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Hypothesis Testing:

e Random Variables
e Distributions
e Hypothesis Testing Framework

Comparing Variables:

Simple Linear Regression, Correlation, Multiple Linear Regression,
Comparing Variables and Hypothesis Testing

Regularized Linear Regression

Multiple Hypothesis Testing



Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

l

‘Ccample space’] cet of all pocsible outcomes.
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X(<HHHTH>) = 1
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X(w) = 4 for 5 out of 32 sets in 2. Thus, assuming a fair coin, P(X =4) = 5/32
(Not a “variable”, but a function that we end up notating a lot like a variable) |



Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>...}
We may just care about how many tails? Thus,

X(<HHHHH>) = 0

X(<HHHTH>) = 1 if it takes only a countable

X(<TTTHT>) =4 number of values.
X(<HTTTT>) = 4

X only has 6 possible values: 0,1, 2, 3,4, 5
What is the probability that we end up with k = 4 tails?
P(X=k)=P({o:X(®w)=k})  wheren€
X(w) = 4 for 5 out of 32 sets in 2. Thus, assuming a fair coin, P(X =4) = 5/32
(Not a “variable”, but a function that we end up notating a lot like a variable)

X is a discrete random variable




Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

X is a continuous random variable if it X is a discrete random variable

can take on an infinite number of if it takes only a countable
values between any two given values. number of values.




Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = inches of snowfall = [0, ») € R

QLN e e R e LY al < amountof inches in a snowstorm
can take on an infinite number of
X(ow)=o

values between any two given values.

What is the probability we receive (at least) a inches?
P(X>a)=P({o: X(w)>a})

What is the probability we receive between a and b inches?
P@a<X<b)=P({w:a<X(w)<b})



Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = inches of snowfall = [0, ») € R

QLN N e R el i 8 X amountof inches in a snowstorm
can take on an infinite number of X(w) = . .
values between any two given values. @)= P(X =1):=0, foralli€ Q

(probability of receiving exactly i
What is the probability we receive (at least) a inches?

PX>a)=P({o: X(w)>a})

inches of snowfall is zero)

What is the probability we receive between a and b inches?
P@a<X<b)=P({w:a<X(w)<b})
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Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = inches of snowfall = [0, ») € R

QLR o e Ry e X amount of inches in a snowstorm

can take on an infinite number of () = . .
values between any two given values. (©)=o P(X=1):=0, foralli€Q

(probability of receiving exactly i

inches of snowfall is zero)

How to model?

inches?
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Continuous Random Variables

Discretize them!
(group into discrete bins)

How to model?
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Continuous Random Variables  F(bin=8)=.32

18

16 |
14 |
12}

10 3
P(bin=12) =.08

20 25 30 35 a0 a5

But aren’'t we throwing away information?
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Continuous Random Variables

14



Continuous Random Variables

X is a continuous random variable if it

can take on an infinite number of
values between any two given values.

fx(z) >0, for all x € X,
/ fx(x)dr =1, and

b
Pla < X <b) = / [x(x)dx

X is a continuous random variable if there exists a function fx such that:
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Continuous Random Variables

X is a continuous random variable if it

can take on an infinite number of
values between any two given values.

fx(z) >0, for all x € X,
/ fx(x)dr =1, and

b
Pla < X <b) = / [x(x)dx

X is a continuous random variable if there exists a function fx such that:

fx : “probability density function” (pdf)

16



Continuous Random Variables
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Continuous Random Variables
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Continuous Random Variables

Common Trap

e fx(x) does notyield a probability
o /bf}((:r.)d:z: does
0 ajmay be anything ([¥)

« thus, fx(x) maybe>1

19



Continuous Random Variables

A Common Probability Density Function

20



Continuous Random Variables

Common pdfs: Normal(y, 62)
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Continuous Random Variables

Common pdfs: Normal(y, 62)

~
\\\

1 (z—p)?

