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Abstract

Template-driven HTML documents posses animplicit,
fixed schema denoting concepts and their relationships in
a hierarchical fashion. Discovering this schema remains a
relatively unexplored problem. By exploiting a key obser-
vation that semantically related items in HTML documents
exhibit spatial locality, we develop an algorithm for auto-
matically partitioning them into tree-like semantic struc-
tures which expose the implicit schema.

1 Introduction

A growing number of Web sites are maintained by con-
tent management software and thus a large number of Web
pages are machine-generated via templates. Normally in
such Web pages there isimplicitly a fixed “schema” and
what changes is the content. Informally a schema for
a Web page represents concepts and relationships among
them in a hierarchical fashion. For example, Figure 1
is a screen shot of the New York Times front page (see
http://www.nytimes.com). Observe that this page includes:
(i) a taxonomy of items such as “NEWS” (consisting of
hyperlinks labeled with “International”, “National”, ...),
“OPINION” (consisting of hyperlinks “Editorial/Op-Ed”,
...), etc.; (ii) several headlines of news articles where each
article begins with a hyperlink labeled with the news head-
line (e.g., “Inspectors in Iraq ...”) followed by the author
of the article (e.g., “By JOHN F. BURNS ...”), followed by
a time-stamp and a text summary of the article (e.g., “The
new zero-tolerance ...”). The schema for this fragment of
the New York Times front page therefore includes the tax-
onomy (which does not change) and the template for the
news article. We should point out that the schema will also
include several additional elements pertaining to other con-
tent appearing in the page.

Knowing this schema explicitly has several uses. For ex-
ample, it eases the task of formulating queries to retrieve

Figure 1. New York Times Front Page

data from Web documents. In the New York Times ex-
ample, one can pose a query to retrieve all the links un-
der the “NEWS” item in the taxonomy. Knowledge of the
schema is the key to transforming legacy HTML documents
into more semantics-oriented document formats such as
XML [3] and DAML [1]. Yet another application is audio-
browseable Web content. By putting a dialog interface to
the content of a Web page which is reorganized based on
the knowledge of its schema, a user can easily browse its
content using audio. More generally a Web site itself can be
navigated using voice commands. Audio browseable Web
content can significantly expand the reach of the Web to vi-
sually challenged individuals.

The important question then is:Can the implicit schema
in template-driven HTML documents be made explicit?But
discovering schema of HTML documents requires glean-
ing semanticinformation from HTML tags – a task that
is difficult if not impossible to accomplish since their pri-
mary purpose is presentation of data in the document. Al-
though steady progress is being made in the development
of markup languages that facilitates extraction of seman-
tic knowledge (e.g., XML and DAML), HTML documents
continue to proliferate.



Figure 2. Screen Shot of the Semantic Parti-
tion Tree for New York Times Front Page

In this paper we formulate the problem of schema dis-
covery from HTML documents as one of “automatically
discovering semantic structures in HTML documents” and
propose an algorithm for it. Our objective is to take a
HTML document generated by a template and automati-
cally discover and generate a semantic partition tree. Each
partition will consist of items related to a semantic con-
cept. For example, Figure 2 is such a tree corresponding
to the New York Times front page in Figure 1. In this fig-
ure, aPartition Nodegroups semantically related contents
together and structures them into a tree. In this paper we de-
scribe an algorithm for automatically discovering semantic
structures in template-driven HTML documents.

Our Approach The idea underlying our approach is
based on the key observation that in such documents se-
mantically related items, as discerned in their rendered
views, exhibit spatial locality. For example, observe that
in Figure 1 all the taxonomic items such as “NEWS”,
“FEATURES”, etc., and the corresponding hyperlinks un-
der them are all spatially clustered together in the rendered
view. The same observation holds for all the headline news
items, their associated authors, and the corresponding news
summary. Each of these items appear as the leaf nodes in
the DOM [2] tree corresponding to the page (see the DOM
tree fragment in Figure 3).

How do we algorithmically determine spatial locality?
It turns out that in such HTML documents spatial local-
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Figure 3. DOM Tree Fragment of New York
Times Front Page

ity can be captured as “similarity” of path structures in
DOM trees. For example, observe that for all the links
under the “NEWS” item (“International”, “National”, etc.)
in Figure 1, their root-to-leaf paths (see Figure 3) are all
tr · td · table · tr · td · a · font01 and hence identical. Sim-
ilarly, since the items “NEWS”, “OPINION”, and “FEA-
TURES” are all related in the sense of belonging to the con-
cept of a taxonomy, they also have similar path structures.

