Streaming Algorithms

CSE 545 - Spring 2017
Big Data Analytics -- The Class

We will learn:

● to analyze different types of data:
 ○ high dimensional
 ○ graphs
 ○ infinite/never-ending
 ○ labeled

● to use different models of computation:
 ○ MapReduce
 ○ streams and online algorithms
 ○ single machine in-memory
 ○ Spark

Big Data Analytics -- The Class

We will learn:

- to analyze different types of data:
 - high dimensional
 - graphs
 - infinite/never-ending
 - labeled

- to use different models of computation:
 - MapReduce
 - streams and online algorithms
 - single machine in-memory
 - Spark

Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize the data?
Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize the data?

Examples: Google search queries, Satellite imagery data, Text Messages, Status updates, Click Streams
Stream Queries

Standing Queries: Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts / summaries of streams
Stream Queries

Standing Queries: Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts / summaries of streams

E.g. How would you handle:

What is the mean of values seen so far?
We will cover the following algorithms:

- Sampling
- Filtering Data
- Count Distinct Elements
- Counting Moments
General Stream Processing Model

A stream of records
(also often referred to as “elements” or “tuples”)
General Stream Processing Model

Input stream: ..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor

Output: (Generalization, Summarization)

ad-hoc queries
General Stream Processing Model

Input stream: ...
...
..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor

- ad-hoc queries
- standing queries

Output (Generalization, Summarization)

limited memory
General Stream Processing Model

Input stream: ..., 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor:
- ad-hoc queries
- standing queries

Output:
- (Generalization, Summarization)

Limited memory

Archival storage
Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.

Basic Idea: generate random number; if < sample% keep

Problem: records/rows usually are not units-of-analysis for statistical analyses
Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.

Basic Idea: generate random number; if < sample% keep

- Problem: records/rows usually are not units-of-analysis for statistical analyses

Potential Solution:
- Assume provided some key as unit-of analysis to sample over
 - E.g. ip_address, user_id, document_id, ...etc....
Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.

Basic Idea: generate random number; if < sample% keep

Problem: records/rows usually are not units-of-analysis for statistical analyses

Potential Solution:

- Assume provided some key as unit-of-analysis to sample over
 - E.g. ip_address, user_id, document_id, ...etc....

- Want 1/20th of all “keys” (e.g. users)
 - Hash to 20 buckets; bucket 1 is “in”; others are “out”
 - Note: do not need to store anything (except hash functions); may be part of standing query
Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter
Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

- **The Bloom Filter**
 - **Given:**
 - $|S|$ keys to filter; will be mapped to $|B|$ bits
 - hashes = h_1, h_2, \ldots, h_k independent hash functions
Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs, but not FNs)
 - Given:
 - $|S|$ keys to filter; will be mapped to $|B|$ bits
 - hashes = $h_1, h_2, ..., h_k$ independent hash functions
 - Algorithm
 set all B to 0
 for each i in hashes, for each s in S:
 set $B[h_i(s)] = 1$
 ... #usually embedded in other code
 while key x arrives next in stream
 if $B[h_i(x)] == 1$ for all i in hashes:
 do as if x is in S
 else: do as if x not in S
Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs)
 - **Given:**
 - $|S|$ keys to filter; will be mapped to $|B|$ bits
 - hashes = h_1, h_2, \ldots, h_k independent hash functions
 - **Algorithm**
 set all B to 0
 for each i in hashes, for each s in S:
 set $B[h_i(s)] = 1$
 ... #usually embedded in other code
 while key x arrives next in stream
 if $B[h_i(x)] == 1$ for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false-positive?
Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

- **The Bloom Filter** *(approximates; allows FPs)*
 - **Given:**
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = \(h_1, h_2, \ldots, h_k \) independent hash functions
 - **Algorithm**
 set all B to 0
 for each i in hashes, for each s in S:
 set \(B[h_i(s)] = 1 \)
 ... #usually embedded in other code
 while key x arrives next in stream
 if \(B[h_i(x)] = 1 \) for all i in hashes:
 do as if x is in S
 else: do as if x not in S

What is the probability of a false-positive?
What fraction of |B| are 1s?
Like throwing |S| * k darts at n targets.
1 dart: 1/n;
d darts: \((1 - 1/n)^d = \text{prob of 0} \)
= \(e^{-d/n} \) fraction are 0s
Sampling and Filtering Data

Filtering: Select elements with property \(x \)
Example: 40B email addresses to bypass spam filter

- **The Bloom Filter** *(approximates; allows FPs)*
 - **Given:**
 - \(|S|\) keys to filter; will be mapped to \(|B|\) bits
 - hashes = \(h_1, h_2, \ldots, h_k \) independent hash functions
 - **Algorithm**
 set all \(B \) to 0
 for each \(i \) in hashes, for each \(s \) in \(S \):
 set \(B[h_i(s)] = 1 \)
 ... #usually embedded in other code
 while key \(x \) arrives next in stream
 if \(B[h_i(x)] == 1 \) for all \(i \) in hashes:
 do as if \(x \) is in \(S \)
 else: do as if \(x \) not in \(S \)

What is the probability of a false-positive?
What fraction of \(|B|\) are 1s?

