
screen readers for Web browsing tasks [13, 19]. As a result, several
specialized Web audio browsers have been developed [31, 27]. For
example, the JAWS [1] system and IBM’s Home Page Reader [8,
7, 30] allow navigation via hyperlinks. The BrookesTalk system
uses NLP-based text abstracting and summarization techniques to
facilitate audio browsing of the Web [38]. Other systems permit
VoiceXML browsing of Web pages [2].

HearSay is different from these systems in both scope and ap-
proach. In particular, HearSay performs structural and semantic
analysis of HTML documents and automatically creates VoiceXML
dialogs from the partition trees it discovers, facilitating audio brows-
ing without information overload. HearSay takes a comprehensive,
content-based approach to audio Web browsing, giving greater flex-
ibility and usability without sacrificing performance.

Finally, we should point out that HearSay will benefit not only
people with visual disabilities but users of small-form devices such
as PDAs as well.

2.2 Web Page Analysis
The idea of analyzing Web documents in order to make them

amenable for browsing by persons with visual disabilities was ex-
plored in [33]. In this work, parts of HTML documents deemed
“interesting” are marked by hand. The XPaths to these selected
blocks are stored in a repository. When the site server receives
a request for a document, the stored XPaths are matched against
its corresponding DOM tree to extract the “interesting” blocks. In
this approach, if the document organization changes the annota-
tion must be redone. Other researchers have proposed the idea of
extracting “interesting” content using semantics [24]. The problem
with these approaches is that the identification of “interesting” con-
tent is done by hand (and so takes time and is not easily scalable),
and is site-specific (and so not generalizable).

A significant amount of research has been done recently on the
topic of segmenting Web documents [15, 16, 14, 10, 11, 36, 37].
Our technology differs from these techniques in three important
ways. First, these techniques are either domain-specific [15, 14] or
depend on ad hoc interpretation of a fixed set of HTML markups [16,
11, 36, 37, 10]. Our partitioning techniques can be applied to any
domain. Second, for these techniques to be robust, a substantial

amount of human effort has to be spent on tuning system param-
eters (manually-coded ontologies [15, 14] or hard-wired threshold
values [16, 11, 36]) for specific domains. Our structural analysis
techniques are fully automated and domain-independent, while the
domain-dependent part — semantic analysis, and in particular, la-
beling of partitions — can be automated by training classifiers and
mining ontologies from the Web (see Section 6 for future work).
Finally, the problem of assigning semantic labels to partitions was
not addressed in [36, 37].

Some interesting recent research has focused on enriching Web
documents with semantic labels [23, 21, 22, 12]. In [23, 21, 22]
powerful ontology management systems form the backbone of sys-
tems that support interactive annotation of HTML documents. This
is in contrast to our approach where annotation is automatic. An-
other automatic approach to Web document annotation is described
in [12]. However, the techniques proposed in [12] do not make
use of the structural markups of Web documents. Consequently,
their partitioning algorithm may fail on content-rich HTML docu-
ments containing multiple concepts and multiple concept instances
for each concept.

In summary, our approach to partitioning and labeling of Web
pages uses tightly coupled, automatic structural and semantic anal-
ysis techniques to obtain concept hierarchies (or partition trees)
from HTML documents.

3. A USE SCENARIO
In this section we will illustrate the intended use of HearSay.

Suppose Alice is a blind student who is taking a class on current af-
fairs. She often browses newspaper Web sites during her commute

Figure 1: New York Times Front Page
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<form id="home">
<field name="choice">

<prompt>
Alice, please choose one of these:
Headline News. News. Opinion. Exit.

</prompt>
<grammar> Headline News | News | Opinion | ... | Exit </grammar>
<filled>

<if cond="choice==’Headline News’"><goto next="#headline_news"/>
<elseif cond="choice==’News’"/><goto next="#news"/>
<elseif cond="choice==’Opinion’"/><goto next="#opinion"/>
...
<elseif cond="choice==’Exit’"/><exit/>
</if>

</filled>
</field>

</form>

Figure 2: VoiceXML Dialog for New York Times Front Page

in order to prepare for in-class discussions. Today she browses the
Web site of the New York Times (http://nytimes.com) using her
cell phone. Alice chooses to use HearSay’s voice interface. First
she speaks the URL to HearSay. After retrieving the New York
Times front page (see Figure 1), HearSay performs structural and
semantic analysis on this Web page to determine semantically re-
lated units in it. The result is a semantic partition tree as shown in
Figure 3.

Headline News

Editorials/Op−Ed

Reader’s Opinions

Arts

International

Business

Technology

National

Washington

NEWS

OPINION

FEATURES

By ...

By ...

By ...

The decision ...

Text: Supreme ...

Complete ...

Among Saudis ...

The bombing ...

Suspects ...

Iraqi Tribes ...

Justices to ...

