Distributed Supervised

Machine Learning

Stony Brook University
CSES45, Spring 2019

Supervised Learning

(genes) (health)

X, X, X, Y

Supervised Learning

Supervised Learning

Supervised Learning

Task: Determine a function, f(or parameters to a function) such that /1) =7

Supervised Learning

Training and test set

Estimate y = f(x) on X)Y.
Hope that the same f(x)
also works on unseen X', Y’

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org

Task: Determine a function, f(or parameters to a function) such that fx)= 7

Supervised Learning Approaches that we will cover

1. Regularized linear modeling
(linear and logistic regression)

2. Convolutional Neural Networks
Where X might have spatial relationships

3. Recurrent Neural Networks
Where X is a sequence of data

Linear Model -- Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor’ = “regressor”’ = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression: r(z) = B(Y|X =)

goal: estimate the function r

r ('" €T '“'l = b’() + B
Uses of linear and logistic regression ,(:) ~ E(Y|X = 2)

1. Testing the relationship between variables given other

variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.

Uses of linear and logistic regression

1.

Testing the relationship between variables given other
variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.

However, unless |X| <<< observatations then the model
might “overfit”.

Overfitting (1-d non-linear example)

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)
— Model — Model — Model
— True function — True function — True function
e®e Samples e®e Samples e®e Samples

Underfit Overfit
High Bias High Variance

(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (6-d linear example)

Y = X

1 0.5 0 0.6 1 0 0.25
1 0 0.5 0.3 0 0 0

0 0 0 1 1 1 0.5
0 0 0 0 0 1 1

1 0.25 1 1.25 1 0.1 2

Overfitting (5-d linear example)

Y = X

1 0.5 0 0.6 1 0 0.25
1 0 0.5 0.3 0 0 0

0 0 0 1 1 1 0.5
0 0 0 0 0 1 1

1 0.25 1 1.25 1 0.1 2

logit(Y) =1.2 + -63"X, + 179%X,+ 71°X, + 187X, + -59"X_ + 19X,

Overfitting (5-d linear example)

Do we really think we found something generalizable?
Y = X

4 X) (")
1 0.5 0 0.6 1 0 0.25
1 0 0.5 0.3 0 0 0
0 0 0 1 1 1 0.5
0 0 0 0 0 1 1
1 0.25 1 1.25 1 0.1 2
logit(Y) =1.2 + -63%X, |+ 179K\t 71°K, # 18%K, 4 -59*X; 4 19%X,

Overfitting (2-d linear example)
Do we really think we found something generalizable?

Y = X
1 0.5 0 . .
What if only 2 predictors?
1 0 0.5
0 0 0
0 0 0
1 0.25 1

logit(Y) = 0 + 27X, + 27X,

Common Goal: Generalize to new data

Does the
model hold up?

Original Data New Data?

Common Goal: Generalize to new data

Does the
model hold up?

Training Data

Testing Data

Common Goal: Generalize to new data

Training
Data

Does the
model hold up?

Develop-
ment
Data

Set training
hyperparameters

Testing Data

Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

e start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
for 1 in range(k):
#find best p to add to current model:
for p in remaining prepdictors
refit current model with p
#add best p, based on RSSp to current_model
#remove p from remaining predictors

Regularization (Shrinkage)

10 10
as} o8]
§ 0 g 06
02} 02
%0 02 04 06 08 10 Y 52 02 06 08 10
original weight original weight
No selection (weight=beta) forward stepwise

Why just keep or discard features?

Regularization (L2, Ridge Regression)

Ordinary least squares objective:
N

m

3’ = (n‘grnin.g{Z(y,' — Z I;‘,“BJ)Q}

i=1 5=1

Ridge regression:

10

ldea: Impose a penalty on size of weights:

08

06}

new weight

0.0 0.2 04 0.6 0.8 10

original weight

Regularization (L2, Ridge Regression)

ldea: Impose a penalty on size of weights:

Ordinary least squares objective:
N

m

3’ = (n‘grnin.g{Z(y,' — Z I;‘,“BJ)Q}

i=1 5=1

new weight

Ridge regression:

10

0.0 0.2 04 0.6 0.8 10

original weight

AIBIL

Regularization (L2, Ridge Regression)

