Streaming Algorithms:

Data without a disk

H. Andrew Schwartz

CSE545

Spring 2020
Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize the data?
Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize the data?

Examples: Google search queries, Satellite imagery data, Text Messages, Status updates, Click Streams
Motivation

Often translate into $O(N)$ or strictly N algorithms.
Streaming Topics

- General Stream Processing Model
- Sampling
- Filtering data according to a criteria
- Counting Distinct Elements
Process for stream queries

Ad-Hoc:
One-time questions
-- must store expected parts / summaries of streams

Standing Queries:
Stored and permanently executing.
Process for stream queries

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts / summaries of streams

E.g. How would you handle:
What is the mean of values seen so far?
Important difference from typical database management:

- Input is not controlled by system staff.
- Input timing/rate is often unknown, controlled by users.

E.g. How would you handle:

What is the mean of values seen so far?
Process for stream queries

Important differences in input stream management:

- Input is not a single record, but a sequence of records.
- Input timing/rate is variable and controlled by users.

Might hold a sliding window of records instead of a single record.

E.g. How would you handle:

What is the mean of values seen so far?
A stream of records
(also often referred to as “elements” or “tuples”)
Theoretically, could be anything! *search queries, numbers, bits, image files, ...*
General Stream Processing Model

Input stream

..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor

ad-hoc queries -- one-time questions

Output
(Generalization, Summarization)
General Stream Processing Model

... 4, 3, 11, 2, 0, 5, 8, 1, 4

Input stream

Processor

standing queries

ad-hoc queries

Output
(Generalization, Summarization)

-- asked at all times.
General Stream Processing Model

..., 4, 3, 11, 2, 0, 5, 8, 1, 4
Input stream

Processor

ad-hoc queries

Output
(Generalization, Summarization)

limited memory

standing queries
Sampling

Create a random sample for statistical analysis.
Sampling

Create a random sample for statistical analysis.

- RECORD IN
- Process
- Keep?
- RECORD GONE

If yes, limited memory.
Create a random sample for statistical analysis.

Sampling

- RECORD IN
- Process
- Keep?
- RECORD GONE

- limited memory
- sometime in future
- run statistical analysis
Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record.
Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```plaintext
record = stream.next()
if random() <= .05: #keep: true 5% of the time
    memory.write(record)
```

Diagram:
- **Decision Box:** `random() < .05?`
 - **Path:** Yes, Limited memory
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= .05: # keep: true 5% of the time
    memory.write(record)
```

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. user_ids for searches, tweets; location_ids for satellite images
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= perc: #keep: true perc% of the time
    memory.write(record)
```

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. `user_ids` for searches, tweets; `location_ids` for satellite images

Solution: hash into \(N = 1/\text{perc} \) buckets; designate 1 bucket as “keep”.

```python
if hash(record[‘user_id’]) == 1: #keep
```
Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record

```python
record = stream.next()
if random() <= perc: #keep: true perc% of the time
    memory.write(record)
```

Problem: records/rows often are not units-of-analysis for statistical analyses

E.g. user_ids for searches, tweets; location_ids for satellite images

Solution: hash into $N = 1/\text{perc}$ buckets; designate 1 bucket as “keep”.

