Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize the data?
Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize the data?

Examples:
- Google search queries
- Satellite imagery data
- Text Messages, Status updates
- Click Streams
Motivation

Often translate into $O(N)$ algorithms.
We will cover the following algorithms:

- General Stream Processing Model
- Sampling
- Filtering data according to a criteria
- Counting Distinct Elements
Process for stream queries

RECORD IN

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts / summaries of streams

RECORD GONE
Process for stream queries

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions -- must store expected parts / summaries of streams

E.g. How would you handle:

What is the mean of values seen so far?
Important difference from typical database management:

- Input is not controlled by system staff.
- Input timing/rate is often unknown, controlled by users.

E.g. How would you handle:

\textit{What is the mean of values seen so far?}
Important differences in stream queries management:

- Input is not a single record but a sequence of records.
- Input timing/rate is often irregular and controlled by users.

E.g. How would you handle:

What is the mean of values seen so far?
General Stream Processing Model

(Leskovec et al., 2014)

Input stream: A stream of records (also often referred to as “elements” or “tuples”)
Theoretically, could be anything! search queries, numbers, bits, image files, ...

Processor

Output
(Generalization, Summarization)
General Stream Processing Model

... 4, 3, 11, 2, 0, 5, 8, 1, 4
Input stream

Processor

ad-hoc queries -- one-time questions

Output (Generalization, Summarization)
General Stream Processing Model

Input stream: ..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor

- standing queries
- ad-hoc queries

Output

(Generalization, Summarization)

-- asked at all times.
General Stream Processing Model

Input stream: ..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor

- Standing queries
- Ad-hoc queries

Output (Generalization, Summarization)

Limited memory
General Stream Processing Model

Input stream → Processor

- Standing queries
- ad-hoc queries

Processor → Output

- Generalization, Summarization

Output → archival storage

- not suitable for fast queries.

Input stream: ..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor:
- limited memory
Sampling

Create a random sample for statistical analysis.
Sampling

Create a random sample for statistical analysis.

- RECORD IN
- Process
- Keep?
 - yes
- limited memory
- RECORD GONE
Sampling

Create a random sample for statistical analysis.
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= .05: # keep: true 5% of the time
    memory.write(record)
```
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= .05: # keep: true 5% of the time
    memory.write(record)
```

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. user_ids for searches, tweets; location_ids for satellite images
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= perc: #keep: true perc% of the time
    memory.write(record)
```

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. user_ids for searches, tweets; location_ids for satellite images

Solution: hash into $N = 1/\text{perc}$ buckets; designate 1 bucket as “keep”.

```python
if hash(record[‘user_id’]) == 1: #keep
```
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= perc: #keep: true perc% of the time
    memory.write(record)
```

Problem: records/rows often are not units-of-analysis for statistical analyses

E.g. user_ids for searches, tweets; location_ids for satellite images

Solution: hash into $N = 1/\text{perc}$ buckets; designate 1 bucket as “keep”.

```python
if hash(record[‘user_id’]) == 1: #keep
    only need to store hash functions; may be part of standing query
```
Filtering Data

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter
Filtering Data

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows *false positives but not false negatives*)

Given:

- $|S|$ keys to filter; will be mapped to $|B|$ bits
- hashes = h_1, h_2, \ldots, h_k independent hash functions
Filtering Data

Filtering: Select elements with property \(x \)
Example: 40B safe email addresses for spam filter
 The Bloom Filter (approximates; allows *false positives but not false negatives*)

Given:
- \(|S|\) keys to filter; will be mapped to \(|B|\) bits
- hashes = \(h_1, h_2, \ldots, h_k \) independent hash functions

Algorithm:
- set all \(B \) to 0
 #\(B \) is a bit vector
- for each \(i \) in hashes, for each \(s \) in \(S \):
 - set \(B[h_i(s)] = 1 \)
 #all bits resulting from
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows \textit{false positives but not false negatives})

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = \(h_1, h_2, \ldots, h_k \) independent hash functions

Algorithm:
set all B to 0
\#B is a bit vector
for each i in hashes, for each s in S:
 set \(B[h_i(s)] = 1 \)
\#all bits resulting from
... \#usually embedded in other code
while key x arrives next in stream \#filter:
 if \(B[h_i(x)] = 1 \) for all i in hashes:
 do as if x is in S
 else: do as if x not in S
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter *(approximates; allows false positives but not false negatives)*