We can exploit this observation to define a notion ofsim-
ilarity between paths based on their path structures. A strict
notion requires that they be identical while weaker forms
can be defined based on edit distance. In this paper we chose
the former. Based on this notion we can group all the links
under the “NEWS” item in one partition, all the links un-
der “FEATURES” in a different partition, and so on. Note
that the paths of all these hyperlinked items in each of these
partitions are identical. Let us denote any such path asβ.
Now how do we build the tree of partitioned segments? We
reduce this problem to one of finding repeated substrings in
a string. Specifically, observe in Figure 3 that the different
taxonomic items such as “NEWS” and “FEATURES” have
identical root-to-leaf path structures. So they all become
part of the same partition. Let us denote this path asα.
Notice how all of the taxonomic items and their associated
hyperlinks appear within atable structure in the DOM tree
– a manifestation of spatial locality. Suppose we label all
the paths of all the leaf nodes under this tree (correspond-
ing to the table structure) in sequence. This will result in
the string sequenceαβ∗αβ∗ . . . (∗ is the Kleene star oper-
ator). Sinceαβ∗ is a repeated substring, all the nodes cor-

1Herefont tags with different subscripts denotefont tags with differ-
ent attribute values such assize, color, etc.



responding to eachαβ∗ will belong to one partition. Thus
“NEWS” and all its associated links will belong to one par-
tition. Similarly “FEATURES” and its associated links be-
long to another partition. Finally both these partitions are
made the children of the same parent node. Continuing in
this fashion yields the partition tree in Figure 2. Details of
this algorithm appear in Section 2.

Contributions We have developed a novel algorithm for
automatically discovering semantic structures for template-
driven HTML documents. The algorithm exploits a key ob-
servation that such structures normally exhibit spatial local-
ity in these documents. Consequently, in contrast to [14, 5],
it makes noa priori assumptions about the markup tags of
HTML document. Thus, our approach is much more scal-
able and applicable to pages across different domains.

2 Partition Algorithm

2.1 Building Blocks

In this section, we present the essential building blocks
of our algorithm for automatically discovering semantic
structures and illustrate its working steps using examples.

Our algorithm is based on discovering syntactic similar-
ity in document markup structures. Central to our algorithm
is the notion of thetype of a node in the DOM tree of a
HTML document. Intuitively, the type of a node reflects the
path structure of the subtree rooted at that node. Formally,
we have the following definition.

Definition 1 (Types) Given a DOM treeT :

• Let t1, t2 . . . , tk be the sequence of HTML tags, with
their attribute values, on the path from the root ofT
to a leaf node ofT , thent1 ·t2 . . . tk is a primitive type;

• If T1, . . . , Tk are types, thenseq(T1 . . . Tk) is a com-
pound type.

Given any two types as defined above, their equivalence
is defined straightforwardly: two types are equivalent if and
only if they are syntactically the same.

Normally, primitive types are assigned to leaf nodes. For
instance, in Figure 3, the type of the leaf node “Inspectors...”
is tr · td · tr · td · a · font1 · strong. On the other hand,
compound types are usually assigned to internal nodes and
capture the structural recurrence that is discovered at the
subtree rooted at that node. Note that our definition of com-
pound types allows nesting to any arbitrary depth. We will
show in the following Section 2.2 how to exploit such a sim-
ple type system to restructure documents.

The idea of structural recurrence is centered around the
notion ofmaximal repeating substrings.

Definition 2 (Maximal Repeating Substrings) Given a
string S, a substringα that repeatsk times in S is a
maximal repeating substring if and only if:

• k ≥ 2 and|α| × k ≥ |S|/2; and

• |α| × k is the maximum among all substrings that
satisfy the above condition; and

• k is the maximum among all substrings that satisfy the
above two conditions.

Basically, the above definition says that a maximal re-
peating substring should be, first of all, a repeating substring
that covers a majority of elements. In addition, its coverage
should be maximized and its length be minimized (under
the prerequisite that its coverage be maximized).

