Distributed TensorFlow

Stony Brook University
CSE545, Spring 2019
Goals

- Understand TensorFlow as a data workflow system.
 - Know the key components of TensorFlow.
 - Understand the key concepts of distributed TensorFlow.
- Execute basic distributed tensorflow program.
- Establish a foundation to distribute deep learning models:
 - Convolutional Neural Networks
 - Recurrent Neural Network (or LSTM, GRU)
TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.
TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.
TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

A 2-d tensor is just a matrix.
 1-d: vector
 0-d: a constant / scalar

Note: Linguistic ambiguity:
 Dimensions of a Tensor != Dimensions of a Matrix

(i.stack.imgur.com)
TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

Examples > 2-d:
Image definitions in terms of RGB per pixel
Image[row][column][rgb]

Subject, Verb, Object representation of language:
Counts[verb][subject][object]
TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses *tensors* instead of *RDDs*.

Technically, less abstract than *RDDs* which could hold tensors as well as many other data structures (dictionaries/HashMaps, Trees, ...etc...).

Then, why TensorFlow?
TensorFlow

Efficient, high-level built-in **linear algebra** and **machine learning optimization operations** (i.e. transformations).

enables complex models, like deep learning

Then, why TensorFlow?
TensorFlow

Efficient, high-level built-in **linear algebra** and **machine learning operations**.

enables complex models, like deep learning

Efficient, high-level built-in **linear algebra and machine learning operations**.

```python
import tensorflow as tf

b = tf.Variable(tf.zeros([100]))  # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784, 100], -1, 1))  # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x")  # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b)  # Relu(Wx+b)
C = [...]  # Cost computed as a function of Relu

s = tf.Session()
for step in xrange(0, 10):
    input = ...construct 100-D input array ...
    result = s.run(C, feed_dict={x: input})  # Create 100-d vector for input
    print step, result  # Fetch cost, feeding x=input
```

TensorFlow

Operations on tensors are often conceptualized as graphs:

```python
import tensorflow as tf

b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random_uniform([784, 100], -1, 1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [...]

s = tf.Session()
for step in xrange(0, 10):
    input = ...construct 100-D input array ...
    result = s.run(C, feed_dict={x: input})
    print step, result
```

TensorFlow

Operations on tensors are often conceptualized as graphs:

A simpler example:

c = tensorflow.matmul(a, b)
TensorFlow

Operations on tensors are often conceptualized as graphs:

example:

\[d = b + c \]
\[e = c + 2 \]
\[a = d \times e \]

(Adventures in Machine Learning.
Ingredients of a TensorFlow

tensors
- *variables* - persistent mutable tensors
- *constants* - constant
- *placeholders* - from data

operations
- an abstract computation (e.g. matrix multiply, add)
- executed by device *kernels*

session
- defines the environment in which operations *run.*
 (like a Spark context)

devices
- the specific devices (cpus or gpus) on which to run the session.

* technically, *operations* that work with tensors.
Ingredients of a TensorFlow

tensors
- **variables** - persistent mutable tensors
- **constants** - constant
- **placeholders** - from data

* technologically, **operations** that work with tensors.

operations
- `tf.Variable(initial_value, name)`
- `tf.constant(value, type, name)`
- `tf.placeholder(type, shape, name)`

graph

session
defines the environment in which operations *run*. (like a Spark context)

devices
the specific devices (cpus or gpus) on which to run the session.
Operations

- **tensors**
 - variables - persistent
 - mutable tensors
- **constants** - constant
- **placeholders** - from data

operations

An abstract computation (e.g., matrix multiply, add) executed by device *kernels*

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element-wise mathematical operations</td>
<td>Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...</td>
</tr>
<tr>
<td>Array operations</td>
<td>Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...</td>
</tr>
<tr>
<td>Matrix operations</td>
<td>MatMul, MatrixInverse, MatrixDeterminant, ...</td>
</tr>
<tr>
<td>Stateful operations</td>
<td>Variable, Assign, AssignAdd, ...</td>
</tr>
<tr>
<td>Neural-net building blocks</td>
<td>SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...</td>
</tr>
<tr>
<td>Checkpointing operations</td>
<td>Save, Restore</td>
</tr>
<tr>
<td>Queue and synchronization operations</td>
<td>Enqueue, Dequeue, MutexAcquire, MutexRelease, ...</td>
</tr>
<tr>
<td>Control flow operations</td>
<td>Merge, Switch, Enter, Leave, NextIteration</td>
</tr>
</tbody>
</table>
Sessions

- Places operations on devices
- Stores the values of variables (when not distributed)
- Carries out execution: `eval()` or `run()`

session
- defines the environment in which operations *run*.
 (like a Spark context)

devices
- the specific devices (cpus or gpus) on which to run the session.

graph
- an abstract computation
 (e.g. matrix multiply, add)
- executed by device *kernels*
Ingredients of a TensorFlow

tensors
- **variables** - persistent mutable tensors
- **constants** - constant
- **placeholders** - from data

operations
an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

session
defines the environment in which operations *run*. (like a Spark context)

devices
the specific devices (cpus or gpus) on which to run the session.