```python
if hash(record[‘user_id’]) == 1: #keep
    only need to store hash functions; may be part of standing query
```
Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)

Given:
$|S|$ keys to filter; will be mapped to $|B|$ bits
hashes = h_1, h_2, \ldots, h_k independent hash functions
Filtering Data

Filtering: Select elements with property \(x \)

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows *false positives but not false negatives*)

Given:

- \(|S| \) keys to filter; will be mapped to \(|B| \) bits
- hashes = \(h_1, h_2, \ldots, h_k \) independent hash functions

Algorithm:

1. set all \(B \) to 0 \# *B is a bit vector*
2. for each \(i \) in hashes, for each \(s \) in \(S \):
 - set \(B[h_i(s)] = 1 \) \# *all bits resulting from*
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
 The Bloom Filter (approximates; allows false positives but not false negatives)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0 #B is a bit vector
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1 #all bits resulting from
 ... #usually embedded in other code
while key x arrives next in stream #filter:
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows *false positives but not false negatives*)

Given:

- $|S|$ keys to filter; will be mapped to $|B|$ bits
- hashes = h_1, h_2, \ldots, h_k independent hash functions

Algorithm:

set all B to 0
for each i in hashes, for each s in S:
 set $B[h_i(s)] = 1$

... *usually embedded in other code*
while key x arrives next in stream
 if $B[h_i(x)] == 1$ for all i in hashes:
 do as if x is in S
 else: do as if x not in S
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

Q: What fraction of |B| are 1's?

What is the probability of a *false positive (FP)*?

(Leskovec et al., 2014)
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false positive?
Q: What fraction of |B| are 1s?
A: Analogy:
Throw |S| * k darts at n targets.
1 dart: 1/n
d darts: (1 - 1/n)d = prob of 0
 = e⁻ᵈ⁻ⁿ are 0s

(Leskovec et al., 2014)
Filtering: Select elements with property \(x \)

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows \(FPs \))

Given:
- \(|S| \) keys to filter; will be mapped to \(|B| \) bits
- hashes = \(h_1, h_2, \ldots, h_k \) independent hash functions

Algorithm:
- set all \(B \) to 0
- for each \(i \) in hashes, for each \(s \) in \(S \):
 - set \(B[h_i(s)] = 1 \)
 - ... *usually embedded in other code*
- while key \(x \) arrives next in stream
 - if \(B[h_i(x)] == 1 \) for all \(i \) in hashes:
 - do as if \(x \) is in \(S \)
 - else: do as if \(x \) not in \(S \)

Q: What fraction of \(|B| \) are 1s?

A: Analogy:
- Throw \(|S| * k \) darts at \(n \) targets.
- 1 dart: \(1/n \)
- \(d \) darts: \((1 - 1/n)^d \) = prob of 0
 - \(= e^{-d/n} \) are 0s
 - \(= e^{-1} \)
 - for large \(n \)

(Leskovec et al., 2014)
Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)

Given:
- |S| keys to filter; will be mapped to |B| bits
- hashes = \(h_1, h_2, ..., h_k \) independent hash functions

Algorithm:
- set all B to 0
- for each \(i \) in hashes, for each s in S:
 - set \(B[h_i(s)] = 1 \)
 - ... usually embedded in other code
- while key x arrives next in stream
 - if \(B[h_i(x)] = 1 \) for all \(i \) in hashes:
 - do as if x is in S
 - else: do as if x not in S

What is the probability of a false positive?

Q: What fraction of |B| are 1s?

A: Analogy:
- Throw \(|S| \) * \(k \) darts at \(n \) targets.
- 1 dart: \(1/n \)
- \(d \) darts: \((1 - 1/n)^d = \text{prob of 0} \)
 - \(= e^{-d/n} \) are 0s
- thus, \((1 - e^{-d/n}) \) are 1s

probability all \(k \) being 1?

(Leskovec et al., 2014)
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., hₖ independent hash functions

Algorithm:
set all B to 0
for each i in hashes, for each s in S:
 set B[hᵢ(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
 if B[hᵢ(x)] == 1 for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false positive?

Q: What fraction of |B| are 1s?
A: Analogy:
Throw |S| * k darts at n targets.
1 dart: 1/n
d darts: (1 - 1/n)ᵈ = prob of 0
 = e⁻ᵈ/n are 0s
thus, (1 - e⁻ᵈ/n) are 1s

probability all k being 1?
(1 - e⁻(|S|ᵏ/n)k

Note: Can expand S as stream continues as long as |B| has room
(e.g. adding verified email addresses)

(Leskovec et al., 2014)
Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \text{Set}} m_i^k$

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures uneveness; related to variance)
Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data.