Given:
- \(|S|\) keys to filter; will be mapped to \(|B|\) bits
- hashes = \(h_1, h_2, \ldots, h_k\) independent hash functions

Algorithm:
- set all \(B\) to 0
- for each \(i\) in hashes, for each \(s\) in \(S\):
 - set \(B[h_i(s)] = 1\)
 - ...
 - *usually embedded in other code*
- while key \(x\) arrives next in stream
 - if \(B[h_i(x)] == 1\) for all \(i\) in hashes:
 - do as if \(x\) is in \(S\)
 - else: do as if \(x\) not in \(S\)
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, …, hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1
 ... *usually embedded in other code*
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false positive?

Q: What fraction of |B| are 1s?

(Leskovec et al., 2014)
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
set B[hᵢ(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false positive?

Q: What fraction of |B| are 1s?
A: Analogy:
Throw |S| * k darts at n targets.
1 dart: 1/n
d darts: (1 - 1/n)^d = prob of 0
= e^{-d/n} are 0s

(Leskovec et al., 2014)
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

(What is the probability of a *false positive*?)

Q: What fraction of |B| are 1s?

A: Analogy:
Throw |S| * k darts at n targets.
1 dart: 1/n
d darts: (1 - 1/n)^d = prob of 0
= e^{-d/n} are 0s

= e^{-1}
for large n

(Leskovec et al., 2014)
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false positive?
Q: What fraction of |B| are 1s?
A: Analogy:
Throw |S| * k darts at n targets.
1 dart: 1/n
d darts: \((1 - 1/n)^d = \text{prob of } 0\)
\(= e^{-d/n}\) are 0s

thus, \((1 - e^{-d/n})\) are 1s
probability all k being 1?

(Leskovec et al., 2014)
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates, allows *FPs*)

Given:
- $|S|$ keys to filter; will be mapped to $|B|$ bits
- hashes = h_1, h_2, \ldots, h_k independent hash functions

Algorithm:
- set all B to 0
- for each i in hashes, for each s in S:
 - set $B[h_i(s)] = 1$
 - #usually embedded in other code
- while key x arrives next in stream
 - if $B[h_i(x)] == 1$ for all i in hashes:
 - do as if x is in S
 - else: do as if x not in S

What is the probability of a *false positive*?

Q: What fraction of $|B|$ are 1s?

A: Analogy:
- Throw $|S| \times k$ darts at n targets.
 - 1 dart: 1/n
 - d darts: $(1 - 1/n)^d = \text{prob of 0} = e^{-d/n}$ are 0s
- thus, $(1 - e^{-d/n})$ are 1s

probability all k being 1?

$$(1 - e^{-(|S| \times k)/n})^k$$

Note: Can expand S as stream continues as long as $|B|$ has room (e.g. adding verified email addresses)

(Leskovec et al., 2014)
Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \text{Set}} m_i^k$

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures uneveness; related to variance)
Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data.
- The kth moment of a stream is $\sum_{i \in \text{Set}} m_i^k$.

 Trivial: just increment a counter.

- 0th moment: count of distinct elements.
- 1st moment: length of stream.
- 2nd moment: sum of squares.
 (measures unevenness; related to variance.)
Counting Moments

0th moment: count of distinct elements

1st moment: length of stream

2nd moment: sum of squares
 (measures uneveness; related to variance)

Applications
 Counting...
 - distinct words in large document.
 - distinct websites (URLs).
 - users that visit a site.
 - unique queries to Alexa.
Counting Moments

0th moment
One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can’t maintain that many in memory; disk storage is too slow

- **0th moment**: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures *uneveness*; related to variance)

Applications
Counting...
distinct words in large document.
distinct websites (URLs).
users that visit a site.
unique queries to Alexa.
Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
- n -- suspected total number of elements observed
- pick a hash, h, to map each element to $\log_2 n$ bits (buckets)

- 2nd moment: sum of squares
 (measures uneveness; related to variance)
Counting Moments

