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Hypothesis Testing:

● Random Variables
● Distributions
● Hypothesis Testing Framework

Comparing Variables:

● Simple Linear Regression, Correlation, Multiple Linear Regression, 
● Comparing Variables and Hypothesis Testing
● Regularized Linear Regression
● Multiple Hypothesis Testing



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a “variable”, but a function that we end up notating a lot like a variable) 6



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a “variable”, but a function that we end up notating a lot like a variable)

X is a discrete random variable 
if it takes only a countable 

number of values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 9

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≥ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

How to model?



Continuous Random Variables
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How to model?

Discretize them!
(group into discrete bins)



Continuous Random Variables

13But aren’t we throwing away information? 

P(bin=8) = .32

P(bin=12) = .08



Continuous Random Variables
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Continuous Random Variables
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:



Continuous Random Variables
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:

fx : “probability density function” (pdf)



Continuous Random Variables
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Continuous Random Variables
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Continuous Random Variables

Common Trap

●              does not yield a probability

○                      does

○ 𝓍 may be anything (ℝ)

■ thus,               may be > 1
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Continuous Random Variables

A Common Probability Density Function
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Continuous Random Variables

Common pdfs: Normal(μ, σ2)

              =
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Continuous Random Variables

Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation 22



Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation

Continuous Random Variables
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Credit: Wikipedia



Continuous Random Variables

Common pdfs: Normal(μ, σ2)

X ~ Normal(μ, σ2), examples in real life:

● height

● intelligence/ability

● measurement error

● averages (or sum) of 

lots of random variables

24



Continuous Random Variables

Common pdfs: Normal(0, 1)  (“standard normal”)

How to “standardize” any normal distribution:

1. subtract the mean, μ (aka “mean centering”)
2. divide by the standard deviation, σ

z = (x - μ)  / σ,   (aka “z score”)

25Credit: MIT Open Courseware: Probability and Statistics



Continuous Random Variables

Common pdfs: Normal(0, 1)

26Credit: MIT Open Courseware: Probability and Statistics



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Normal

Uniform



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform

Pro:               yields a probability!

Con: Not intuitively interpretable.



Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Discrete Random Variables

X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:



Discrete Random Variables

X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Binomial (n, p)

(like normal)



Discrete Random Variables

X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Binomial (n, p)



Discrete Random Variables

Two Common Discrete 
Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

Binomial (n, p)



Hypothesis Testing

Hypothesis -- something one asserts to be true. 
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H0: null hypothesis -- some “default” value; “null”: nothing changes

H1: the alternative -- the opposite of the null => a change or difference



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value; “null”: nothing changes

H1: the alternative -- the opposite of the null => a change or difference

Goal: Use probability to determine if we can:
 “reject the null” (H0) in favor of H1.

“There is less than a 5% chance that the null is true” 
(i.e. 95% chance that alternative is true). 



Hypothesis Testing

Example: Hypothesize a coin is biased. 
H0: the coin is not biased 
(i.e. flipping n times results in a Binomial(n, 0.5))

H1: the coin is biased (i.e. flipping n times does not result in a 
Binomial(n, 0.5))



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

More formally: Let X be a random variable and let R be the range of X. 
R

reject 
⊂ R is the rejection region. If X ∊ R

reject
 then we reject the null. 
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More formally: Let X be a random variable and let R be the range of X. 
R
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⊂ R is the rejection region. If X ∊ R

reject
 then we reject the null. 

alpha : size of rejection region (e.g. 0.05, 0.01, .001)



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

More formally: Let X be a random variable and let R be the range of X. 
R

reject 
⊂ R is the rejection region. If X ∊ R

reject
 then we reject the null. 

alpha : size of rejection region (e.g. 0.05, 0.01, .001)

In the biased coin example, 
if n = 1000, then then R

reject 
 = [0, 469] ∪ [531, 1000] 
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Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

Wh ?
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Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

Wh ?

A general framework for answering (yes/no) questions! 

● Are h  a d d s e t ? 
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Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

Wh ?

A general framework for answering (yes/maybe) questions! 

● Are h  a d d s e t ? 

● Is  de  r i t  od  t e  t  t  ta   t e t?

● Is e h  i d   a c ni  r ed  ve y?

● Is e h  i d   a c ni  r ed  ve y co r n  or at  at ?

● Do s  we t  e ve  he  ra  m e  f t y i t ?

Failing to “reject the null” does not 
mean the null is true. 



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

Wh ?

A general framework for answering (yes/maybe) questions! 

