Hypothesis Testing and statistical preliminaries

Stony Brook University CSE545, Spring 2019

Hypothesis Testing:

- Random Variables
- Distributions
- Hypothesis Testing Framework

Comparing Variables:

- Simple Linear Regression, Correlation, Multiple Linear Regression,
- Comparing Variables and Hypothesis Testing
- Regularized Linear Regression
- Multiple Hypothesis Testing

Random Variables

X: A mapping from Ω to 圆 that describes the question we care about in practice.

"sample space", set of all possible outcomes.

Random Variables

X: A mapping from Ω to 圆 that describes the question we care about in practice. Example: $\boldsymbol{\Omega}=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$

Random Variables

X: A mapping from Ω to 嵓 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \text { X }(<\text { HHHHH }>)=0 \\
& \text { X }(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

Random Variables

X: A mapping from Ω to 嵓 that describes the question we care about in practice.
Example: $\mathbf{\Omega}=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \text { X }(<\text { HHHHH }>)=0 \\
& \text { X }(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

$\mathrm{X}(\omega)=4$ for 5 out of 32 sets in $\boldsymbol{\Omega}$. Thus, assuming a fair coin, $\mathbf{P}(\mathrm{X}=4)=5 / 32$
(Not a "variable", but a function that we end up notating a lot like a variable)

Random Variables

X: A mapping from Ω to 嵓 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<H H H T H>. .$. We may just care about how many tails? Thus,

$$
\begin{aligned}
& \mathrm{X}(<\text { HHHHH }>)=0 \\
& \mathrm{X}(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X is a discrete random variable if it takes only a countable number of values.

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

$X(\omega)=4$ for 5 out of 32 sets in $\boldsymbol{\Omega}$. Thus, assuming a fair coin, $\mathbf{P}(X=4)=5 / 32$
(Not a "variable", but a function that we end up notating a lot like a variable)

Random Variables

\mathbf{X} : A mapping from Ω to 圆 that describes the question we care about in practice.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

X is a discrete random variable if it takes only a countable number of values.

Random Variables

\mathbf{X} : A mapping from Ω to 圆 that describes the question we care about in practice.
Example: $\Omega=$ inches of snowfall $=[0, \infty) \subseteq$ 廆

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X amount of inches in a snowstorm

$$
\mathbf{X}(\omega)=\omega
$$

What is the probability we receive (at least) a inches?
$\mathbf{P}(X \geq a):=\mathbf{P}(\{\omega: X(\omega) \geq a\})$
What is the probability we receive between a and b inches?
$\mathbf{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}):=\mathbf{P}(\{\omega: \mathrm{a} \leq \mathrm{X}(\omega) \leq \mathrm{b}\})$

Random Variables

\mathbf{X} : A mapping from Ω to 崌 that describes the question we care about in practice.
Example: $\Omega=$ inches of snowfall $=[0, \infty) \subseteq$ 廆

X is a continuous random variable if it can take on an infinite number of values between any two given values.

What is the probability we receive (at least) a inches?
$\mathbf{P}(X \geq a):=\mathbf{P}(\{\omega: X(\omega) \geq a\})$
X amount of inches in a snowstorm

$$
\mathbf{X}(\omega)=\omega
$$

What is the probability we receive between a and b inches?
$\mathbf{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}):=\mathbf{P}(\{\omega: \mathrm{a} \leq \mathrm{X}(\omega) \leq \mathrm{b}\})$

Random Variables

\mathbf{X} : A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=$ inches of snowfall $=[0, \infty) \subseteq$ 居

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X amount of inches in a snowstorm
$\mathbf{X}(\omega)=\omega$

$$
\mathbf{P}(\mathrm{X}=\mathrm{i}):=0, \text { for all } \mathrm{i} \in \boldsymbol{\Omega}
$$

(probability of receiving exactly i inches of snowfall is zero)

How to model?

Continuous Random Variables

How to model?

Continuous Random Variables $\quad \mathrm{P}(b i n=8)=.32$

But aren't we throwing away information?