Clearly, given a stringS, the number of substrings ofS
is quadratic in the size ofS. Therefore, a naive algorithm
which performs an exhaustive search of all these substrings
of S can find a maximal repeating substring in polynomial
time, if there is such a substring. In the sequel, we will use
MaximalRepeatingSubstring(S) to represent any algo-
rithm that returns a maximal repeating substring of the input
stringS if such a substring exists. Otherwise, we assume
that it returns the empty stringε.

2.2 Algorithm

To transform the DOM tree of a HTML document into a
tree-like semantic structure, we simply invoke the top-level
algorithmPartitionTree on the root of the given DOM
tree. This algorithm first traverses the DOM tree top-down
and then restructures it bottom-up.

Algorithm PartitionTree(n)
input

n : a node in a DOM tree
begin
1. if n is a leaf nodethen
2. n.type = the sequence of HTML tags from the root ton
3. else ifn has only one child nodec then
4. PartitionTree(c)
5. Replacen with c and removen from the DOM tree.
6. else
7. for each child nodex of n do PartitionTree(x) endfor
8. FindPartition(n)
9. endif
end

In our data structure, each node of the tree has an ad-
ditional attribute,type, which stores the type assigned to
this node. This attribute basically encodes the summary
of structural recurrence discovered for the subtree rooted
at this node. We will use the notationn.type to represent
thetype attribute of a noden.



In Line 2 of the algorithmPartitionTree, all the leaf
nodes are typed. Internal nodes with only one child are han-
dled in Lines 4–5. In such a case, the type of this only child
node is computed and then simply propagated up the tree.
However, for an internal node with multiple children, we
first invokePartitionTree on all of its children to col-
lect their type information (Line 6). Then the algorithm
FindPartition is invoked upon this node to perform a pat-
tern discovery on its children nodes (Line 7).

Algorithm FindPartition(n)
input

n : an internal node in a DOM tree
begin
1. S = the sequence of all the child nodes ofn
2. for each nodec in S do
3. if c.flatten = true then
4. Replacec with the sequence of all the child nodes ofc.
5. endif
6. endfor
7. τ = ε
8. do
9. Collapse adjacent nodes inS which share the same type.
10. α = MaximalRepeatingSubstring(TypeStr(S))
11. if α 6= ε then τ = α endif
12. if |α| > 1 then
13. for each substringρ in S such that TypeStr(ρ) = α do
14. Replaceρ with NewNode(ρ,seq(α)).
15. endfor
16. endif
17. while |α| > 1
18. if τ = ε then
19. n.flatten = true
20. else
21. PartitionS into β0γβ1 . . . γβm, where TypeStr(γ) = τ .
22. for eachγβi do
23. Replaceγβi with NewNode(γβi, NewType(τ )).
24. endfor
25. n.type = NewType(τ )
26. endif
27. Make the nodes inS the new children ofn.
end

The algorithmFindPartition takes an internal node,n,
as input. Its main function is to discover structurally similar
items among all the children ofn and restructure the subtree
rooted atn accordingly. Because our algorithm climbs up a
DOM tree from leaf nodes to the root, structural similarity
may not be observed until it reaches a node high enough.
Therefore, we associate a boolean attribute,flatten, with
each node to signal whether a structural similarity pattern
has been discovered at this node. The value of this attribute
is initialized tofalse for each node. However, if a pattern
(or type) is not found at a node, then itsflatten attribute is
set totrue (Line 19).

In Lines 1–6, all the child nodes ofn are collected into
a sequence, which will be partitioned into semantically re-

lated items later if they share structural similarity. But if we
encounter a node,c, whoseflatten attribute has the value
true (which means a pattern is not found at this node), then
we move all the child nodes ofc into this sequence for fur-
ther processing.

Note that when the algorithmFindPartition is invoked
on a node, all of its descendant nodes are already typed. In-
tuitively, since the type of a node summarizes the structure
of the subtree rooted at that node, analysis of the sequence
of sibling types is essential for structural similarity pattern
discovery, which is done in two stages by our algorithm.

In the first stage, consecutive nodes having equivalent
types are collapsed into a single node (Line 9). The intuition
behind this is that they all relate to the same item. Next, in
Line 10, an attempt is made to find a maximal repeating
substring of the string corresponding to the type sequence
of S (returned byTypeStr(S)).