● Are h  a d d s e t ? 

● Is  de  r i t  od  t e  t  t  ta   t e t?

● Is e h  i d   a c ni  r ed  ve y?

● Is e h  i d   a c ni  r ed  ve y co r n  or at  at ?

● Do s  we t  e ve  he  ra  m e  f t y i t ?

Failing to “reject the null” does not 
mean the null is true. 
However, if the sample is large 
enough, it may be enough to say that 
the effect size (correlation, difference 
value, etc…) is not very meaningful.
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Important logical question: 

Does failure to reject the null mean the null is true?

no. 

Traditionally, one of the most common reasons to fail to reject the 
null: 
n is too small (not enough data)

Big Data problem: “everything” is significant. Thus, consider “effect size” 



Hypothesis Testing

Important logical question: 

Does failure to reject the null mean the null is true?

no. 

Traditionally, one of the most common reasons to fail to reject the 
null: 
n is too small (not enough data)

Thought experiment: If we have infinite data, can the null ever be 
true? 

Big Data problem: “everything” is significant. Thus, consider “effect size” 



Statistical Considerations in Big Data

1. Average multiple models 
(ensemble techniques)

2. Correct for multiple tests
(Bonferonni’s Principle)

3. Smooth data

4. “Plot” data (or figure out a way to 
look at a lot of it “raw”)

5. Interact with data

6. Know your “real” sample size

7. Correlation is not causation

8. Define metrics for success
(set a baseline)

9. Share code and data

10. The problem should drive solution

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)



Measures for Comparing Random Variables

● Distance metrics

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regression (L2 Penalized)

● Lasso Regression (L1 Penalized)



Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

The expected value of Y, given 
that the random variable X is 
equal to some specific value, x.



Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

Linear Regression (univariate version):

goal: find 𝛽
0
, 𝛽

1
 such that 



Linear Regression

Simple Linear Regression

more precisely



Linear Regression

Simple Linear Regression

expected variance

intercept slope error



Linear Regression

Simple Linear Regression

expected variance

intercept slope error

Estimated intercept and slope

Residual: 



Linear Regression

Simple Linear Regression

expected variance

intercept slope error

Estimated intercept and slope

Residual: 
Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:



Estimated intercept and slope

Residual: 
Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

Linear Regression

via Gradient Descent
Start with      =       = 0

Repeat until convergence:
Calculate all 



Estimated intercept and slope

Residual: 
Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

Linear Regression

via Gradient Descent
Start with      =       = 0

Repeat until convergence:
Calculate all 

Learning rate

Based on derivative of RSS



Estimated intercept and slope

Residual: 
Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

Linear Regression

via Gradient Descent

Start with      =       = 0

Repeat until convergence:
Calculate all 

via Direct Estimates
(normal equations)



Pearson Product-Moment Correlation

Covariance via Direct Estimates
(normal equations)



Pearson Product-Moment Correlation

Covariance

Correlation

via Direct Estimates
(normal equations)



Pearson Product-Moment Correlation

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the 
standard deviation) before running linear regression, then:
         = 0   and         = r    ---  i.e.        is the Pearson correlation!

via Direct Estimates
(normal equations)



Measures for Comparing Random Variables

● Distance metrics

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regression (L2 Penalized)

● Lasso Regression (L1 Penalized)



Measures for Comparing Random Variables

● Distance metrics

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regression (L2 Penalized)

● Lasso Regression (L1 Penalized)



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i (i.e. adding the intercept to X), then we can 
say:

Multiple Linear Regression



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where       and      are vectors and

X is a matrix.

Multiple Linear Regression



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where       and      are vectors and

X is a matrix.

Estimating       :

Multiple Linear Regression



Suppose we have multiple independent variables that we’d like to fit to our 
dependent variable:

If we include and X
oi

 = 1 for all i. Then we can say:

Or in vector notation
     across all i: 

Where       and      are vectors and
X is a matrix.

Estimating       :

Multiple Linear Regression

To test for significance of 
individual coefficient, j:



Suppose we have multiple independent variables that we’d like to fit to our 
dependent variable:

If we include and X
oi

 = 1 for all i. Then we can say:

Or in vector notation
     across all i: 

Where       and      are vectors and
X is a matrix.

