Clustering and Prediction

Probability and Statistics for Data Science

CSE594 - Spring 2016
But first,

One final useful statistical technique from Part II
Confidence Intervals

Motivation: p-values tell a nice succinct story but neglect a lot of information.

Estimating a point, approximated as normal (e.g. error or mean)

\[\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i. \]

\[\text{SE}_{\bar{x}} = \frac{s}{\sqrt{n}} \]

\[Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \]

\[\left[\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}} \right] \]

find CI\% based on standard normal distribution (i.e. CI\% = 95, z = 1.96)
Resampling Techniques Revisited

The bootstrap

- What if we don’t know the distribution?
Resampling Techniques Revisited

The bootstrap

- What if we don’t know the distribution?
- *Resample* many potential distributions based on the observed data and find the range that CI% of the data fall in (e.g. mean).

Resample: for each \(i \) in \(n \) observations, put all observations in a hat and draw one (all observations are equally likely).
Clustering and Prediction

(now back to our regularly scheduled program)
I. Probability Theory

II. Discovery: Quantitative Research Methods

III. Clustering and Prediction

(now back to our regularly scheduled program)