10
|ldea: Impose a penalty on size of weights: o
Ordinary least squares objective: g o
N m =
8= (n‘grnin.g{Z(y,' - Z ;i 3;)°} & 04y
i=1 j=1 o
Ridge regression: % oz s o6 o8 1o
N m m original weight
gridge — a'rgm-z'.n.,g{z(y; - Z ;1#,-_,-@-)2 + A Z 3J2}
- j=1 j:l \
| RSS(\) = (y — X8) (y — X38)+ \3T 3 NIEDE:
In Matrix Form: o | : H112

B‘r-i(lge _ (XTX + /\[)—1XTy

I: m x m identity matrix

Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out

some weights

The Lasso Objective:

,‘\7
n) 1 ¢
alasso __ -~ V.
3 - (ugm.z,nuj{2 E_l (Y;

m

2

j=1

I
ziiBi) + A 18]}
j=1

10

0.0 0.2 04 0.6 08 10
original weight

\

MBI

Regularization (L1, The “Lasso’

Idea: Impose a penalty and zero-out ol
some weights
The Lasso Objective: ; |

) 02}
m L

.\7
glasso a'rg'm.'z.n.,g{i E (Y; — E ;17;}-,@)2 + A E Gil} 00
i=1 j=1 j=1

)

0.0 02 04

06 08 10
original weight

No closed form matrix solution, but \

often solved with coordinate descent.

AllBIh

Application: p=n or p>>n (p: features; n: observations)

Common Goal: Generalize to new data

Training
Data

Does the
model hold up?

Develo-
pment

Set parameters

Testing Data

N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

‘ All data \

lter 1 ‘ train ‘ dev ‘ test ‘

lter 2 ‘ train ‘ dev “ test “ train ‘

lter 3 ‘ train “ dev “ test | train ‘

Options for Distributing ML

1. Distribute copies of entire dataset
a. Train over all with different hyperparameters
b. Train different folds per worker node.

Options for Distributing ML

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

2. Distribute data

a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server

ii. Distributed All-Reduce

Options for Distributing ML

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

2. Distribute data

a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server

ii. Distributed All-Reduce

3. Distribute model or individual operations (e.g. matrix multiply)

Options for Distributing ML

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server

ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

1.

Options for Distributing ML Done very often in practice. Not

talked about much because it's
Distribute copies of entire dataset — mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

Distribute data

a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server

ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing ML Done very often in practice. Not
talked about much because it's

1. Distribute copies of entire dataset — mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data

_ \d%\ Preferred method for big data or
a. Each node finds parameters for subset of very complex models (i.e.

b. Needs mechanism for updating parameters . .
. . models with many internal
i. Centralized parameter server
parameters).

ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing ML Done very often in practice. Not
talked about much because it's

1. Distribute copies of entire dataset — mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data \d%\ Preferred method for big data or
2. Elach node End§ pa;ameterst.for subset ?f very complex models (i.e.
' ?ﬁ@"ﬁal Ze'ér%é:gw ‘%Easz:ame o models with many internal
i. Distributed All-Reduce parameters).
Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaiMlodel Parellelism:d Con: High communication for transferring
Intermediar data.

Cluster Distribution Model Parallelism

Multiple devices on multiple machines
iwith tf.device(“/cpu:1”) iwith tf.device(“/gpu:0”)
! beta=tf.Variable(...) ! y _pred=tf.matmul (beta,X)

~— Transfer Tensors

Machine B 4

Machine A

Data Parallelism

Cluster Distribution

beta=tf.Variable(...)
pred=tf.matmul (beta, X)

beta=tf.Variable(...)
pred=tf.matmul (beta, X)

—— o - -
o o o - — -
- —

e e e e = -

beta=tf.Variable(...)
pred=tf.matmul (beta, X)

e RaeaCRCTOTER

F==—=====

Cluster Distribution | Data Parallelism

beta=tf.Variable(...)
pred=tf.matmul (beta, X)

beta=tf.Variable(...)
pred=tf.matmul (beta, X)

r———————l
—— o - -
o o o - — -

pred=tf.matmul (beta, X)

e RaeaCRCTOTER

F==—=====

beta=tf.Variable(...) i
|

\/
worker:0 worker:1 worker:2

Distributing data

X
of

Distributing data

—t— —A— —A— —A— —A— —A— —A— —A—

learn parameters (i.e. weights),

DlStrl bUtI ng data given graph with cost funcion
and optimizer
X

=2

INENEEREN]