Figure 3: Semantic Partition Tree for Figure 1

Each item in a semantic partition has a label and a type (e.g.,
navigation link, text, form element). For instance, all the items
under the partition labeled “NEWS” in Figure 3 are those links
under the “NEWS” category in the news taxonomy of New York
Times (upper left corner in Figure 1). Similarly, all the items in
the partition labeled “Headline News” are the headline news items
in the New York Times front page (center portion of Figure 1).
Examples of such items are shown in Figure 3.

HearSay also automatically generates a speech dialog interface
to the semantic partition tree. Part of a sample VoiceXML dialog
for the partition tree in Figure 3 is shown in Figure 2. Alice can now
browse this site using audio. HearSay reads out the labels of top-
level partitions (“NEWS”, “OPINION”, ..., “Headline News”, ...,
etc.), pausing briefly after each item unless Alice chooses to speed
the system up. Alice can pick an item at any time, by saying the
label or the partition number. If Alice says “News” (or “Item 1”),
HearSay reads out the label and type of each item in the “NEWS”
partition, including the fact that all the items it contains are links,
and the name of each link. If Alice says “Business”, HearSay will
follow this link to the business section of the New York Times (Fig-
ure 4) and partition the resulting document as shown in Figure 5

where Alice can select an article to listen to. At any point Alice
can also say any one of a set of browsing commands, such as “Start
over”, “Repeat” or “Stop”.

Figure 4: New York Times Business Page

International

Business
Media&Advertising

World Business

Your Money

Markets

Business News

Technology

National

Washington

NEWS

Tax Cut ...

By ...

Bush’s nominee ...

Tenants ...

By ...

By ...

Some companies ...

Chart: ...

As downtown ...

Figure 5: Semantic Partition Tree for Figure 4

4. ENABLING AUDIO BROWSING

4.1 Voice Browser Architecture
The software architecture of HearSay is depicted in Figure 6.

The main function of the partition generator module is to partition
an input HTML document into semantically related segments by
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performing structural and semantic analysis. The semantic analysis
component uses knowledge resources, such as lexicons (e.g., Word-
Net [6]), and domain ontologies that encode the salient characteris-
tics of commonly accepted concepts in the particular domain. (Ex-
ample domains are news, consumer electronics, etc.)

Figure 6: Architecture of HearSay

Users interact with HearSay through the dialog interface man-
ager. We do not explicitly include in the HearSay architecture
modules for text-to-speech conversion and speech recognition, as
this functionality is provided by a number of Web browsers that
support the VoiceXML standard. Our current implementation is
built on top of IBM’s WebSphere toolkit which includes text-to-
speech and speech recognition components.

4.2 Partitioning
The partition generator takes an HTML document as input. It

performs structural and semantic analysis on the DOM tree of this
HTML document and outputs a partition tree (represented in XML),
which captures the logical structure of the original input HTML
document.

The key observation used in the partition generator is that se-
mantically related items in an HTML document normally exhibit
consistency in presentation style and spatial locality. This is partic-
ularly true of content-rich Web sites that change frequently such as
news portals and e-commerce sites, because these sites are typically
maintained using content management software that creates HTML
documents by populating templates from backend databases.

For example, in the New York Times front page (shown in Fig-
ure 1), there is a fixed news taxonomy on the upper left corner.
There is also an implicit template for major headline news items.
Each of these items begins with a hyperlink labeled with a news
headline (e.g., “Among Saudis ...”) followed by the news source
(e.g., “By NEIL ...”), followed by an optional timestamp, text sum-
mary of the article (e.g., “The bombing ...”), and some pointers to
related news (e.g., “Suspects Held ...”).

There are also presentation similarities in the items in the news
taxonomy of the New York Times front page (Figure 1). The main
taxonomic items, “NEWS”, “OPINION”, “FEATURES”, ..., etc.,
are all presented in bold font. All the subtaxonomic items (e.g.,
“International”, “National”, “Washington”, ..., etc.) under a main
taxonomic item (e.g., “NEWS”) are hyperlinks. This kind of con-
sistency in presentation style has a very strong manifestation in the
DOM tree of an HTML document. For example, Figure 7 depicts
a fragment of the DOM tree for the New York Times front page
shown in Figure 1. The root-to-leaf sequences of HTML tags for
the nodes “NEWS” and “FEATURES” are exactly the same, so are

the sequences of HTML tags for the nodes “International”, “Arts”,
..., etc. (font tags with different attributes, e.g., size, are distin-
guished using different subscripts in Figure 7).

font0

font2

font1 font4

font3

font4font0

td

img

"NEWS"

tr

font0

td

a

"International"

tr

font0

td

a

"National"

tr

font3

"Officials..."

font2

"By CHARLIE..."

font1

a

strong

"After the..."

tr
td td

table

td

a

tr

td

"By..."

a a a

strong "Text:..."
"Books"

a

td

trtr
......

"Arts" "Justices..."

"The decision..."

"Complete..."

