
Distributed Supervised
Machine Learning

Stony Brook University
CSE545, Spring 2019

Supervised Learning

X
1
 X

2
 X

3
 Y

(genes) (health)

Supervised Learning

X
1
 X

2
 X

3
 Y

Supervised Learning

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Supervised Learning

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning Approaches that we will cover

1. Regularized linear modeling
(linear and logistic regression)

2. Convolutional Neural Networks
Where X might have spatial relationships

3. Recurrent Neural Networks
Where X is a sequence of data

Linear Model -- Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

Uses of linear and logistic regression

1. Testing the relationship between variables given other
variables. 𝛽 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Ŷ is an estimate value of Y given X.

Uses of linear and logistic regression

1. Testing the relationship between variables given other
variables. 𝛽 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Ŷ is an estimate value of Y given X.
However, unless |X| <<< observatations then the model
might “overfit”.

Overfitting (1-d non-linear example)

Underfit Overfit
High Bias High Variance
(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (6-d linear example)

1

1

0

0

1

Y = X

0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Overfitting (5-d linear example)

1

1

0

0

1

Y = X

0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

logit(Y) = 1.2 + -63*X
1
 + 179*X

2
 + 71*X

3
 + 18*X

4
 + -59*X

5
 + 19*X

6

Overfitting (5-d linear example)

1

1

0

0

1

Y = X

0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Do we really think we found something generalizable?

logit(Y) = 1.2 + -63*X
1
 + 179*X

2
 + 71*X

3
 + 18*X

4
 + -59*X

5
 + 19*X

6

Overfitting (2-d linear example)

1

1

0

0

1

Y = X

0.5 0

0 0.5

0 0

0 0

0.25 1

logit(Y) = 0 + 2*X
1
 + 2*X

2

Do we really think we found something generalizable?

What if only 2 predictors?

Common Goal: Generalize to new data

Original Data New Data?

Does the
model hold up?

Model

Common Goal: Generalize to new data

Training Data Testing Data

Model

Does the
model hold up?

Common Goal: Generalize to new data

Training
Data

Testing Data

Model

Develop-
ment
Data

Model

Set training
hyperparameters

Does the
model hold up?

Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
 for i in range(k):

#find best p to add to current_model:

for p in remaining_prepdictors

refit current_model with p

 #add best p, based on RSS
p
 to current_model

#remove p from remaining predictors

Regularization (Shrinkage)

No selection (weight=beta) forward stepwise

Why just keep or discard features?

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix

Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
 some weights

The Lasso Objective:

Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
 some weights

The Lasso Objective:

No closed form matrix solution, but
often solved with coordinate descent.

Application: p ≅ n or p >> n (p: features; n: observations)

Common Goal: Generalize to new data

Training
Data

Testing Data

Does the
model hold up?

Model

Develo-
pment

Model
Set parameters

N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done very often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done very often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done very often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Data Parellelism

Model Parellelism

Cluster Distribution

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
 beta=tf.Variable(...)

with tf.device(“/gpu:0”)
 y_pred=tf.matmul(beta,X)

Transfer Tensors

Model Parallelism

Cluster Distribution
...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

Data Parallelism

CPU:0 CPU:1 GPU:0

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

Cluster Distribution
...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

Data Parallelism

worker:0 worker:1 worker:2

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

Distributing data
X y

0

N

Distributing data
X y

0

batch_size-1

N-batch_size

N

Distributing data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

learn parameters (i.e. weights),
given graph with cost funcion
 and optimizer

𝛳batch1

𝛳batch2

𝛳...

Distributing data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

update params of each
node and repeat

Gradient Descent Options for Linear Regression

(Geron, 2017)

Gradient Descent Options for Linear Regression
Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

(Geron, 2017)

Gradient Descent Options for Linear Regression
Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

(Geron, 2017)

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

Common Activation Functions
z = wX

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From linear regression to neural networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

Z

Batch Normalization

Batch Normalization

(Ioffe and Szegedy, 2015)

Batch Normalization

(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of
observations)

Batch Normalization

(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of
observations)

Why?
● Empirically, it works!
● Conceptually, generally good

for weight optimization to
keep data within a reasonable
range (dividing by sigma) and
such that positive weights
move it up and negative down
(centering).

● Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

Feed Forward Network

(skymind, AI Wiki)

Z

Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time

cost

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time

cost

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

With many recursions, the gradients can
vanish or explode (become too large or
small for floating point operations).

Optimization:

Backward Propagation
through Time

cost

(Geron, 2017)

How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

The GRU Cell

Gated Recurrent Unit

(Geron, 2017)

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate A candidate for updating h,

sometimes called: h~

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

Convolutional Layer

(wikipedia)

Convolutional Layer

(Barter, 2018)

Convolutional Layer

Breakthrough in image
classification: Let the model
automatically learn the filter
weights!

RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

How to train deep models for classification?
Short Answer: Same as logistic regression.

Summary

● Goal is accurate prediction of y (outcome) given features (x)

● Use L1 or L2 penalization (as a regularization) to avoid overfit

● Reason for Train, Dev, Test split

● Components of a neural network

● Batch Normalization

● Distribution options: why is data parallelism preferred?

● Recurrent Neural Network

● Convolution Operation with Filters