0

batch_size-1

N-batch_size

—t— —A— —— —— —— —A— —— ——

Distributing data

0

batch_size-1

N-batc

0

batch_size-1

N-batch_size

N

——_ A A A A A A
=2
EEN]

update params of each
node and repeat

] - parameters

4

Gradient Descent Options for Linear Regression

(Geron, 2017)

J(w)

/

3

Initial

1
weight \ ,"/
ll
!
/
‘: 1
U

/)
o’

w

Gradient Descent Options for Linear Regression

Batch Gradient Descent A
J(w) i Initial

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

38 s = Stochastic

3.6 +—— Mini-batch
3.4 | e==e Batch

91 3.2
3.0

2.8}
2.6

2.4+

2.5 310 315 410 4.5
0, (Geron, 2017)

Gradient Descent Options for Linear Regression
Batch Gradient Descent
Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

38 & Stochastic

3.6r| +—— Mini-batch
3.4 | e=e Batch

01 3.2}
3.0

2.8}
2.6

241
2.5 3.0 3.5 4.0 4.5
0, (Geron, 2017)

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs Weights Net input Activation
function function

output

Common Activation Functions
z=wX T T

Logistic: o(z)=1/(1+¢?)

_/

o
-6 -4 -2 0 2 4 6

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (e - 1)/ (e + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

y=x

1 -10F

}7:0

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs Weights Net input Activation
function function

output

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs Weights Net input Activation
function function

output

Batch Normalization

Batch Normalization

Input: Values of z over a mini-batch: B = {x1._,};
Parameters to be learned: v,
Output: {y; = BN, g(z:)}

1 m

B — Z XTi // mini-batch mean
i=1
1 m

g - Z:(azZ — 1u5)? // mini-batch variance
7=1

T — B // normalize

0, 5y B = BN, gl // scale and shift

Batch Normalization

(This Is just standardizing!

(but within the current batch of
b ti

,/\O servations)

Input: Values of z over a mini-batch: B = {x1._,};
Parameters to be learned: v,
Output: {y; = BN, g(z:)}

1 m
“B%RZ 1%
7=

1 m
0123 A m ;(ﬂ% —MB)2

// mini-batch mean

// mini-batch variance

T — B

s +— 9+ B =BN,, glz;)

Ti — // normalize

// scale and shift

Batch Normalization

(This is just standardizing!
(but within the current batch of

Input: Values of 2 over a mini-batch: B = {x1._ 1 };
Parameters to be learned: v, 3
Output: {y; = BN, g(;)}
V. 1 i xT; // mimi-batch mean
e =t z
1 m
2 2 . . .
« — y // -batch
0B ;(az UB) mini-batch variance
T — '3 // normalize
\/0123 =+ €
Yi < 7Z; + f = BN, g(z;) // scale and shift

A

Aobservations)

(loffe and Szegedy, 2015)

Why?

Empirically, it works!
Conceptually, generally good
for weight optimization to
keep data within a reasonable
range (dividing by sigma) and
such that positive weights
move it up and negative down
(centering).

Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

Inputs Weights Net input Activation
function function

Feed Forward Network

input layer

hidden layer 1 hidden layer 2

Recurrent Neural Network

G){ Yy =fh,) W)

Activation Function

11 H b} h - .
hidden layer” —= C t){ h(t) _g(h(t_I)th x(t)V)

C %)

13T 1R W] Simple recurrent neural network after ElIman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That 1s, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.

Optimization: L

Backward Propagation
through Time

|
1
1
1
|
1
1
1
|
1
1
1
' h
1
| (0)
:for i in range(1, len(x)):
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1

h.. = tf.tanh(tf.matmul(U,h

(1))+ tf.matmul(w,x(n))

(i-1)
Yy = tf.softmax(tf.matmul(V, h(D))

cost = tf.reduce_mean(-tf.reduce sum(y*tf.log(y pred))

Optimization:

Backward Propagation
through Time

deflne_forward pass graph:

#

h(0)

for i in range(1l, len(x)):
h(1 = tf.tanh(tf.matmul (U

state

Yy = tf.softmax(tf.matmu

cost = tf.reduce_mean(-tf.redu

Optimization: 1~
-
Backward Propagation =

through Time)
CV iy Yoy Yia)

//l
l l l

Wb < 1TWb <1wWb [<IwWb|<Wb

(Geron, 2017)

How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

y Yo Yn Y
h F={ -
T T h(ﬂ) T h(’) T
X Xop Xy X2)
& Time
RNN model “unrolled” depiction

(Geron, 2017)