...
td

img

tr

"FEATURES"

Figure 7: DOM Tree Fragment for Figure 1

Together with consistency in presentation style, spatial locality
can also be commonly observed in a Web page and its correspond-
ing DOM tree. For example, when rendered in a browser (see Fig-
ure 1), all the taxonomic items for the New York Times are placed
in close vicinity occupying the upper left portion of the page. In the
DOM tree (see Figure 7) corresponding to this HTML document,
all these taxonomic items are grouped together under one single
subtree rooted at the table node (shown in circle). Similarly, all the
major headline news items are clustered under a different subtree
rooted at the td node (shown in circle in Figure 7).

4.2.1 Structural Analysis
Our structural analysis of an HTML document is based on the

key observations mentioned above. First, the observation about
consistency in presentation style leads to the idea of associating
a type (explained below) with each leaf node in a DOM tree. Sec-
ond, the observation about spatial locality gives rise to the idea of
discovering structural recurrence patterns for semantically related
items and propagating types bottom-up in the DOM tree.

In HearSay, we exploit a simple but effective type system to
encode information about presentation styles and structural recur-
rences. Types in our system are either primitive types or compound
types in the form of seq(T1 . . . Tn) where each Ti is a type. Each
leaf node in a DOM tree is associated with a primitive type, which
concatenates all the HTML tags on the root-to-leaf path to this
node. Intuitively, a primitive type encodes the presentation style
(including location and visual cues such as font type and size) of a
piece of text that corresponds to a leaf node in a DOM tree.

For example, in the DOM tree fragment of Figure 7 (which cor-
responds to the Web page shown in Figure 1) all the leaf nodes cor-
responding to the main taxonomic items, “NEWS”, “OPINION”,
“FEATURES”, ..., etc., have the same primitive type, T1: tr · td ·

table · tr · td · img. All the subtaxonomic items under each main
taxonomic item, such as “International”, “National”, ..., etc., under
the “NEWS” item, also share a primitive type, T2: tr · td · table ·

tr · td · a · font0.
A compound type essentially summarizes the structural recur-

rence information of a subtree rooted at an internal node. Note that
in Figure 7 the subtree rooted at the table node (circled) groups
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together several main taxonomic items each of which is followed
by a number of subtaxonomic items, i.e., the entire taxonomy is
clustered under this single DOM subtree. This property of spa-
tial locality combined with consistency in presentation style reveals
structural recurrence information about semantically related items,
which can be denoted by T1T2T2 . . . T1T2T2 . . .. In this string the
sequential pattern, T1T

∗

2 (here ∗ denotes Kleene closure), exactly
captures the structural recurrence information of each semantic unit
(i.e., a main taxonomic item followed by a number of subtaxonomic
items). In our type system, the sequential pattern T1T

∗

2 is gener-
alized as the compound type seq(T1T2), which is assigned as the
type of the table node (circled) in Figure 7.

As illustrated by the example above, the idea underlying our
approach to structural analysis is to gather sequential patterns in
the type sequence of nodes in a DOM tree in a bottom-up fashion.
Given any two types as defined above, their equivalence is defined
straightforwardly: two types are equivalent if and only if they are
syntactically the same. Our top-level partitioning algorithm is out-
lined in algorithm PartitionTree.

Algorithm PartitionTree(n)
input

n : a node in a DOM tree
begin
1. if n is a leaf node then
2. n.type = the sequence of HTML tags from the root to n
3. else if n has only one child node c then
4. PartitionTree(c)
5. Replace n with c and remove n from the DOM tree.
6. else
7. for each child node x of n do PartitionTree(x) endfor
8. Analyze(n)
9. endif
end

To transform the DOM tree of an HTML document into a se-
mantic partition tree, algorithm PartitionTree is invoked on the root
of the DOM tree. The algorithm first traverses the DOM tree top-
down and then restructures it bottom-up. We use the notation n.type

to refer to the type attribute of a node n. In algorithm PartitionTree,
Line 2 assigns primitive types to all leaf nodes. Internal nodes with
only one child are handled in Lines 4–5. In such a case, the type
of this single child node is computed and then simply propagated
up the tree. However, for an internal node with multiple children,
algorithm PartitionTree is first invoked on each of its children to
compute their type information (Line 6). Then algorithm Analyze
performs a pattern discovery on the sequence of types of its child
nodes (Line 7).

Algorithm Analyze takes an internal node, n, as input. Its main
function is to partition the child nodes of n by examining their
structural similarity.There are two main stages in algorithm Ana-
lyze. The first stage is an iterative process for discovering structural
similarities among the types of child nodes, where each iteration
involves collapsing consecutive, identical types into one (to group
repeated items) and then mining the so called maximal repeating
substrings (to find structural recurrences). Essentially, a maximal
repeating substring is a repeating substring that covers a majority
of elements in a sequence.1 In addition, its coverage should be
maximized and its length minimized (under the prerequisite that its
coverage be maximized). In our algorithms we use suffix trees [20]
to efficiently mine maximal repeating substrings.