0th moment

Streaming Solution: Flajolet-Martin Algorithm

General idea:
- \(n \) -- suspected total number of elements observed
- pick a hash, \(h \), to map each element to \(\log_2 n \) bits (buckets)

\[
R = 0 \quad \text{#potential max number of zeros at tail}
\]

for each stream element, \(e \):
- \(r(e) = \text{trailZeros}(h(e)) \quad \# \text{num of trailing 0s from } h(e) \)
- \(R = r(e) \text{ if } r[e] > R \)

\[
\text{estimated_distinct_elements} = 2^R
\]

- **2nd moment:** sum of squares
 (measures *unevenness*; related to variance)
Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
- n -- suspected total number of elements
- pick a hash, h, to map each element to $\log_2 n$ bits (buckets)

$R = 0$ #potential max number of zeros at tail
for each stream element, e:
- $r(e) = \text{trailZeros}(h(e))$ #number of trailing 0s from $h(e)$
- $R = r(e)$ if $r[e] > R$

estimated_distinct_elements = $2^R \times n$

2nd moment: sum of squares
(measures uneveness; related to variance)

Mathematical Intuition

$$P(\text{trailZeros}(h(e)) \geq i) = 2^{-i}$$
$$P(h(e) == _0) = .5; \ P(h(e) == _00) = .25; \ldots$$
$$P(\text{trailZeros}(h(e)) < i) = 1 - 2^{-i}$$

for m elements: $= (1 - 2^{-i})^m$

$$P(\text{one } e \text{ has tailZeros} > i) = 1 - (1 - 2^{-i})^m \approx 1 - e^{-m2^{\text{-i}}^\text{}}$$

If $2^R >> m$, then $1 - (1 - 2^{-i})^m \approx 0$
If $2^R << m$, then $1 - (1 - 2^{-i})^m \approx 1$
Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm

General idea:

- \(n \) -- suspected total number of elements
- pick a hash, \(h \), to map each element to \(\log_2 n \) bits (buckets)

\[R = 0 \] potential max number of zeros

for each stream element, \(e \):

\[r(e) = \text{trailZeros}(h(e)) \] # nonzero

\[R = r(e) \text{ if } r[e] > R \]

estimated_distinct_elements = \(2^R \)

• 2nd moment: sum of squares

(measures uneveness; related to variance)

Mathematical Intuition

\[
P(\text{trailZeros}(h(e)) \geq i) = 2^{-i}
\]

\[P(h(e) == _0) = .5; \ P(h(e) == _00) = .25; \ldots \]

\[P(\text{trailZeros}(h(e)) < i) = 1 - 2^{-i} \]

for \(m \) elements:

\[
P(\text{one } e \text{ has tailZeros } > i) = 1 - (1 - 2^{-i})^m \approx 1 - e^{-m2^{\wedge-i}}
\]

- If \(2^R >> m \), then \(1 - (1 - 2^{-i})^m \approx 0 \)
- If \(2^R << m \), then \(1 - (1 - 2^{-i})^m \approx 1 \)

Problem:

Unstable in practice.

Solution:

Multiple hash functions but how to combine?
0th moment
Streaming Solution: Flajolet-Martin Algorithm

General idea:
- \(n \) -- suspected total number of elements
- pick a hash, \(h \), to map each element to \(k \)

\[
Rs = \text{list}()
\]

for \(h \) in hashes:
- \(R = 0 \) #potential max number of zeros at tail
- for each stream element, \(e \):
 - \(r(e) = \text{trailZeros}(h(e)) \) #num of trailing 0s from \(h(e) \)
 - \(R = r(e) \) if \(r[e] > R \)
- \(Rs.append(2^R) \)

\[
\text{groupRs} = Rs[i:i+\log n] \text{ for } i \text{ in range}(0, \text{len}(Rs), \log n)
\]

\[
\text{estimated_distinct_elements} = \text{median}(\text{map(mean, groupRs)})
\]
0th moment

Streaming Solution: Flajolet-Martin Algorithm

General idea:
- \(n \) -- suspected total number of elements
- pick a hash, \(h \), to map each element to \([0, n] \)

\[
Rs = \text{list()}
\]

for \(h \) in hashes:
- \(R = 0 \)
- for \(e \) in elements:
 - compute \(\log_2 \) \([0, n] \)
 - \(R = R + h(e) \)
- Rs.append(R)

\[
\text{estimated_distinct_elements} = \text{median} (\text{map} (\text{mean}, \text{groupRs}))
\]
Counting Moments

2nd moment
Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; Out of Scope; see in MMDS)

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures unevenness related to variance)