Y = (=g
Jx(z) 0\/’2—,”6 2

1: mean (or “center”)
= expectation

o’: variance,
o: standard deviation

45
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Continuous Random Variables

Common pdfs: Normal(y, 62) Credit: Wikipedia
o ——"———F———F——f——1—— H=0, 0?2=0.2, =—
1 u’:c—p‘,vz B u:0 02:10 —
. — —-TT— i ' et
fX(I) 0_\/2_7]_(53 08| /\ H=0, 0?%=5.0, ==
—_ / \ p: —2' 02: 0'59 e
0.6_
Ww: mean (or “center”) [ / \ / \ ]
= expectation - \\\ -
0.2 A\
o%: variance, - /f \\\\ -
o: standard deviation e B S s e R R




Continuous Random Variables

Common pdfs: Normal(y, 62)

X ~ Normal(, 6%), examples in real life:

e height 0.09

e intelligence/ability 0.08 |

007 |

e measurement error 0.06 |
0.05 |
e averages (or sum) of
0.04 |

lots of random variables 003 |
002}

001}

0.00
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Continuous Random Variables

Common pdfs: Normal(0, 1) (“standard normal”)

How to “standardize” any normal distribution:

1. subtract the mean, u (aka “mean centering”)
2. divide by the standard deviation, o

Zz=(x-u) /o, (aka “zscore”)

Credit: MIT Open Courseware: Probability and Statistics

25



Continuous Random Variables

Common pdfs: Normal(0, 1)

P(-1<Z<1)~.68 P(-2<Z<2)~.95 P(-3<Z<3)~.99

. within 1 - o ~ 68%

Normal PDF B within 2 o ~ 95%

D within 3 - o =~ 99%

—30 —20 —0 o 20 30

Credit: MIT Open Courseware: Probability and Statistics

(8]



Cumulative Distribution Function

For a given random variable X, the
cumulative distribution function (CDF),
Fx: R — [0, 1], is defined by:

Fx(z) =P(X < x)

Uniform —>

10
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Normal = ..
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Cumulative Distribution Function

1 R
F (x)
For a given random variable X, the
cumulative distribution function (CDF), :
Fx: R — [0, 1], is defined by: Uniform =>
0 a b X
10 I | ,;.;‘ . ot
== / /

Pro: F'x(x) yields a probability!

Con: Not intuitively interpretable.

%

XX

Q2

0.0 =] |
A 1
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Random Variables, Revisited

X: A mapping from Q to R that describes the question we care about in practice.

X is a continuous random variable if it X is a discrete random variable

can take on an infinite number of if it takes only a countable
values between any two given values. number of values.

29



Discrete Random Variables

For a given random variable X, the
cumulative distribution function (CDF),
Fx: R — [0, 1], is defined by:

Fx(z) =P(X < x)

X is a discrete random variable

if it takes only a countable
number of values.




Discrete Random Variables

For a given random variable X, the
cumulative distribution function (CDF),
Fx: R — [0, 1], is defined by:

Fx(z) =P(X < x)

X is a discrete random variable

if it takes only a countable
number of values.

10
}
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Discrete Random Variables . " Binomial (n, p)
For a given random variable X, the
cumulative distribution function (CDF), ol BB )
FX.’R—>[0, 1]1 is definedby: 8- :...z..ul:--' et '--:.........:

Fx(z) = P(X < )

X is a discrete random variable
if it takes only a countable
number of values.

For a given discrete random variable X,
probability mass function (pmf),
fx:® — [0, 1], is defined by:

frl) = P(X = )




}'3“ + pr0Sand =20
y Sy e s
Discrete Random Variables Binomial (n, p)
g-
Two Common Discrete ol e R e
Random Variables : = ® = 2

e Binomial(n, p)
fx(x) = (n')pr(l—p)"_‘r, if 0 < <n (0 otherwise)

example: number of heads after n coin flips (p, probability of heads)

e Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure
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Hypothesis -- something one asserts to be true.
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H,: null hypothesis -- some “default” value; "null”: nothing changes

H_: the alternative -- the opposite of the null => a change or difference



Hypothesis Testing

Hypothesis -- something one asserts to be true.

Classical Approach:

H,: null hypothesis -- some “default” value; "null”: nothing changes

H_: the alternative -- the opposite of the null => a change or difference

Use probability to determine if we can:
‘reject the null” (H,) in favor of H..