If such a substring does not exist (hence no structural
similarity), then the loop in Lines 8–17 is exited and the
flatten attribute of the current node is set totrue (Line 19).
However, if a maximal repeating substring,α, is found
and α contains at least two elements (|α| > 1), then
the sequence of consecutive nodes whose type sequence
matchesα is merged into a new node created by the pro-
cedureNewNode (Lines 12–16). The first argument of
NewNode contains the sequence of nodes to be merged
while the second argument indicates the type of this new
node. The above collapsing-pattern-discovering-merging
process is repeated until it cannot be performed any more.

In the main part of the second stage (Lines 21–25), the
last pattern discovered during the first stage is used to parti-
tion the remaining sequence of nodes further. This is a sim-
ple heuristic that we apply to handle variations in document
structures (e.g., missing data items). Note that ifτ contains
only one type, thenNewType(τ) returnsτ directly; other-
wise, it returns the compound typeseq(τ).

Now we illustrate the working steps of the algorithm
FindPartition using an example. For simplicity, we
will just show how it manipulates a sequence of types
and omit other details. Suppose the type sequence ofS
is T1T2T3T2T3T4T1T2T3T5 immediately before the algo-
rithm executes the loop starting at Line 8.T2T3 is a maxi-
mal repeating substring. Let us use a new typeT6 to denote
seq(T2T3). Then after the first iteration of the loop, the
type sequence becomesT1T6T6T4T1T6T5. The first two
occurrences ofT6 can be collapsed into one, resulting in
T1T6T4T1T6T5, in whichT1T6 is a maximal repeating sub-
string. Again, we use a new typeT7 to representseq(T1T6).
So after the second iteration the type sequence becomes
T7T4T7T5 and the loop terminates. It is not hard to see
that the firstT7 and the followingT4 will be put into one
partition and the rest into another partition.T7 is the type
assigned to the current node.



The algorithmsPartitionTree andFindPartition are
illustrated using the DOM tree fragment shown in Figure 3.
Let us consider the subtree rooted at the nodetd spanning
the leaf nodes from “Inspectors...” to “Complete...”. The
type of the “Inspectors...” leaf node, denoted byT1, is
tr · td · tr · td · a · font1 · strong. Observe that the leaf
node “Bush...” has the same typeT1. So we can assign
the typesT1, T2, T3, T4, T1, T2, T3, T4, T4 to the leaf nodes
from “Inspectors...” to “Complete...”, respectively. Observe
that all these leaf nodes are the only child of their parent
node. As a result, their ancestor nodes are deleted (Lines 4–
5 of PartitionTree) until they are propagated up the sub-
tree and become siblings under the nearesttd node.

Now the algorithmFindPartition is invoked on the
sequence of typesT1T2T3T4T1T2T3T4T4. First, the last
two consecutive occurrences ofT4 are collapsed together
(Line 9 of FindPartition). The resulting type sequence
is T1T2T3T4T1T2T3T4, in which T1T2T3T4 is a maximal
repeating substring. So the original sequence of nodes is
partitioned into two parts, each corresponding to the pattern
T1T2T3T4. The type assigned to thetd node (nearest to the
“Inspectors...” leaf node) isseq(T1T2T3T4).

3 Experimental Results

We have implemented the algorithms presented in this
paper using Java. We chose theportals, news, andoffice
productsdomains to measure the efficacy of our algorithms.
Specifically, we selected Yahoo (http://www.yahoo.com),
New York Times (http://www.nytimes.com), and Office
Max (http://www.officemax.com) as representative exam-
ples of these domains. Observe that while the structural
layouts of these three pages differ widely yet all of them
have some regularity in the way semantic concepts are pre-
sented. The results of our algorithms on these pages are
displayed in Figures 5, 2, and 6, respectively.2

Figure 4 shows the time taken to execute the algorithms
on a Pentium III 800MHz machine with 256MB memory.
The low execution time demonstrates the potential of our
system for applications requiring fast processing times,e.g.,
as a navigation guide for the visually impaired.