In the second stage of algorithm Analyze, the last pattern dis-
covered during the first stage is used to partition the remaining se-
quence of nodes further. Here we use a simple heuristic to handle
1Normally the support threshold value is set to 30%-50% in our
system. It is used to factor in structural variations.

variations in document structures (e.g., missing data items): we
always try to associate the nodes between partitions with the left
partition. (Later we will show how this simple heuristic can be
enhanced by semantic analysis.)

Algorithm Analyze(n)
input

n : an internal node in a DOM tree
begin
1. S = the sequence of all the child nodes of n
2. for each node c in S do
3. if c.flatten = true then
4. Replace c with the sequence of all the child nodes of c.
5. endif
6. endfor
7. τ = ε
8. do
9. Collapse adjacent nodes in S which share the same type.
10. α = MaximalRepeatingSubstring(TypeStr(S))
11. if α 6= ε then τ = α endif
12. if |α| > 1 then
13. for each substring ρ in S such that TypeStr(ρ) = α do
14. Replace ρ with NewNode(ρ,seq(α)).
15. endfor
16. endif
17. while |α| > 1
18. if τ = ε then
19. n.flatten = true
20. else
21. Partition S into β0γβ1 . . . γβm, where TypeStr(γ) = τ .
22. for each γβi do Replace γβi with NewNode(γβi, NewType(τ )). endfor
23. n.type = NewType(τ )
24. endif
25. Make the nodes in S the new children of n.
end

The process for discovering structural similarity may not always
succeed, since our algorithm traverses a DOM tree bottom-up and
multiple semantically related items can be dispersed in several sub-
trees. Therefore, the “true” sequential pattern may not be evident
until our algorithm is invoked on an internal node that is close
enough to the root. If structural similarity is not found at a node,
then the type information of all its child nodes is simply propagated
up the tree.

Now we illustrate the working steps of algorithm Analyze us-
ing an example. For simplicity, we will just show how it manip-
ulates a sequence of types and omit other details. Suppose algo-
rithm Analyze is invoked on a node S with the sequence of types
of its child nodes set to T1T2T3T2T3T4T1T2T3T5 and the system
support threshold value set to 50%. During the first stage of algo-
rithm Analyze, the first iteration of its pattern mining process will
identify T2T3 as a maximal repeating substring. Let us use a new
type T6 to denote seq(T2T3). Then the type sequence becomes
T1T6T6T4T1T6T5. In the second iteration the first two occurrences
of T6 are collapsed into one, resulting in T1T6T4T1T6T5, in which
T1T6 is a maximal repeating substring. Again, we use a new type
T7 to represent seq(T1T6). So after the second iteration the type
sequence becomes T7T4T7T5. Now the pattern mining process can
be terminated since nothing new can be found. During the second
stage of algorithm Analyze, the sequence T7T4T7T5 is partitioned
into T7T4 and T7T5 using our heuristics and T7 is assigned as the
type of node S.

4.2.2 Semantic Analysis
There are two main problems with structural analysis. First, it

may not always yield correct partitions corresponding to concept
instances, especially in the presence of structural variation. In par-
ticular, the analysis based on maximal repeating substrings alone
does not guarantee complete partitions. For example, in Figure 1
the fourth major headline news item starting with “After the Cross-
ing ...” does not have any pointer to related news while all the
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others do. Invoking algorithm Analyze on the td node in Figure 7
(shown circled which contains all major headline news items) gives
sequence S: γ · T4 · γ · T4 · γ · T4 · γ, where γ = seq(T1T2T3);
T1, T2, T3, T4 corresponds to news title, source, text summary, and
pointers to related news, respectively. The correct partitions corre-
sponding to the four major headline news items should be P1 = γ ·

T4, P2 = γ ·T4, P3 = γ ·T4, P4 = γ, such that S = P1 ·P2 ·P3 ·P4.
The second problem with structural analysis has to do with as-

signing semantic labels to partitions. Usually the labels of (small)
partitions deep in a partition tree are provided by Web site designers
in the document itself (e.g., “INTERNATIONAL”, “BUSINESS”,
..., etc. appearing in the third column in Figure 1). When such a
label is present in a document, it is usually the first text item in the
partition. Adopting this simple heuristic, we can extract labels for
many partitions. On the other hand, we also have to deal with label-
ing concept instances using labels not seen in the document (e.g.,
“Headline News” in Figure 3). Such situations occur when smaller
partitions are aggregated into bigger partitions.

To address the problems above, we use semantic analysis tech-
niques, which discover lexical and concept associations in a subtree
and propagate the associations discovered around the DOM tree.
We now outline these semantic analysis techniques.

Lexical Association. Lexical association seeks to relate two con-
secutive pieces of raw text by examining whether they share com-
mon words (after dropping “stop” words such as “the”) either di-
rectly or via synonym relationships. This is a light-weight linguistic
processing technique for identifying small segments of related text.
It is implemented in our system using WordNet [6].