“There is less than a 5% chance that the null is true”
(i.e. 95% chance that alternative is true).



Hypothesis Testing

Example: Hypothesize a coin is biased.
H . the coin is not biased
(i.e. flipping n times results in a Binomial(n, 0.5))

H_: the coin is biased (i.e. flipping n times does not result in a
Binomial(n, 0.5))



Hypothesis Testing

More formally: Let X be a random variable and let R be the range of X.
R . _C Risthe rejection region. If X€ R . then we reject the null.
reject reject

. within 1- o =~ 68%

Normal PDF B within 2 o ~ 95%

I:l within 3 - o =~ 99%

(8]
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Hypothesis Testing

More formally: Let X be a random variable and let R be the range of X.
R . _C Risthe rejection region. If X€ R . then we reject the null.
reject reject

alpha : size of rejection region (e.g. 0.05, 0.01,.001)

. within 1- o =~ 68%

Normal PDF B within 2 o ~ 95%

I:l within 3 - o =~ 99%

—30 —20 —a o 20 30



Hypothesis Testing

More formally: Let X be a random variable and let R be the range of X.
Rreject C Ris the rejection region. If X € Rreject then we reject the null.

alpha : size of rejection region (e.g. 0.05, 0.01,.001)

In the biased coin example,

if n=1000, then then Rrej =10,469] U [531, 1000]

ect
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Hypothesis Testing

Why?

A general framework for answering (yes/maybe) questions!

® Are height and baldnese related?

® ¢ my deep predictive model better than the state of the art?

® Jc the heat index of a community related to poverty?

® Jc the heat index of a community related to poverty controlling for edvcation rates?

® Doec my webcite receive a higher average number of monthly visitors?



/Failing to “reject the null” does not \
_ _ mean the null is true.

HypotheS|s Testlng However, if the sample is large

enough, it may be enough to say that
the effect size (correlation, difference

Why? value, etc...) is not very meaningful. /
A general framework for answering (yes/maybe) questions!

® Are height and baldnese related?

® ¢ my deep predictive model better than the state of the art?
® Jc the heat index of a community related to poverty?
® Jc the heat index of a community related to poverty controlling for edvcation rates?

® Doec my website receive a higher average number of monthly vicitore?



Hypothesis Testing

Important logical question:

Does failure to reject the null mean the null is true? .f
\

2



Hypothesis Testing

>

s .

————

Does failure to reject the null mean the null is true? .f
X

Important logical question:

2

Thought experiment: If we have infinite data, can the null ever be
true?



Statistical Considerations in Big Data

5.

Average multiple models 6.
(ensemble techniques)

7.
Correct for multiple tests
(Bonferonni’'s Principle) 8.
Smooth data

9.
“Plot” data (or figure out a way to
look at a lot of it “raw”) 10.

Interact with data

Know your “real” sample size
Correlation is not causation

Define metrics for success
(set a baseline)

Share code and data

The problem should drive solution

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)



Measures for Comparing Random Variables

e Distance metrics

e Linear Regression

e Pearson Product-Moment Correlation
e Multiple Linear Regression

e (Multiple) Logistic Regression

e Ridge Regression (L2 Penalized)

e Lasso Regression (L1 Penalized)



Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”
Y = “response variable” = “outcome” = “dependent variable”
Regression: r(I) — E(Y'X o x)

function r

goal: estimate

The expected value of Y, given

that the random variable X is
equal to some specific value, x.