Web Site HTML File Size (KB) Exec. Time (ms)
nytimes 79.2 731
yahoo 54.7 691

officemax 67.5 811

Figure 4. Timing Statistics

In Figure 2 our system was able to successfully group all
the links “International”, “National”, etc. into a single par-
tition. Similar results were achieved with other partitions

2Due to space limitations only a fragment is shown

such as “Opinion”, “Features”, etc. In Figure 5 our algo-
rithm properly partitioned the directories “Shop”, “Find”,
etc. and “Business & Economy”, “Computers & Internet”,
etc. Figure 6 shows our hierarchical partition tree for Of-
ficeMax. The fragment shows the taxonomy consisting of
“Supplies”, “Furniture”, etc. as well as the promotions in
that page such as “Max Means More...”, “Extra Savings...”,
etc. Observe that we were able to label some of the par-
titions (e.g., the partition labeled with “Find” in Figure 5).
We will discuss the issues of labeling partitions in Section 5.

Figure 5. Screen Shot of the Semantic Parti-
tion Tree for Yahoo Front Page

Figure 6. Screen Shot of the Semantic Parti-
tion Tree for OfficeMax Front page

4 Related Work

There is a large body of work on discovering schema in-
formation from either XML documents [8, 11, 7] or XML
queries [12, 13]. However, the problem of recovering se-
mantic structures from HTML documents has only been ex-
plored recently.



In [14] Yang and Zhang propose to build semantic struc-
tures from HTML documents by detecting patterns and
separation boundaries between different categories in the
sources. They view a HTML document as a sequence of
HTML tags and texts instead of a tree structure. Their
pattern discovery technique relies on a hand-coded similar-
ity function that measures the “distance” between different
HTML tags and texts. However, the threshold values of
this function must be seta priori and may need to be man-
ually adjusted when their technique is applied to different
domains. Moreover, they do not consider the problem of
labeling a partition.

The work of Chung et al. [5] takes advantage of tree
structures of HTML documents to transform them into
XML counterparts. They assume that all the input docu-
ments are already known to belong to a particular domain
of interest and have homogeneous content. Therefore, their
approach can make better use of domain knowledge that
is hand-coded into a concept classifier to identify elemen-
tary concepts and group them into bigger, structural con-
cepts. However, their techniques do not fully explore layout
regularity which is commonly observed in template-driven
HTML documents.

Finally, it is worth contrasting the problem of schema
discovery for template-driven HTML documents to the im-
portant, well-studied problem of wrapper-based data extrac-
tion [9, 6, 10]. We should point out that wrappers generate
domain-specific queriable interface to HTML documents
which is orthogonal to the schema discovery problem.

5 Discussion and Future Work

In this paper we described an algorithm for automatic
discovery of semantic structures in template-driven HTML
documents and provided preliminary experimental evidence
of its efficacy in practice.

The output of our algorithm is a tree of semantic par-
titions. The information associated with a partition is the
content present in the leaf nodes of the partition. This in-
formation is summarized by alabel of the partition. It is
important to label the semantic partitions for the purpose of
recovering the implicit schema of the document. Labeling
any arbitrary partition may involve complicated natural lan-
guage processing and thus is a difficult problem in general.

However, under certain circumstances, it is possible to
label a partition using heuristics based on syntactic analy-
sis.3 One such heuristic is to make the content associated
with the first type in a maximal repeating substring of types
as the label of the partition. This is illustrated in Figure 2
where the content of the first type, “Inspectors in Iraq...”,
in the repeating substring becomes the label of the entire

3For want of space, we omitted the steps involved in labeling a partition
in our algorithms presented in this paper.

partition. Another labeling heuristic that we used is that the
content of a type,Ti, preceding a collection of (consecutive)
types,Tj ’s, whereTi and allTj ’s are siblings, is made the
label of this collection ofTj ’s (and so this collection ofTj ’s
is “sunk” underTi). This is illustrated in Figure 5 where
“Find” is the label of the sequence “Careers”, “Maps”, etc.

The heuristics based on syntax alone, however, are not
enough to label all partitions properly. We are exploring the
use of domain knowledge, through WordNet [4] or through
ontologies, for a better labeling algorithm.

Moreover, note that our current algorithm is purely based
on syntactic analysis and there is room for further improve-
ment. In particular we can use light-weight semantic in-
formation, gleaned from sources such as WordNet [4], to
assign costs to partitions and formulate the discovery of se-
mantic structures as an optimization problem. The semantic
information latent in partitions can be deployed for devel-
oping self-repairingwrappers for web sites. Brittleness of
wrappers due to web site changes is a critical problem. Cou-
pling semantic knowledge with purely syntax-based data
extraction techniques that are currently employed in wrap-
pers can facilitate self-repair. The above problems are wor-
thy of further investigation.
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