Continuous Random Variables

Continuous Random Variables

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X is a continuous random variable if there exists a function $f x$ such that:

$$
\begin{gathered}
f_{X}(x) \geq 0, \text { for all } x \in X, \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1, \text { and } \\
\mathrm{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
\end{gathered}
$$

Continuous Random Variables

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X is a continuous random variable if there exists a function $f x$ such that:

$$
\begin{gathered}
f_{X}(x) \geq 0, \text { for all } x \in X \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1, \quad \text { and } \\
\mathrm{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
\end{gathered}
$$

$f x$: "probability density function" (pdf)

Continuous Random Variables

Continuous Random Variables

Continuous Random Variables

Common Trap

- $f_{X}(x)$ does not yield a probability
- $\int_{a}^{b} f_{X}(x) d x$ does

- x may be anything (\mathbb{R})
- thus, $f_{X}(x)$ may be >1

Continuous Random Variables

A Common Probability Density Function

Continuous Random Variables

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Continuous Random Variables

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

μ : mean (or "center")
= expectation
σ^{2} : variance,

σ : standard deviation

Continuous Random Variables

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$
μ : mean (or "center")
= expectation
σ^{2} : variance,
σ : standard deviation

Continuous Random Variables

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, examples in real life:

- height
- intelligence/ability
- measurement error
- averages (or sum) of
lots of random variables

Continuous Random Variables

Common pdfs: Normal(0,1) ("standard normal")

How to "standardize" any normal distribution:

1. subtract the mean, μ (aka "mean centering")
2. divide by the standard deviation, σ
$z=(x-\mu) / \sigma, \quad$ aka "z score")

Continuous Random Variables

Common pdfs: $\operatorname{Normal}(0,1)$

$$
P(-1 \leq Z \leq 1) \approx .68, \quad P(-2 \leq Z \leq 2) \approx .95, \quad P(-3 \leq Z \leq 3) \approx .99
$$

Cumulative Distribution Function

For a given random variable X, the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Cumulative Distribution Function

For a given random variable X , the cumulative distribution function (CDF), Fx: $\mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Random Variables, Revisited

\mathbf{X} : A mapping from Ω to 圆 that describes the question we care about in practice.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

X is a discrete random variable if it takes only a countable number of values.

Discrete Random Variables

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

X is a discrete random variable if it takes only a countable number of values.

Discrete Random Variables

X is a discrete random variable if it takes only a countable number of values.

Binomial (n, p)
(like normal)

Discrete Random Variables

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

For a given discrete random variable X, probability mass function (pmf), $f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

X is a discrete random variable if it takes only a countable number of values.

$$
\begin{gathered}
\sum_{i} f_{X}(x)=1 \\
F_{X}(f)=\mathrm{P}(X \leq x)=\sum_{x_{i} \leq x} f_{X}(x)
\end{gathered}
$$

Discrete Random Variables

Two Common Discrete
 Random Variables

- Binomial(n, p)

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \text { if } 0 \leq x \leq n(0 \text { otherwise })
$$

example: number of heads after n coin flips (p , probability of heads)

- Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

Hypothesis Testing

Hypothesis -- something one asserts to be true.

Hypothesis Testing

Hypothesis -- something one asserts to be true.
Classical Approach:
H_{0} : null hypothesis -- some "default" value; "null": nothing changes
H_{1} : the alternative -- the opposite of the null => a change or difference

Hypothesis Testing

Hypothesis -- something one asserts to be true.
Classical Approach:
H_{0} : null hypothesis -- some "default" value; "null": nothing changes
H_{1} : the alternative -- the opposite of the null => a change or difference
Goal: Use probability to determine if we can:
"reject the null" $\left(H_{0}\right)$ in favor of H_{1}.
"There is less than a 5% chance that the null is true"
(i.e. 95% chance that alternative is true).

Hypothesis Testing

Example: Hypothesize a coin is biased.
H_{0} : the coin is not biased
(i.e. flipping n times results in a Binomial(n, 0.5))
H_{1} : the coin is biased (i.e. flipping n times does not result in a Binomial(n, 0.5))

Hypothesis Testing

More formally: Let X be a random variable and let R be the range of X. $R_{\text {reject }} \subset R$ is the rejection region. If $\mathrm{X} \in R_{\text {reject }}$ then we reject the null.

Hypothesis Testing

More formally: Let X be a random variable and let R be the range of X . $R_{\text {reject }} \subset R$ is the rejection region. If $\mathrm{X} \in R_{\text {reject }}$ then we reject the null. alpha: size of rejection region (e.g. 0.05, 0.01, .001)

Hypothesis Testing

More formally: Let X be a random variable and let R be the range of X . $R_{\text {reject }} \subset R$ is the rejection region. If $\mathrm{X} \in R_{\text {reject }}$ then we reject the null. alpha: size of rejection region (e.g. 0.05, 0.01, .001)

In the biased coin example,

$$
\text { if } \mathrm{n}=1000 \text {, then then } R_{\text {reject }}=[0,469] \cup[531,1000]
$$

Hypothesis Testing

Why?