Linear Regression

Finding a linear function based on X to best yield Y.
X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”
Y = “response variable” = “outcome” = “dependent variable”
Regression: r(.r) — E(Y'X — Jj)

goal: estimate the function r
Linear Regression (univariate version): 7T (;‘1?"') = ,3() + 31 X

goal: find g, B, such that 7 (l ~ B Y'X — .r)



Linear Regression

Simple Linear Regression }/2 — 30 L 31Xz + €;
where E(¢;|X;) = 0 and V(€| X;) = o’




_ _ iIntercept slope error
Linear Regression \ \ |

. . . S 1
Simple Linear Regression }/z _— O)O L lez + €;
where E(¢;|X;) = 0 and V(¢;|X;) = o*

l
expected variance




_ _ iIntercept slope error
Linear Regression \ \ |

. . . ) 1
Simple Linear Regression }/2 _— O)O L lez + €;
where E(¢;|X;) = 0 and V(e | X;) = o

l
expected variance

Estimated intercept and slope

r(z) =0+ bz v = (X))

Y

Residual: ¢, =Y, — Y,




_ _ iIntercept slope error
Linear Regression \ \ |

Simple Linear Regression Y O)O + J)lX + €;
?
where E(¢;|X;) = 0 and V{ i = o

l
expected variance

Estimated intercept and slope
r(x) =00+ 6ir ¥, = #(X))
Residual: ¢ =Y, — Y,
Least Squares Estimate. Find 3, and (3; which minimizes

the residual sum of Squares
Z €, = Z )/’ — )/’ Z()f: . ‘3[) . 531){;)2
=1



Linear Regression

/ via Gradient Descent \

Start with 30 = 31 =0

Repeat until convergence:
Calculate all Y;

S=5h-ad) Y, -Y)
=1
\\ S1=0-ad XY -Yi)) /
i=1

Least Squares Estimate= Find 3, and (3; which minimizes
the residual sum of squares "

RSS = Z ZY—)) = (Y- 6 — 51.X)°

i=1




Linear Regression

/ via Gradient Descent \

Start with 30 = 31 =0

Repeat until convergence:

Calculate all

30 = 5p 1

g1 =51 a
=

Learning rate

-

Based on derivative of RSS

Least Squares Estima

~ Find

the residual sum of squares

RSS =

7
3/
%

nd 31
2 _ Z(
=1

which minimizes

Y - ¥;)" =

T

Z(): - ,'3[) - ‘:31){,')2

i=1



Linear Regression

/ via Gradient Descent \

Start with Fy= ) =0

Repeat until convergence:
Calculate all Y;

1
jU — .‘3[) — O(Z ): —Y ,)
i=1

/ via Direct Estimates \

(normal equations)

s X -X)Yi-Y)
8 = — s
Zizl(X'i — X)*

=1

Least Squares Estimate. *Fﬁa'nd

the residual sum of squares

5534 -

31 which minimizes

i=1

Z(): — 3y — ,‘31){;)2

i=1



Pearson Product-Moment Correlation

Covariance
Cov(X.Y) =E(XY) - E(X)E(Y)
=E ((X - X)(Y - Y))

/ via Direct Estimates \

(normal equations)
DX = XY - Y)

31 — n Y
D im1(Xi — X)?

Y - 65X

o y




Pearson Product-Moment Correlation

Covariance - via Direct Estimates N
Cov(X,Y)=E(XY) —_E('X)E(_} ) (normal equations)
— E((X - X)(Y - 1)) ST
Correlation 51 _ Zz’:l(i(i _ X)OG_ )
oy = Cov(X,Y) | Zi'zl(X,j - X)Z

SxSy

. (X, -X Y, - Y 30 =Y — 51X
) n_l;< 5X ) ( Sy ) \ /




Pearson Product-Moment Correlation

(_:vovlan:ia:nce o / via Direct Estimates \
Cov(X.Y) = E(XY) - E(X)E(Y) (normal equations)
=E((X - X)(Y -Y)) . o
Correlation 8 = Z?’:l(‘i(i _ X)(}f_ )
=y = Cov(X.Y) | Zi¥1( X,— X )2
Sx Sy A _ A

1l =X —X\/Y -Y
:n.—l.zl( SX )( Sy ) \\

/

i=1

[f one standardizes X and Y (i.e. subtract the mean and divide by the

standard deviation) before running linear regression, then:
By =0 and () =r --- Le. [, isthe Pearson correlation!