The GRU Cell

Gated Recurrent Unit

Yy
i r A
(t'1)_t ® @ B> h(t)
i — Element-wise !
i~ multiplication !
| ® Addition |
| mmmm logistic !
 W— tanh
GRU cell J

X) (Geron, 2017)

The GRU

Gated Recurrent Unit

relevance gate update gate

Yo

\ f

i ~N

= \ > hy,

: ® Element-wise
{ = multiplication |
i @ Addition
i mmm logistic |
| m—tonh |

S GRU cell

X (Geron, 2017)

The GRU

Gated Recurrent Unit

update gate A candidate for updating h,

Yo / sometimes called: h~

: ® Element-wise
i~ multiplication

relevance gate

Nit) g [\

@ Addion |
mEm logistic !

GRU cell J

®) (Geron, 2017)

— T T
The GRU Loy = G(szT Xt thT ‘h_jy+b,)
ry =o(Wy' X+ W, -h,_y+b)

T T
Gated Recurrent Unit g, = tanh (W, -x;,+W, - (r,,®h,_ ;) +b,)
h, =z,®h,)+ -z, ®8g,

Yy
A
h 4 A
1) —p ® ® B h(t)
i — Element-wise !
multiplication
i @ Addition
i Emm logistic
| - fanh |
GRU cell /

The cake, which contained candles, was eaten.

What about the gradient?

The gates (i.e. multiplications
J— T. T.
zy =0(We' X+ Wy, "h_py+b,) based on a logistic) often end up
r, =o(W, -x,+W, -h,,,+b,) keeping the hidden state exactly
_ T T (or nearly exactly) as it was. Thus,
8y = tanh (W' X+ Wy, - (ry ®hy_y) +by) for most dimensions of h,
0 =2p®he+ (1 -2y ®8,

y ~
\ Ny ™ Ny

()

X

(t-1) —p

)

XD

GRU cell /

The cake, which contained candles, was eaten.

What about the gradient?

Z)
0

8(1)

G(Wx o X(t) + WhZT * h(t—l) + bZ)

. .

T T
== G(er ° X(t) + Whr ° h(t—l) + br)

T T
= tanh (Wxg * X(t) + Whg * (l'(t) ® h(t—l)) + bg)
=2, ®h,_)+ (1 -27,)®¢g;
Yo
A
()
() —p ®

XD

GRU cell /

> h,

The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

Ny ™ ey
This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

Convolutional Layer

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

(wikipedia)

Convolutional Layer

34{11284
1jo 713)2 |6 /
2 B3 [s51111 |3 b
1|4 (12|65
5l2 [z l8(z]2
9 (2|6 |2]s]2

Original image 6x6

(Barter, 2018)

Feature maps

Convolutions Subsampling

“Convolution”

Convolutions

Filter 3x3

Output 4x4

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

Subsampling Fully connected

Feature maps

Convolutional Layer

Convolutions Subsampling Convolutions Subsampling Fully connected

“Convolution”

Skl |212 k8 |4
190 (71302 |6 E.
213 [5]1]1]3 e l
¥ 1 (0 (-1

114 |2 |2 |6 |5

10 (-1
S 12 1% 13172 12

Filter 3x3
912 |16 12 |5 |1 Output 4x4

Original image 6x6

/ Result of the element-wise

el el 1 imEge fie etk
classification: Let the model g QBN
automatically learn the filter

weights!

- /

How to train deep models for classification?

Short Answer: Same as logistic regression.

RNN_cost = tf.reduce mean(-tf.reduce sum(y*tf.log(y pred))

Logistic Regression Likelihood: L(Bo, 81, ..., Bl X, Y) = [| p(x:)¥(1 — p(z:))' ¥

N =
Log Likelihood: (3) = yilog plx;)+(1—yi)log (1—p(x))
| =1
Log LOSS Z [()(]p{l }—"].—y,”()(}l.l.—]}{l ”
+ N |V
Cross-Entropy Cost: J = _% > yidog p(x;;) (a‘multiclass” log loss)

=1 =1

; N
Final Cost Function: J'' = _TZ Z t/ luq e/ -- "cross entropy error”

Summary

e (Goal is accurate prediction of y (outcome) given features (x)
e Use L1 or L2 penalization (as a regularization) to avoid overfit
e Reason for Train, Dev, Test split

e Components of a neural network

e Batch Normalization

e Distribution options: why is data parallelism preferred?

e Recurrent Neural Network

e Convolution Operation with Filters