Hypothesis Testing

Why?

A general framework for answering (yes/no) questions!

Hypothesis Testing

Why?

A general framework for answering (yes/no) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?

Hypothesis Testing

Why?

A general framework for answering (yes/no) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?
- Is the heat index of a community related to poverty?
- Is the heat index of a community related to poverty controlling for education rates?
- Does my website receive a higher average number of monthly visitors?

Hypothesis Testing

Failing to "reject the null" does not mean the null is true.

Why?

A general framework for answering (yes/maybe) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?
- Is the heat index of a community related to poverty?
- Is the heat index of a community related to poverty controlling for education rates?
- Does my website receive a higher average number of monthly visitors?

Hypothesis Testing

Why?

> Failing to "reject the null" does not mean the null is true. However, if the sample is large enough, it may be enough to say that the effect size (correlation, difference value, etc...) is not very meaningful.

A general framework for answering (yes/maybe) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?
- Is the heat index of a community related to poverty?
- Is the heat index of a community related to poverty controlling for education rates?
- Does my website receive a higher average number of monthly visitors?

Hypothesis Testing

Important logical question:
Does failure to reject the null mean the null is true?

Hypothesis Testing

Important logical question:
Does failure to reject the null mean the null is true?

Thought experiment: If we have infinite data, can the null ever be true?

Statistical Considerations in Big Data

1. Average multiple models (ensemble techniques)
2. Correct for multiple tests (Bonferonni's Principle)
3. Smooth data
4. "Plot" data (or figure out a way to look at a lot of it "raw")
5. Interact with data
6. Know your "real" sample size
7. Correlation is not causation
8. Define metrics for success (set a baseline)
9. Share code and data
10. The problem should drive solution

Measures for Comparing Random Variables

- Distance metrics
- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regression (L2 Penalized)
- Lasso Regression (L1 Penalized)

Linear Regression

Finding a linear function based on X to best yield Y.
X = "covariate" = "feature" = "predictor" = "regressor" = "independent variable"
$\mathrm{Y}=$ "response variable" = "outcome" = "dependent variable"
Regression: $\quad r(x)=\mathrm{E}(Y \mid X=x)$ goal: estimate function r

The expected value of Y, given that the random variable X is equal to some specific value, x.

Linear Regression

Finding a linear function based on X to best yield Y.
X = "covariate" = "feature" = "predictor" = "regressor" = "independent variable"
$\mathrm{Y}=$ "response variable" = "outcome" = "dependent variable"
Regression: $\quad r(x)=\mathrm{E}(Y \mid X=x)$ goal: estimate the function r
Linear Regression (univariate version): $r(x)=\beta_{0}+\beta_{1} x$ goal: find β_{0}, β_{1} such that $r(x) \approx \mathrm{E}(Y \mid X=x)$

Linear Regression

> Simple Linear Regression $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ where $\mathbf{E}\left(\epsilon_{i} \mid X_{i}\right)=0$ and $\mathbf{V}\left(\epsilon_{i} \mid X_{i}\right)=\sigma^{2}$

Linear Regression

intercept slope error

Simple Linear Regression $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ where $\mathbf{E}\left(\epsilon_{i} \mid X_{i}\right)=0$ and $\mathbf{V}\left(\epsilon_{i} \mid X_{i}\right)=\sigma^{2}$
expected variance
Estimated intercept and slope

$$
\begin{aligned}
\hat{r}(x)= & \hat{\beta}_{0}+\hat{\beta}_{1} x \quad \hat{Y}_{i}=\hat{r}\left(X_{i}\right) \\
& \text { Residual: } \quad \hat{\epsilon}_{i}=Y_{i}-\hat{Y}_{i}
\end{aligned}
$$

Linear Regression

Simple Linear Regression $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

$$
\text { where } \mathbf{E}\left(\epsilon_{i} \mid X_{i}\right)=0 \text { and } \mathbf{V}\left(\epsilon_{i} \mid X_{i}\right)=\sigma^{2}
$$

expected variance
Estimated intercept and slope

$$
\begin{aligned}
\hat{r}(x)= & \hat{\beta}_{0}+\hat{\beta}_{1} x \quad \hat{Y}_{i}=\hat{r}\left(X_{i}\right) \\
& \text { Residual: } \quad \hat{\epsilon}_{i}=Y_{i}-\hat{Y}_{i}
\end{aligned}
$$

Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
\begin{aligned}
& \text { ares: } \\
& R S S=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}
\end{aligned}
$$

Linear Regression

via Gradient Descent

Start with $\hat{\beta}_{0}=\hat{\beta}_{1}=0$
Repeat until convergence:
Calculate all \hat{Y}_{i}
$\hat{\beta}_{0}=\hat{\beta}_{0}-\alpha\left(\sum_{i=1} \hat{Y}_{i}-Y_{i}\right)$
$\hat{\beta}_{1}=\hat{\beta}_{1}-\alpha\left(\sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)$
Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
\begin{aligned}
& \text { ares: } \\
& \qquad R S S=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}
\end{aligned}
$$

Linear Regression

via Gradient Descent

Start with $\hat{\beta}_{0}=\hat{\beta}_{1}=0$
Learning rate
Repeat until convergence:
Calculate all $\hat{\beta}_{0}=\hat{\beta}_{0}-\alpha \sum_{i=1}^{\left.\hat{Y}_{i}-Y_{i}\right)}$
$\left.\hat{\beta}_{1}=\hat{\beta}_{1}-\alpha \sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)$$\quad$ Based on derivative of $R S S$
Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
\begin{aligned}
& \text { ares: } \\
& \qquad R S S=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}
\end{aligned}
$$

Linear Regression

via Gradient Descent

Start with $\hat{\beta}_{0}=\hat{\beta}_{1}=0$
Repeat until convergence:
Calculate all \hat{Y}_{i}

$$
\begin{aligned}
& \hat{\beta}_{0}=\hat{\beta}_{0}-\alpha\left(\sum_{i=1}^{n} \hat{Y}_{i}-Y_{i}\right) \\
& \hat{\beta}_{1}=\hat{\beta}_{1}-\alpha\left(\sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)
\end{aligned}
$$

Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
\begin{aligned}
& \text { ares: } \\
& R S S=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2} .
\end{aligned}
$$

via Direct Estimates (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

via Direct Estimates

(normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{s_{X}}\right)\left(\frac{Y_{i}-\bar{Y}}{s_{Y}}\right)
\end{aligned}
$$

via Direct Estimates
 (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{s_{X}}\right)\left(\frac{Y_{i}-\bar{Y}}{s_{Y}}\right)
\end{aligned}
$$

via Direct Estimates (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

If one standardizes X and Y (i.e. subtract the mean and divide by the standard deviation) before running linear regression, then:
$\hat{\beta}_{0}=0$ and $\hat{\beta}_{1}=r \quad--$ i.e. $\hat{\beta}_{1}$ is the Pearson correlation!

Measures for Comparing Random Variables

- Distance metrics
- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regression (L2 Penalized)
- Lasso Regression (L1 Penalized)

Measures for Comparing Random Variables

- Distance metrics
- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regression (L2 Penalized)
- Lasso Regression (L1 Penalized)

Multiple Linear Regression

Suppose we have multiple X that we'd like to fit to Y at once:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

If we include and $X_{o i}=1$ for all i (i.e. adding the intercept to X), then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Multiple Linear Regression

Suppose we have multiple X that we'd like to fit to Y at once:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

If we include and $X_{o i}=1$ for all i, then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Or in vector notation across all i:

$$
Y=X \beta+\epsilon
$$

where β and ϵ are vectors and X is a matrix.

Multiple Linear Regression

Suppose we have multiple X that we'd like to fit to Y at once:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

If we include and $X_{o i}=1$ for all i, then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Or in vector notation across all i:

$$
Y=X \beta+\epsilon
$$

where β and ϵ are vectors and X is a matrix.

Estimating β :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Multiple Linear Regression

Suppose we have multiple independent variables that we'd like to fit to our dependent variable: $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}$

If we include and $X_{o i}=1$ for all i. Then we can say:

$$
Y_{i}=\sum^{m} \beta_{i} X_{i i}+\epsilon_{i}
$$

To test for significance of individual coefficient, j :

$$
t=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}}}
$$

Or in vector notation

$$
\text { across all i: } \quad Y=X \beta+\epsilon
$$

$$
\text { Where } \beta \text { and } \epsilon \text { are vectors and }
$$ X is a matrix.