Recall the example at the beginning of this section, where struc-
tural analysis produces the sequence S = γ · T4 · γ · T4 · γ · T4 · γ.
With only structural information, there is no way to identify the
correct semantic units, P1 = γ · T4, P2 = γ · T4, P3 = γ · T4,
P4 = γ, corresponding to the four major headline news items in the
second column of Figure 1. However, observe that in partition P2,
the texts associated with γ and the following T4 share the common
word “Riyadh”. Similarly, in partition P3, the texts associated with
γ and the following T4 share the common word “Iraq”. Therefore,
by lexical association γ and T4 can be semantically related and
hence merged into one partition with high confidence.

Ontology Concept Mapping Function
Headline News Rule: Function of Title, Source, Content
National Keyword: National, U.S.
International Keyword: International, World
Science & Technology Keyword: Science, Technology
Arts & Entertainment Keyword: Arts, Movies, Music,

Entertainment, Books, Travel
Business Keyword: Business, Finance
Sports Keyword: Sports, Baseball, Basketball
Health Keyword: Health, Fitness
Detailed News Rule: Function of Title, Content
News Taxonomy Keyword: NEWS, OPINION

Table 1: Ontology Concepts and Their Mapping Functions

Concept Association. Concept association maps a partition to a
semantic concept that succinctly summarizes the meaning of its
content. The concept becomes the label of the partition. To make
concept associations we leverage domain knowledge encoded in a
domain-specific ontology. Informally an ontology describes con-

cepts and their relationships, their features and attributes in a do-
main of interest. Part of an ontology for the news domain is shown
in Table 1. To assign labels that are not present in an HTML docu-
ment to partitions, we need to invoke rules in the ontology to clas-
sify the content of a partition. For instance, Table 1 shows the
concept association rules for our news ontology. To determine if
a partition can be classified as a headline news item the ontology
uses a rule which is a function of the main features associated with
it, namely, title (hyperlink), keywords for recognizing news sources
(such as AP, Reuters, etc.), and features associated with news sum-
maries such as constraints on the text length.2

Propagating Lexical and Concept Associations. In principle, the
light-weight semantic analysis techniques introduced above are “in-
complete” and hence not all concept instances can be identified.
However, recall the key observation that semantically related items
exhibit both consistency in presentation style and spatial locality.
We can exploit this observation to propagate lexical and concept
associations around the DOM tree.

For instance, recall the example illustrating lexical association
above. In that example we determined via lexical association that γ

and T4 in P2 and P3 are semantically related. Such an association
between γ and T4 can be propagated to other nearby (γ, T4) pairs
to form the partition P1 (and so the remaining γ becomes P4).

Structural Types vs. Semantic Types. Like lexical associations,
concept associations discovered can also be propagated to struc-
turally similar items to assign semantic labels to partitions. In con-
trast to structural types that summarize the structural recurrence
information about semantically related items, semantic labels can
be viewed as semantic types that directly capture the semantics of
partitions. Because semantic types factor out structural disparities,
weaving structural and semantic types together enables our sequen-
tial pattern analysis process to uncover higher level concepts.

Now each node in a DOM tree is associated with two types: a
structural type and a semantic type. Once a semantic type is as-
signed to the root node of a partition, it will replace its structural
type (if it exists) in the structural analysis process. However, its
structural type is still retained in order to propagate concept associ-
ations. This will enable structural and semantic analysis to work in
tandem. Specifically, immediately prior to invoking structural anal-
ysis on the root of a DOM subtree, the semantic type of a child node
is propagated to all its siblings having the same structural type.

4.3 Dialog Interface Manager
Our dialog interface manager is written in Java. It uses a collec-

tion of VoiceXML templates to create VoiceXML dialogs on the fly
from the XML output of the partitioning system. Nodes or subtrees
in the partition tree are matched to particular templates, variables in
the templates are filled in with labels or node counts from the parti-
tion tree, and the resulting pieces of VoiceXML are strung together
to form a complete VoiceXML dialog.

HearSay’s templates include both generic templates (e.g., for
lists of links, lists of strings) and domain-specific ones (such as
the one for newspaper articles shown in Figure 8). They include
prosodic markup as well as structural markup and variables for el-
ements of the XML partition tree. For example, the template in
Figure 8 includes a list of prompts, some variables (marked with
“@”) for labels from nodes in the partition subtree matching this
template, and pauses that encourage the user to provide input. We

2More sophisticated classifiers (e.g., Bayes) can also be used to
make concept associations.
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News Portal Major Headline News Minor Headline News Category News Detailed News News Taxonomy
Rec. % Prec. % Rec. % Prec. % Rec. % Prec. % Rec. % Prec. % Rec. % Prec. %