Measures for Comparing Random Variables

e Distance metrics

e Linear Regression

e Pearson Product-Moment Correlation
e Multiple Linear Regression

e (Multiple) Logistic Regression

e Ridge Regression (L2 Penalized)

e Lasso Regression (L1 Penalized)



Measures for Comparing Random Variables

e Distance metrics

e Linear Regression

e Pearson Product-Moment Correlation
e Multiple Linear Regression

e (Multiple) Logistic Regression

e Ridge Regression (L2 Penalized)

e Lasso Regression (L1 Penalized)



Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Y =00+ 51X + 5o X+ ...+ BnXp + €

[f we include and X . = 1 for all i (i.e. adding the intercept to X), then we can
say. m

Y, = Z B; Xi; + €

j=0




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Yi =00+ 51 Xi + 5oXio + ... + B X + €

[f we include and X _ = 1 for all i, then we can say:

m

Y, = Z BJXU + & Y — X3 + €

Gr in vector notation across all i: \

7=0 where (3 and € are vectors and

X is a matrix.

\_

/




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Yi =00+ 51 Xi + 5oXio + ... + B X + €

[f we include and X _ = 1 for all i, then we can say:

m

. Gr in vector notation across all i: \
Yi=) BiXijtea Y = X3+

7=0 where (3 and € are vectors and
X is a matrix.

Estimating 3 ;

a_ (vT —1 T
A=) TXTY




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependent variable: 'Y; = 5y + 51 X1 + 52 X0 + ... + B X1 + €

[f we include and X . = 1 for all i. Then we can say:

m

Y; = T B; Xi; + €

To test for significance of
individual coefficient, j:

A

6 in vector notation
across alli: 'Y = X3+ ¢

X is a matrix.

Estimating (3 :

t—

2 im1 Xu

X;)?

A\ = (XTX)"'XTy

Where 3 and € are vectors and

/




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependent variable: 'Y; = 5y + 51 X1 + 52 X0 + ... + B X1 + €

[f we include and X . = 1 for all i. Then we can say:

To test for significance of
individual coefficient, j:

A

6 in vector notation
across alli: 'Y = X3+ ¢

X is a matrix.

Estimating (3 :

t—

2 im1 Xu

X;)?

A\ = (XTX)"'XTy

Where 3 and € are vectors and

/




Multiple Linear Regression

Y; — 30 + J)l )(271 + 324 r‘z' 2t ... T J)m Jerl T €

RSS
= J— T-Test for significance of hypothesis:
df 1) Calculate t
\ 2) Calculate degrees of freedom:
To test for significance of
individual coeffigient, j: df =N - (m+1)
,_ B _ 5 3) Check probability in a ¢ distribution:
SE(5;)




0.40
0.35
0.30}
0.25}
=0.20}
0.15}
0.10
0.05}

T-Test for significance of hypothesis:

0.00
1) Calculate ¢t
t 2) Calculate degrees of freedom:
To test for significance of
individual coefficient, j: df=N-(m+1)
B B, 3) Check probability in a ¢ distribution:

t

T SEB) &2 (df=v)
VY (X — X;)?



Hypothesis Testing

Important logical question:

Does failure to reject the null mean the null is true? .f
X

Thought experiment: If we have infinite data, can the null ever be
true?



Type |, Type Il Errors

True state of nature
Hy Hap

Our Reject Hy Type I error correct decision

decision ‘Accept’ Hy | correct decision | Type II error

(Orloff & Bloom, 2014)



Power

significance level ("p-value”) = P(type | error) = P(Reject H | H,)
(probability we are incorrect)

power =1 - P(type Il error) = P(Reject H, | H,)
(probability we are correct)
| Hy | Hy
Reject Hy  P(Reject H,| H,) P(Reject H | H,)

True state of nature

Hy Hx
Our Reject Hy Type I error correct decision
decision ‘Accept’ Hy | correct decision | Type II error

(Orloff & Bloom, 2014)



Multi-test Correction

If alpha = .05, and | run 40
variables through significance
tests, then, by chance, how many
are likely to be significant?



Multi-test Correction




Multi-test Correction

What if all tests are independent?
=> “Bonferroni Correction” (a/m)

Better Alternative: False Discovery Rate
(Bejamini Hochberg)



Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classmcatlon )
_,_v 3.