Estimating β :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Multiple Linear Regression

Suppose we have multiple independent variables that we'd like to fit to our dependent variable: $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}$

If we include and $\mathrm{X}_{\mathrm{oi}}=1$ for all i. Then we can say:

To test for significance of individual coefficient, j :
$t=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}}}$

Or in vector notation

$$
\text { across all i: } \quad Y=X \beta+\epsilon
$$

Where β and ϵ are vectors and

 X is a matrix.Estimating β :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Multiple Linear Regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

RSS

$d f$
To test for significance of individual coefficient, j :
$t=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}}}$

T-Test for significance of hypothesis:

1) Calculate t
2) Calculate degrees of freedom:

$$
d f=N-(m+1)
$$

3) Check probability in a t distribution:

$\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}$

T-Test for significance of hypothesis:

1) Calculate t
2) Calculate degrees of freedom:

To test for significance of individual coefficient, j :
$t=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}}}$

$$
d f=N-(m+1)
$$

3) Check probability in a t distribution: ($d f=v$)

Hypothesis Testing

Important logical question:

Does failure to reject the null mean the null is true?

Thought experiment: If we have infinite data, can the null ever be true?

Type I, Type II Errors

Power

significance level ("p-value") $=P\left(\right.$ type I error) $=P\left(\right.$ Reject $\left.H_{0} \mid H_{0}\right)$
(probability we are incorrect)
power $=1-\mathrm{P}($ type II error $)=P\left(\right.$ Reject $\left.\mathbf{H}_{0} \mid \mathbf{H}_{\mathbf{1}}\right)$
(probability we are correct)

	H_{0}	H_{A}
Reject H_{0}	$\mathrm{P}\left(\right.$ Reject $\left.\mathrm{H}_{0} \mid \mathrm{H}_{0}\right)$	$\mathrm{P}\left(\right.$ Reject $\left.\mathrm{H}_{0} \mid \mathrm{H}_{1}\right)$

		True state of nature	
Our	H_{0}	H_{A}	
	Reject H_{0}	Type I error	correct decision
	'Accept' H_{0}	correct decision	Type II error

(Orloff \& Bloom, 2014)

Multi-test Correction

If alpha $=.05$, and I run 40 variables through significance tests, then, by chance, how many are likely to be significant?

Multi-test Correction

Multi-test Correction

How to fix?

What if all tests are independent?
=> "Bonferroni Correction" (α / m)

Better Alternative: False Discovery Rate
(Bejamini Hochberg)

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \underbrace{\mathbf{P}\left(Y_{i}=1 \mid X=x\right)}=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

Note: this is a probability here.
In simple linear regression we wanted an expectation:

$$
r(x)=\mathrm{E}(Y \mid X=x)
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \underbrace{\mathbf{P}\left(Y_{i}=1 \mid X=x\right)}=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

Note: this is a probability here.
In simple linear regression we wanted an expectation:

$$
r(x)=\mathrm{E}(Y \mid X=x)
$$

(i.e. if $\mathrm{p}>0.5$ we can confidently predict $\mathrm{Y}_{\mathrm{i}}=1$)

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
\begin{array}{r}
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}} \\
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}
\end{array}
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

$$
\begin{gathered}
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{\sqrt[1-p_{i}]{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j} \\
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}=0 \mid X=x\right) \\
\text { Thus, } 0 \text { is class } 0 \\
\text { and } 1 \text { is class } 1 .
\end{gathered}
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

$$
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \widehat{\beta_{j} x_{i j}}
$$

We're still learning a linear -separating hyperplane, but fitting it to a logit outcome.
(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
\begin{aligned}
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}} \\
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}
\end{aligned}
$$

To estimate β, one can use reweighted least squares:
(Wasserman, 2005; Li, 2010)
set $\hat{\beta}_{0}=\ldots=\hat{\beta}_{m}=0$ (remember to include an intercept)

1. Calculate p_{i} and let W be a diagonal matrix where element $(i, i)=p_{i}\left(1-p_{i}\right)$.
2. Set $z_{i}=\operatorname{logit}\left(p_{i}\right)+\frac{Y_{i}-p_{i}}{p_{i}\left(1-p_{i}\right)}=X \hat{\beta}+\frac{Y_{i}-p_{i}}{p_{i}\left(1-p_{i}\right)}$
3. Set $\hat{\beta}=\left(X^{T} W X\right)^{-1} X^{T} W z / /$ weighted lin. reg. of Z on Y. 4. Repeat from 1 until $\hat{\beta}$ converges.