Like throwing \(|S| * k\) darts at \(n\) targets.
1 dart: \(1/n \)
d darts: \((1 - 1/n)^d = \text{prob of 0} \)
= \(e^{-d/n} \) are 0s
thus, \((1 - e^{-d/n}) \) are 1s
probability all \(k \) hashes being 1?
Sampling and Filtering Data

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- **The Bloom Filter** (approximates; allows FPs)
 - **Given:**
 - $|S|$ keys to filter; will be mapped to $|B|$ bits
 - hashes = h_1, h_2, \ldots, h_k independent hash functions
 - **Algorithm**
 - set all B to 0
 - for each i in hashes, for each s in S:
 - set $B[h_i(s)] = 1$
 - ... #usually embedded in other code
 - while key x arrives next in stream
 - if $B[h_i(x)] == 1$ for all i in hashes:
 - do as if x is in S
 - else: do as if x not in S

What is the probability of a false-positive?

What fraction of $|B|$ are 1s?

Like throwing $|S| * k$ darts at n targets.

1 dart: $1/n$

d darts: $(1 - 1/n)^d = \text{prob of 0}$

$= e^{-d/n}$ are 0s

thus, $(1 - e^{-d/n})$ are 1s

probability all k hashes being 1?

$(1 - e^{-(|S|*k)/n})^k$

Note: Can expand S as stream continues as long as $|B|$ has room (e.g. adding verified email addresses)
Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \text{Set}} m_i^k$

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures *unevenness*; related to variance)
Moments:

- Suppose m_i is the count of distinct element i in the data.

- The kth moment of the stream is:
 - 0th moment: count of distinct elements
 - 1st moment: length of stream
 - 2nd moment: sum of squares (measures unevenness; related to variance)

Counting Moments

0th moment

One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can’t maintain that many in memory; disk storage is too slow.

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
Moments:

- Suppose \(m_i \) is the count of distinct element \(i \) in the data.
- The kth moment of the stream is:
 - 0th moment: count of distinct elements
 - 1st moment: length of stream
 - 2nd moment: sum of squares (measures uneveness; related to variance)

Counting Moments

0th moment

Streaming Solution: Flajolet-Martin Algorithm

Pick a hash, \(h \), to map each of \(n \) elements to \(\log_2 n \) bits

- \(R = 0 \) #potential max number of zeros at tail
- for each stream element, \(e \):
 - \(r(e) = \) num of trailing 0s from \(h(e) \)
 - \(R = r(e) \) if \(r(e) > R \)

- \(\text{estimated_distinct_elements} = 2^R \)

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
 (measures *uneveness*; related to variance)
Moments:

- Suppose m_i is the count of distinct element i in the data.
- The kth moment of the stream is:
 - 0th moment: count of distinct elements
 - 1st moment: length of stream
 - 2nd moment: sum of squares (measures uneveness; related to variance)

0th moment

Streaming Solution: Flajolet-Martin Algorithm

- Pick a hash, h, to map each of n elements to $\log_2 n$ bits.
- $R = 0$ #potential max number of zeros at tail
- for each stream element, e:
 - $r(e) = \text{num of trailing 0s from } h(e)$
 - $R = r(e)$ if $r(e) > R$
- estimated_distinct_elements = 2^R

Problem: Unstable in practice.
Moments:

- Suppose m_i is the count of distinct element i in the data.

- The kth moment of the stream is:
 - 0th moment: count of distinct elements
 - 1st moment: length of stream
 - 2nd moment: sum of squares (measures *uneveness*; related to variance)

0th moment

Streaming Solution: Flajolet-Martin Algorithm

- Pick a hash, h, to map each of n elements to $\log_2 n$ bits.
- $R = 0$ # potential max number of zeros at tail
- for each stream element, e:
 - $r(e) =$ num of trailing 0s from $h(e)$
 - $R = r(e)$ if $r(e) > R$
- estimated_distinct_elements = 2^R

Problem:
Unstable in practice.

Solution:
1. partition into groups
2. Take mean in group
3. Take median of means

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
Counting Moments

1st moment
Streaming Solution: Simply keep a counter

- 0th moment: count of distinct elements
- **1st moment: length of stream**
- 2nd moment: sum of squares (measures uneveness related to variance)