_Jl 1 ‘ ]

= p; (3 P()

/Xr = T ) =




Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classmcatlon )
ST S

-—dl 1 ‘ ".."

Pi = DPi (,-‘3 ) EE’(}}' — =) = Fo+S

g1 4 Pt B

Note: this is a probability here.
In simple linear regression we wanted an expectation:
r(x) =EY|X =)




Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification )

Fot3 521 BT
Pi = ])1(3) = P(}: o - I) - ] —+ Go+S0 L Bz
\ J e

Note: this is a probability here.
In simple linear regression we wanted an expectation:

r(z) =E(Y|X =x)
(i.e.if p> 0.5 we can confidently predict Y. = 1)




Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

l —' B o e
oot 305 BiTi;

= p; (3 P(}

lX =z ) - "1'{}'?"2:1'.1:1 3;x

1 +e€

&l

m

pf Pi ; >
logit(p;) = log (1 L ‘ ) = Gy + Z,djxij
j=1

— Pi



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

P(Yi =0]X =x)
Thus, O is class 0
and 1 is class 1.



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

a mooog
6"’0*'25 1955

pi=pi(8) =P}, =1 X=21a) =

f T;

1_'_61.0 Lnl

S 3 G

logit(p;) = log (1 ! p-) = By + > B;xi;
We're still learning a linear
separating hyperplane, but
fitting it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification’ )

pi =pi(5) =

P(Y, =

ju +3 0y By

L l 1 ' '

l 11 X ==z )

+3°0 . G

1+€'j” ._Jl]

1]

o Di =
logit(p;) = log (1 ]—y)) = 5y + Z,dj:rztj
.l ‘5

To estimate 3 ,
one can use
reweighted least
squares:

(Wasserman, 2005; Li, 2010)

[

. Set z; = logit(p;) + — = X8+

set 3y = ... = 3 = 0 (remember to include an intercept)

. Calculate p; and let W be a diagonal matrix

where element(i, 1) = p;(1 — p;).
Y; — pi o Yi—p;

« pi(l - ) - pill-pi)
Set 5= (XTWX)~ IXTU z [ [weighted lin. reg. of Z on'Y.

4. Repeat from 1 until 3 CONverges.




Uses of linear and logistic regression

1. Testing the relationship between variables given other

variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.



Uses of linear and logistic regression

1.

Testing the relationship between variables given other
variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.

However, unless |X| <<< observatations then the model
might “overfit”.



Overfitting (1-d non-linear example)

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)
— Model — Model — Model
— True function — True function — True function
e®e Samples e®e Samples e®e Samples

Underfit Overfit
High Bias High Variance

(image credit: Scikit-learn; in practice data are rarely this clear)



Overfitting (5-d linear example)

Y = X

1 0.5 0 0.6 1 0 0.25
1 0 0.5 0.3 0 0 0

0 0 0 1 1 1 0.5
0 0 0 0 0 1 1

1 0.25 1 1.25 1 0.1 2



Overfitting (5-d linear example)

Y = X

1 0.5 0 0.6 1 0 0.25
1 0 0.5 0.3 0 0 0

0 0 0 1 1 1 0.5
0 0 0 0 0 1 1

1 0.25 1 1.25 1 0.1 2

logit(Y) =1.2 + -63"X, + 179%X,+ 71°X, + 187X, + -59"X_ + 19X,



Overfitting (5-d linear example)

Do we really think we found something generalizable?
Y = X

4 X ) (" )
1 0.5 0 0.6 1 0 0.25
1 0 0.5 0.3 0 0 0
0 0 0 1 1 1 0.5
0 0 0 0 0 1 1
1 0.25 1 1.25 1 0.1 2
logit(Y) =1.2 + -63%X, |+ 179K\t 71°K, # 18%K, 4 -59*X; 4 19%X,




Overfitting (2-d linear example)
Do we really think we found something generalizable?

Y = X
1 0.5 0 . .
What if only 2 predictors?
1 0 0.5
0 0 0
0 0 0
1 0.25 1

logit(Y) = 0 + 27X, + 27X,



Common Goal: Generalize to new data

Does the
model hold up?2

Original Data New Data?