Uses of linear and logistic regression

1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
2. Building a predictive model that generalizes to new data. \hat{Y} is an estimate value of Y given X.

Uses of linear and logistic regression

1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
2. Building a predictive model that generalizes to new data. \hat{Y} is an estimate value of Y given X. However, unless $|X| \lll$ observatations then the model might "overfit".

Overfitting (1-d non-linear example)

(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (5-d linear example)

$Y=$	X					
1	0.5	0	0.6	1	0	0.25
1	0	0.5	0.3	0	0	0
0	0	0	1	1	1	0.5
0	0	0	0	0	1	1
1	0.25	1	1.25	1	0.1	2

Overfitting (5-d linear example)

$Y=$	X					
1	0.5	0	0.6	1	0	0.25
1	0	0.5	0.3	0	0	0
0	0	0	1	1	1	0.5
0	0	0	0	0	1	1
1	0.25	1	1.25	1	0.1	2

$$
\operatorname{logit}(Y)=1.2+-63^{*} X_{1}+179^{*} X_{2}+71^{*} X_{3}+18^{*} X_{4}+-59^{*} X_{5}+19^{*} X_{6}
$$

Overfitting (5-d linear example)

 Do we really think we found something generalizable?

Overfitting (2-d linear example)

 Do we really think we found something generalizable?| $Y=$ | X | |
| :---: | :---: | :---: |
| 1 | 0.5 | 0 |
| 1 | 0 | 0.5 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 1 | 0.25 | 1 |

What if only 2 predictors?
$\operatorname{logit}(Y)=0+2^{*} X_{1}+2^{*} X_{2}$

Common Goal: Generalize to new data

Common Goal: Generalize to new data

Common Goal: Generalize to new data

Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

- start with current_model just has the intercept (mean) remaining_predictors = all_predictors

```
for i in range(k):
```

\#find best p to add to current_model:
for p in remaining_prepdictors
refit current_model with p
\#add best p, based on $\mathrm{RSS}_{\mathrm{p}}$ to current_model \#remove p from remaining predictors

Regularization (Shrinkage)

No selection (weight=beta)

forward stepwise

Why just keep or discard features?

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:
Ordinary least squares objective:

$$
\hat{\beta}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}\right\}
$$

Ridge regression:
$\hat{\beta}^{\text {ridge }}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{m} \beta_{j}^{2}\right\}$

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:
Ordinary least squares objective:

$$
\hat{\beta}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}\right\}
$$

Ridge regression:
$\hat{\beta}^{\text {ridge }}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{m} \beta_{j}^{2}\right\}$

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:
Ordinary least squares objective:

$$
\hat{\beta}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}\right\}
$$

Ridge regression:
$\hat{\beta}^{\text {ridge }}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{m} \beta_{j}^{2}\right\}$

In Matrix Form:

$$
\operatorname{RSS}(\lambda)=(y-X \beta)^{T}(y-X \beta)+\lambda \beta^{T} \beta \quad \lambda\|\beta\|_{2}^{2}
$$

$$
\hat{\beta}^{\text {ridge }}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y
$$

Regularization (L1, The "Lasso")

Idea: Impose a penalty and zero-out some weights

The Lasso Objective:
$\hat{\beta}^{\text {lasso }}=\operatorname{argmin} \beta\left\{\frac{1}{2} \sum_{i=1}^{N}\left(Y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{m} \beta_{j}\right.$

Regularization (L1, The "Lasso")

Idea: Impose a penalty and zero-out some weights

The Lasso Objective:

Application: $\mathrm{p} \cong \mathrm{n}$ or $\mathrm{p} \gg \mathrm{n} \quad$ (p : features; n : observations)

Common Goal: Generalize to new data

N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

Summary

Hypothesis Testing:

A framework for deciding which differences/relationships matter.

- Random Variables
- Distributions
- Hypothesis Testing Framework

Comparing Variables:

Metrics to quantify the difference or relationship between variables.

- Simple Linear Regression, Correlation, Multiple Linear Regression,
- Comparing Variables and Hypothesis Testing
- Regularized Linear Regression
- Multiple Hypothesis Testing