New York Times 100 100 50 100 100 100 - - 100 100
- - 25 100 - - 100 100 - -

CNN 100 100 - - 100 100 - - 100 100
- - - - 0 0 100 100 100 100

Yahoo News - - - - 81.8 100 - - 100 50
- - 66.7 100 - - 100 100 100 100

Google News 76.9 100 100 100 - - - - 100 100
- - - - - - 100 100 100 100

ZdNet 93.3 100 66.7 100 - - - - - -
- - 78.9 93.3 - - 100 100 - -

CNet 100 100 87.5 100 100 100 - - 100 100
- - 0 0 - - 100 100 100 100

Bloomberg News 100 100 - - - - - - 100 100
- - - - - - 100 100 100 100

Recorder News 90 90 - - - - - - 100 100
- - - - - - 100 100 - -

Table 2: Recall and Precision Measures of Partitioning Results on 50 News Web Pages

use prosodic markup to mark places where the user should provide
input, to improve “hearability” by providing variation in speaking
style, and to reduce the impact of the sequential information pre-
sentation problem [34] by grouping a long list into shorter sublists.
The VoiceXML dialogs output by the dialog creator permit input
by item index (e.g., “Item 1”) or by name (e.g., “World News”,
“Article”, “Summary”).

<field name="@FIELDNAME@">
<prompt timeout="500ms">

@DESCRIPTION@
<break msecs="500"/>
To hear a summary choose Summary.
To hear the article choose Article.
To go back to the menu choose Go Back.
To exit choose Exit.
<break msecs="5000"/>

</prompt>

<grammar>
Summary | Article | Go Back | Exit

</grammar>

<filled>
<prompt>

<break msecs="500"/>
<value expr="@FIELDNAME@"/>

</prompt>
@CONDITION@

</filled>
</field>

Figure 8: VoiceXML Template for a News Article

The VoiceXML dialog creator specifies only how to apply the
VoiceXML dialog templates to a semantic partition tree to generate
VoiceXML dialogs. The structure of the dialogs themselves is in
the dialog templates. This permits some system flexibility. The di-
alog creator produces VoiceXML dialogs from input partition trees
in real time; the process is very efficient (see Section 5). However,
the coherence of output dialogs is only as good as the quality of the
input partition trees.

5. EVALUATION
We have developed a preliminary prototype of HearSay and have

conducted two feasibility evaluations of this technology. First, we
tested our partitioning algorithms on a collection of real HTML
documents and measured the quality of partitions generated, which

is an important indicator of the overall system performance. Sec-
ond, we conducted a feasibility evaluation of the dialog interface to
identify performance issues with the prototype; for this evaluation,
we used 14 evaluators who are sighted. We also solicited comments
on HearSay from 5 evaluators who are blind.

5.1 Effects of Partitioning
To evaluate the effectiveness of our structural and semantic anal-

ysis techniques for partitioning, we conducted an experiment on 50
HTML documents collected from 8 different news portals3. The
ontology used in our experiment is shown in Table 1 (manually
coded). Out of these 50 HTML documents, 15 are “front” pages
(with multiple concepts and multiple instances for each concept)
and the remaining 35 are “detailed” pages (mainly a long text de-
scription of some news story).

First we manually identified the ontology concepts and their in-
stances for the HTML documents used in our experiment. We then
ran our partitioning algorithms on these documents and computed
their performance using two metrics, recall and precision, for each
concept. Recall is a measure of “yield”; it is the ratio of the number
of partitions correctly identified as instances of a concept over the
actual number of concept instances. Precision is an indication of
“accuracy”; it is the fraction of the number of partitions correctly
labeled as instances of a concept over the total number of partitions
(correctly and erroneously) labeled as instances of the concept by
our system. The numbers shown in Table 2 are aggregated for each
concept over all the HTML documents collected from the same
news portal. Furthermore, each news portal is divided into front
and detailed news pages and their corresponding recall and preci-
sion metrics are shown in the top and bottoms rows, respectively.
Note that in Table 2 an entry with the symbol “-” means absence of
the corresponding concept in the HTML documents.

The recall and precision numbers in Table 2 illustrate the ef-
fectiveness of our partitioning algorithms in practice. On detailed
news pages which typically contain few concepts and concept in-
stances our algorithms show high recall and precision. Even for
front pages which normally include multiple concepts and multi-
ple instances for each concept, our algorithms show little degra-
dation. It is noteworthy pointing out that our algorithm almost al-
ways achieves 100% recall and precision on taxonomic news items,
which typically show high structural homogeneity. Note that the re-
call for major headline news in Google’s front page is considerably

3Google News indexes many other news portals.
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lower than that of CNet’s front page, due to the large number of
concept instances in Google. Also observe that in ZdNet’s front
page, the recall value is low. This is due to the “incompleteness” of
our semantic analysis techniques.

We also measured the amount of time our system took to process
an HTML document. On a Pentium III machine with an 800MHz
processor and 256MB memory, the running times ranged from 60
milliseconds to 6289 milliseconds for documents with 96 nodes to
1709 nodes in their DOM trees.

Figure 9: Partitioning Results on a University Education
Blackboard Web Page

Finally, to demonstrate the applicability of our techniques to Web
documents in different domains, we tested our partitioning algo-
rithms on several other (structured) Web sites such as online office
supplies offerings and electronic education bulletin boards, which
are normally machine generated from templates. Figure 9 shows
the results of partitioning a university course Web page; the top
part is a fragment of the Web page while the lower one shows the
partitioning results. Note that here structural analysis alone suffices
to generate the partition tree shown in Figure 9.