- The kth moment of distinct elements is $\sum_{i \in \text{Set}} m_i^k$.

Trivial: just increment a counter

- 0th moment: count of distinct elements
- **1st moment: length of stream**
- 2nd moment: sum of squares
 (measures *unevenness*; related to variance)
0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures uneveness; related to variance)

Applications
Counting...
 - distinct words in large document.
 - distinct websites (URLs).
 - users that visit a site.
 - unique queries to Alexa.
0th moment
One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can’t maintain that many in memory; disk storage is too slow

- **0th moment**: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures uneveness; related to variance)
0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
 n -- suspected total number of elements observed
pick a hash, \(h \), to map each element to \(\log_2 n \) bits (buckets)

- 2nd moment: sum of squares
 (measures uneveness; related to variance)
Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

\[n \] -- suspected total number of elements observed
pick a hash, \(h \), to map each element to \(\log_2 n \) bits (buckets)

\[R = 0 \] #potential max number of zeros at tail
for each stream element, \(e \):
\[r(e) = \text{trailZeros}(h(e)) \] #num of trailing 0s from \(h(e) \)
\[R = r(e) \text{ if } r[e] > R \]

\[\text{estimated_distinct_elements} = 2^R \]

- 2nd moment: sum of squares
 (measures uneveness; related to variance)
Counting Moments

0th moment
Streaming Solution: Flajolet-Martin
General idea:
- n -- suspected total number of elements
- pick a hash, h, to map each element to \log_2 n bits (buckets)

R = 0 #potential max number of zeros at tail
for each stream element, e:
 r(e) = \text{trailZeros}(h(e)) #num of trailing 0s from h(e)
 R = r(e) if r[e] > R

estimated_distinct_elements = 2^R \# m

2nd moment: sum of squares
(measures unevenness; related to variance)

Mathematical Intuition
\[
P(\text{trailZeros}(h(e)) \geq i) = 2^{-i}
\]
\[
\# P(h(e) == _0) = 0.5; P(h(e) == _00) = 0.25; \ldots
\]
\[
P(\text{trailZeros}(h(e)) < i) = 1 - 2^{-i}
\]
\text{for m elements: } = (1 - 2^{-i})^m
\[
P(\text{one e has tailZeros} > i) = 1 - (1 - 2^{-i})^m
\approx 1 - e^{-m2^i}
\]

Algorithm
If \(2^R \gg m\), then \(1 - (1 - 2^{-i})^m \approx 0\)
If \(2^R \ll m\), then \(1 - (1 - 2^{-i})^m \approx 1\)
Counting Moments

0th moment
Streaming Solution: Flajolet-Martinez

General idea:
- \(n \) -- suspected total number of elements
- pick a hash, \(h \), to map each element to \(\log_2(n) \) bits (buckets)

\[
R = 0 \quad \#potential \ max \ number \ of \ zeros
\]

for each stream element, \(e \):
- \(r(e) = \text{trailZeros}(h(e)) \quad \#num \ of \ leading \ zeros \)
- \(R = r(e) \) if \(r[e] > R \)

estimated_distinct_elements = \(2^R \)

- **2nd moment**: sum of squares (measures *unevenness*; related to variance)

Mathematical Intuition

\[
P(\text{trailZeros}(h(e)) \geq i) = 2^{-i}
\]

\[
\#P(h(e) == _0) = .5; \: P(h(e) == _00) = .25; \ldots
\]

\[
P(\text{trailZeros}(h(e)) < i) = 1 - 2^{-i}
\]

for \(m \) elements:

\[
P(\text{one } e \ \text{has tailZeros} > i) = 1 - (1 - 2^{-i})^m
\]

\[
\approx 1 - e^{-m2^{-i}}
\]

- If \(2^R \gg m \), then \(1 - (1 - 2^{-i})^m \approx 0 \)
- If \(2^R \ll m \), then \(1 - (1 - 2^{-i})^m \approx 1 \)

Problem:
Unstable in practice.

Solution:
Multiple hash functions but how to combine?
0th moment
Streaming Solution: Flajolet-Martin Algorithm

General idea:
- n -- suspected total number of elements
- pick a hash, \(h \), to map each element to \(k \)

\[
R_s = \text{list()}
\]
for \(h \) in hashes:
- \(R = 0 \) # potential max number of zeros at tail
- for each stream element, \(e \):
 - \(r(e) = \text{trailZeros}(h(e)) \) # num of trailing 0s from \(h(e) \)
 - \(R = r(e) \) if \(r[e] > R \)
 - \(R_s.\text{append}(2^R) \)

\[
groupRs = [R_s[i:i+\log n] \text{ for } i \text{ in range}(0, \text{len}(R_s), \log n)]
\]
\[
estimated_\text{distinct_elements} = \text{median(map(mean, groupRs))}
\]
Problem:
Unstable in practice.

Solution: Multiple hash functions
1. Partition into groups of size $\log n$
2. Take mean in groups
3. Take median of group means

A good approach anytime one has many “low resolution” estimates of a true value.
Counting Moments

2nd moment
Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; Out of Scope; see in MMDS)

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures uneveness related to variance)