* technically, operations that work with tensors.
Distributed TensorFlow

Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn’t work with Model Parallelism)
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn’t work with Model Parallelism)
Local Distribution

Multiple devices on single machine

Program 1

CPU:0
CPU:1

Program 2

GPU:0
Local Distribution

Multiple devices on single machine

with tf.device("/cpu:1")
 beta=tf.Variable(...)
with tf.device("/gpu:0")
 y_pred=tf.matmul(beta,X)
Cluster Distribution

Multiple devices on multiple machines

\[
\text{with } \text{tf.device(“/cpu:1”)}
\]
\[
\text{beta}=\text{tf.Variable(...)}
\]

\[
\text{with tf.device(“/gpu:0”)}
\]
\[
\text{y_pred}=\text{tf.matmul(beta, X)}
\]
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn’t work with Model Parallelism)
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn’t work with Model Parallelism)
Cluster Distribution

Multiple devices on multiple machines

with tf.device("/cpu:1")
 beta=tf.Variable(...)

with tf.device("/gpu:0")
 y_pred=tf.matmul(beta,X)

Transfer Tensors

Machine A
CPU:0
CPU:1

Machine B
GPU:0
Cluster Distribution

Data Parallelism

```python
beta = tf.Variable(...)  
pred = tf.matmul(beta, X)
```

```
beta = tf.Variable(...)  
pred = tf.matmul(beta, X)
```

CPU:0
CPU:1
GPU:0
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn’t work with Model Parallelism)
Distributed TensorFlow

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn’t work with Model Parallelism)
Asynchronous Parameter Server

“ps”

task 0

TF Server

Master

Worker

CPU:0

Machine A

(Geron, 2017: HOML: p.324)

“worker”

task 0

TF Server

Master

Worker

CPU:1

Machine B

task 1

TF Server

Master

Worker

CPU:0

GPU:0
Asynchronous Parameter Server

Parameter Server: Job is just to maintain values of variables being optimized.

Workers: do all the numerical “work” and send updates to the parameter server.

(Geron, 2017: HOML: p.324)
Synchronous AllReduce

Workers do computation, send parameter updates to other workers, and store parameter updates from other workers. Requires low latency communication.

(Geron, 2017: HOML: p.324)
Distributed TensorFlow: Full Pipeline

Gradients

TensorFlow has built-in ability to derive gradients given a cost function.

```
tf.gradients(cost, [params])
```
Demo

Ridge Regression (L2 Penalized linear regression, $\lambda \|\beta\|_2^2$)

\[\hat{\beta}_{\text{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \right\} \]

Matrix Solution:

\[\hat{\beta}_{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y \]
Demo

Ridge Regression (L2 Penalized linear regression, $\lambda \| \beta \|^2_2$)

\[
\hat{\beta}_{ridge} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \right\}
\]

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

Matrix Solution:

\[
\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T y
\]
Gradients

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.
Gradients

Ridge Regression (L2 Penalized linear regression, $\lambda||\beta||_2^2$)

$$\hat{\beta}^{ridge} = \text{argmin}_\beta \left\{ \sum_{i=1}^{N} (y_i - \sum_{i=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{i=1}^{m} \beta_j^2 \right\}$$

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])
Gradients

TensorFlow has built-in ability to derive gradients given a cost function.

```
tf.gradients(cost, [params])
```
Distributed TensorFlow

The layered TensorFlow architecture.

Distributed TensorFlow: Full Pipeline

Asynchronous Parameter Server

"ps"

task 0

TF Server

Master

Worker

CPU:0

Machine A

"worker"

task 0

TF Server

Master

Worker

CPU:1

(Geron, 2017: HOML: p.324)

task 1

TF Server

Master

Worker

CPU:0

GPU:0

Machine B
Asynchronous Parameter Server

Parameter Server: Job is just to maintain values of variables being optimized.

Workers: do all the numerical “work” and send updates to the parameter server.

(Geron, 2017: HOML: p.324)