5.2 HearSay System Usability
In this section we report an initial usability evaluation of the

HearSay system. In our experiments, we selected three news sites,
the New York Times, CNN, and Google News (Google News sto-
ries come from many different news sites). We created nine tasks
for evaluators to perform. The assignment of task to news site was
varied between evaluators. No two successive tasks referred to the
same news site. The first three tasks tested basic HearSay function-
ality: the usefulness of HearSay for browsing to a Web page (e.g.,
“Write down the headline of the first article in the ‘World’ or ‘Inter-
national’ section of Google News”). The second three explored the
user experience when listening to a part of a Web site (e.g., “Write
down the headline of an article about the presidential race in the
‘US’, ‘National’ or ‘Politics’ sections of the New York Times, and
the name of a location mentioned in that article”). The final three
tested the usefulness of HearSay when synthesizing information
across multiple Web pages (e.g., “Write down the name of a coun-
try mentioned in both the ‘Business’ and ‘World’/‘International’
sections of CNN, and the headlines of the articles about that coun-
try”). All interactions with HearSay were logged; comments were
solicited from all evaluators.

For this evaluation, evaluators were seated at a desktop computer
in a lab, with ordinary lab activities going on around them (i.e., a
noisy environment). Evaluators wore a Koss headset with close-
talking noise-canceling microphone. Each evaluator was given a
sheet of paper with the nine questions on it, and was given verbal
instructions similar to the following: You may refer to things by
name, e.g., “World News”, or by number, e.g., “Item 1”. You may
also use commands such as “Go back” and “Repeat”. Evaluators
were not told anything else about HearSay, but could ask questions.

Results for this evaluation are shown in Table 3. The first task
was removed for all evaluators as it was their first interaction with
HearSay. All dialogs that had been “restarted” were also removed.
This leaves 100 dialogs for analysis. Results are reported separately
for each task type. The average time to follow links per dialog was
34 seconds per dialog.

Separately, HearSay was used by five evaluators at Arizona State
University who are blind. These evaluators performed a subset of
the tasks used in our feasibility evaluation. They also used HearSay
for guided exploration (no specified task). They then made com-
ments on HearSay, comparing it to the JAWS screen reader.

Most evaluators were very positive about their experience with
HearSay. They liked the fact that the system organizes content into
menus and items that permit the user to skip unwanted parts of a
page. Native speakers of American English also liked the speech
recognition in the interface, despite a high rate of incorrect barge-
in detection. Evaluator suggestions can be divided into three cat-
egories: suggestions for improving the content extraction and or-
ganization; comments about desired additional functionality; and
comments about the dialog interface.

Content Extraction and Organization. Evaluators thought that
the extraction and organization of links and subsections in Web
pages worked well. However, they wanted more control over their
interaction with the content inside fairly unstructured text sections
of Web pages (e.g., newspaper article text). For example, they
wanted to be able to skip to a particular paragraph or topic, repeat
a particular part of the text and otherwise maintain pointers inside
the text. Evaluators also wanted HearSay to be clearer about the
types of menu items (links, groups, text, etc.), and wanted access
to summary information for menus (e.g., length).

Desired Additional Functionality. Several evaluators commented
that the current browsing pattern used in HearSay is too limited.
Proposed additions/alternatives include a skip forward feature, key-
word enabled browsing and a context feature. A skip forward fea-
ture would permit an expert HearSay user to skip several menu lev-
els up or down using commands such as “Skip 3 levels” or “Goto
the national news menu”. Keyword enabled browsing would permit
a user to avoid traversing the whole page if she or he is searching
for a particular type of information. For example, a user might
go to her class Website and say “Find assignments”. The system
would find the part of the Website that contains the key words the
user provided. Evaluators particularly wanted a reserved keyword
for “Top” (the top page of the current Website). Finally, a context
feature would permit a user to ask “Where am I?” and get the se-
quence of menu items or voice commands that led to the current
browsing context.

Dialog Interface. The speech aspects of the dialog interface were
a particular issue in these evaluations. First, the system is too repet-
itive. Because it permits barge-in (a feature our evaluators used fre-
quently), it picks up noise in the environment as well as non-verbal
sounds from the user (e.g., breaths); when this happens, it repeats
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Dialog Type Dialog Length Total User Turns / Unique System Turns / Page-Internal Links Followed / Time to Follow Links
(sec.) SR Errors Total System Turns Page-External Links Followed (sec.)

Browsing 232 17 / 10 16 / 26 4 / 2 16
Listening 435 28 / 16 22 / 43 7 / 4 31
Synthesizing 603 40 / 21 27 / 67 13 / 5 51
No answer 577 38 / 20 26 / 63 12 / 6
Answer 390 26 / 15 20 / 41 7 / 3
Total 437 29 / 16 22 / 47 8 / 4 34

Table 3: User Evaluation Results

itself. The most immediate way to improve the audio browsing ex-
perience would be to turn off this behavior, so that the system does
not repeat itself unless asked by the user.