Common Goal: Generalize to new data

Does the
model hold u

Training Data

Testing Data




Common Goal: Generalize to new data

Training
Data

Does the
—_model hold u

Develop-
ment
Data

Set training
parameters

Testing Data




Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

e start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
for 1 in range(k):
#find best p to add to current model:
for p in remaining prepdictors
refit current model with p
#add best p, based on RSSp to current_model
#remove p from remaining predictors



Regularization (Shrinkage)

new weight

10 10 Y
08| 08

0.6 %. 0.6

04 é 0.4

02} 0.2

OAOOAO Oj2 0f4 0f6 0?8 10 0'00_0 0_‘2 o_l4 0,!6 0_18 10

original weight original weight
No selection (weight=beta) forward stepwise

Why just keep or discard features?



Regularization (L2, Ridge Regression)

10
ldea: Impose a penalty on size of weights:
08 |
Ordinary least squares objective: |
N m ]
3 = a'rg'm.in_;{Z(y; — Z ;1?;_‘.-,:'3j)2} é 04l
i=1 =1
. . 02}
Ridge regression:
0.0
I I 0.0

N
gridse — qr gminz{ Z(y; - Z Ti; 3 J)Z + A Z 3;)‘}
i=1

i=1 j=1

0.‘2 04 0.6 08 10
original weight



Regularization (L2, Ridge Regression)

10

ldea: Impose a penalty on size of weights:

08 [

Ordinary least squares objective:
N

06|
T

3 = arg'm.in_;{Z(y; - Z ;lf;_,.'.~'3j)2}
=1

j=1

new weight

Ridge regression:

m m 0.0 0.2 04 0.6 0.8 10

N
.%ridgt' R (o - 2 A\ _32 original weight
£ =argming{ Y (yi — zi; 3;)° + 3; }
=1

al12
B



Regularization (L2, Ridge Regression)

10
|ldea: Impose a penalty on size of weights:
08|
Ordinary least squares objective: o 06
I %
3_(ugmnu{z Z r;;3;)°} 5 0e
j=1

Ridge regression'

m 0.0 0.2 04 0.6 0.8 10

L .
. N 59, iginal weight
3r49¢ — qr gmin, 3{ E E xii3i)" + A E 37} SramaTiEs
i=1 j=1 j=1

—

In Matrix Form: RSS(A\) = (y — X3) (v — X3) + A\3" 3 /\HJHZ;

I: m x m identity matrix




Regularization (L1, The “Lasso”)

10

Idea: Impose a penalty and zero-out
some weights

The Lasso Objective:

new weight

o
-

I

,\"
L 1 < ol
alasso __ . . 1T -
g™ = argming{3 E_l(l E zij3 +A§ 31}

0.0 0.2 0.14 0.6 0.8 10

\ original weight

AllBIh



Regularization (L1, The “Lasso”)

10

Idea: Impose a penalty and zero-out
some weights

The Lasso Objective:

new weight

o
-

I m

N

A - 1 * ozl
alasso __ .- ¢~ ]

3 o (Ugfn-l-n-;j{z E_l ( E 1” _|_ A E 1 3. l}

0.0 0.2 0.I4 0.'6 0.‘8 10
original weight
No closed form matrix solution, but \
often solved with coordinate descent. A8 |1

Application: p=n or p>>n (p: features; n: observations)



Common Goal: Generalize to new data

Training
Data

Does the
model hold up?

Develo-
pment

Set parameters

Testing Data




N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

‘ All data \

lter 1 ‘ train ‘ dev ‘ test ‘

lter 2 ‘ train ‘ dev “ test “ train ‘

lter 3 ‘ train “ dev “ test | train ‘




Summary

Hypothesis Testing:

A framework for deciding which differences/relationships matter.

e Random Variables
e Distributions
e Hypothesis Testing Framework

Comparing Variables:
Metrics to quantify the difference or relationship between variables.

Simple Linear Regression, Correlation, Multiple Linear Regression,
Comparing Variables and Hypothesis Testing

Regularized Linear Regression

Multiple Hypothesis Testing