Second, there is a high proportion of speech recognition errors
(1 out of every 2 utterances). The evaluators were all native En-
glish speakers but were not all native speakers of American En-
glish. The environment was also noisy, leading to many “speech
recognition” errors when in fact the user did not speak (an average
of 60% of the total number of speech recognition errors included
no input words, and the majority of these are from environmental
noise or non-verbal sounds from the user, e.g., the user touching
the microphone). However, with use the speech recognition error
rate decreases. Two other ways to improve this aspect of the in-
terface would be to use speaker-dependent speech recognition, and
to support alternative input modalities (e.g., keyboard, stylus)4. If
these two sources of dialog error are removed, the time required for
audio browsing will be almost halved.

Evaluators were told that they could refer to items by name (e.g.,
“National News”) or by number (e.g., “Item 1”). We were inter-
ested in how often evaluators chose each type of reference. Of
utterances that were recognized correctly, 51% were “by item” ref-
erences and 30% were control utterances (“Go Back”, “Repeat” or
“Exit”), So fewer than 20% were by name references. Of utter-
ances that were classified as speech recognition errors, 60% were
not understood at all (most probably from environmental noise or
non-verbals from the user), 13% were by item references, 10%
were control utterances and 17% were “by name” references. It
is perhaps not surprising that novice users struggling with speech
recognition errors would choose by item references over by name
references, but we plan to continue to permit by name references
for more expert users who may know where they want to browse to
without listening to a list of options.

Evaluators made three main comments about the dialog inter-
face. First, both evaluators who are sighted and those who are vi-
sually disabled complained about the text-to-speech of HearSay.
They wanted speech synthesis that is less monotonous. They also
wanted explicit control over aspects of the speech synthesis, partic-
ularly speed. Second, evaluators commented that the system should
provide more feedback. Finally, evaluators wanted access to alter-
native input modalities.

6. CONCLUSIONS AND FUTURE WORK
We have described the design and implementation of HearSay,

an audio Web browser system. We have presented experimen-
tal results showing that HearSay can be used for “hands-free” au-
dio browsing, although improvements in speed and accuracy are
needed. This system has great potential for improving access to hy-
pertext information for users with visual disabilities. We have also
identified several potentially useful areas for continued research.

4This is not possible within the VoiceXML framework; it requires
XHTML+Voice.

Partitioning. In our current implementation of HearSay, domain-
specific ontologies as well as classifiers for identifying concepts in
partitions were manually crafted. It will be interesting to automate
these steps along the lines proposed in recent works using shallow
natural language processing techniques (e.g., [17]). Another impor-
tant direction is to incorporate the co-training framework to learn
classifiers from positive and unlabeled data [9], since labeling even
a relatively small amount of data by hand still takes a lot of time.
While most of these works address ontology mining from text, our
problem is different since we deal with semistructured HTML doc-
uments. Consistency in presentation styles of semantically related
elements in such documents can be exploited to mine ontological
concepts as well as their features for automatically building classi-
fiers. Finally, we plan to improve learning of probability distribu-
tions of important words for a domain concept (Bayes approaches
to classification) using our recently developed techniques for multi-
attribute data extraction with high precision and recall [35].

VoiceXML Dialogs. In addition to improving HearSay’s dialog
interface based on feedback from our evaluators (see Section 5),
we also plan to work on creating summaries for Web pages or parti-
tions of Web pages. In our use scenario, all the items in the “News”
partition on the front page of the New York Times are links. If this
information could be summarized at the start of the dialog, it would
not have to be repeated for each item. There are other situations
in which summarization is helpful. For example, while present-
ing the results of a search for a product on a shopping site (e.g.,
http://shopping.yahoo.com) it may be more helpful to summarize
the product information (e.g., “Nike shoes, size six, black”) than
to just read the product name (e.g., “Nike trackers”). When pre-
senting a Web page that consists mainly of large chunks of text, it
may be helpful to summarize the entire text of the page or the text
in each chunk (similar to the abstracts the BrookesTalk system can
produce [38]).

We plan to incorporate standard text summarization techniques
(e.g., those used by [18, 28]) into HearSay. We will also explore
category-specific summarization techniques that we can incorpo-
rate into the ontologies used in HearSay. These summarization
techniques rely on an ontology; a summary for an entity must in-
clude information about the major features associated with the class
of that entity in the ontology. This requires identifying those fea-
tures in the Web page content, and grouping them appropriately for
spoken output.

New Applications and Domains. We have been exploring two ad-
ditional applications for our partitioning algorithm. The first appli-
cation, commerce, involves comparing partitions across Web pages
to identify structurally or semantically similar units. The second
application, education, involves looking at course Web sites (which
are much more variable than news Web sites) to see how partition-
ing can be applied to improve access to educational materials.
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