Estimating       :

Multiple Linear Regression

To test for significance of 
individual coefficient, j:



T-Test for significance of hypothesis:
1) Calculate t
2) Calculate degrees of freedom:

df = N - (m+1)

3) Check probability in a t distribution:

To test for significance of 
individual coefficient, j:

Multiple Linear Regression

         RSS
s2 = ------

  df



T-Test for significance of hypothesis:
1) Calculate t
2) Calculate degrees of freedom:

df = N - (m+1)

3) Check probability in a t distribution:
(df = v)

To test for significance of 
individual coefficient, j:

t



Hypothesis Testing

Important logical question: 

Does failure to reject the null mean the null is true?

no. 

Traditionally, one of the most common reasons to fail to reject the 
null: 
n is too small (not enough data)

Thought experiment: If we have infinite data, can the null ever be 
true? 

Big Data problem: “everything” is significant. Thus, consider “effect size” 



Type I, Type II Errors

(Orloff & Bloom, 2014)



Power
significance level (“p-value”) = P(type I error) = P(Reject H0 | H0)  
(probability we are incorrect)

power = 1 - P(type II error) = P(Reject H0 | H1)
(probability we are correct)

P(Reject H0 | H0)     P(Reject H0 | H1)

(Orloff & Bloom, 2014)(Orloff & Bloom, 2014)



Multi-test Correction

If alpha = .05, and I run 40 
variables through significance 

tests, then, by chance, how many 
are likely to be significant?



Multi-test Correction

2 (5% any test rejects the null, by chance)

How to fix?



Multi-test Correction

What if all tests are independent?
=> “Bonferroni Correction” (α/m)

Better Alternative: False Discovery Rate 
(Bejamini Hochberg)

How to fix?



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)
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Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  

(i.e. if p > 0.5 we can confidently predict Y
i
 = 1)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

P(Y
i
 = 0 | X  = x)

Thus, 0 is class 0 
and 1 is class 1.



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

We’re still learning a linear 
separating hyperplane, but 
fitting it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



Logistic Regression
What if Yi ∊ {0, 1}? (i.e. we want “classification”)

To estimate      , 
one can use 
reweighted least 
squares:

(Wasserman, 2005; Li, 2010)



Uses of linear and logistic regression

1. Testing the relationship between variables given other 
variables. 𝛽 is an “effect size” -- a score for the magnitude 
of the relationship; can be tested for significance. 

2. Building a predictive model that generalizes to new data. 
Ŷ is an estimate value of Y given X.



Uses of linear and logistic regression

1. Testing the relationship between variables given other 
variables. 𝛽 is an “effect size” -- a score for the magnitude 
of the relationship; can be tested for significance. 

2. Building a predictive model that generalizes to new data. 
Ŷ is an estimate value of Y given X.
However, unless |X| <<< observatations then the model 
might “overfit”.



Overfitting (1-d non-linear example)

Underfit Overfit
High Bias High Variance
(image credit: Scikit-learn; in practice data are rarely this clear)



Overfitting (5-d linear example)
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Overfitting (5-d linear example)

1

1

0

0

1

Y = X

0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1
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logit(Y)  = 1.2  +  -63*X
1
  +  179*X

2
 +  71*X
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5
  +   19*X
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Overfitting (5-d linear example)

1

1

0

0

1

Y = X

0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Do we really think we found something generalizable?

logit(Y)  = 1.2  +  -63*X
1
  +  179*X

2
 +  71*X

3
  +   18*X

4
   +   -59*X

5
  +   19*X

6



Overfitting (2-d linear example)

1

1

0

0

1

Y = X

0.5 0

0 0.5

0 0

0 0

0.25 1

logit(Y)  =   0  +  2*X
1
  +  2*X

2
 

Do we really think we found something generalizable?

What if only 2 predictors?



Common Goal: Generalize to new data

Original Data New Data?

Does the 
model hold up?

Model



Common Goal: Generalize to new data

Training Data Testing Data

Model

Does the 
model hold up?



Common Goal: Generalize to new data

Training 
Data

Testing Data

Model

Develop-
ment
Data

Model

Set training 
parameters

Does the 
model hold up?



Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
  for i in range(k):

#find best p to add to current_model:

for p in remaining_prepdictors

refit current_model with p

       #add best p, based on RSS
p
 to current_model

#remove p from remaining predictors



Regularization (Shrinkage)

No selection (weight=beta) forward stepwise

Why just keep or discard features? 



Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:
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Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix



Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
  some weights

The Lasso Objective:



Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
  some weights

The Lasso Objective:

No closed form matrix solution, but 
often solved with coordinate descent.

Application:   p ≅ n   or   p >> n         (p: features; n: observations)



Common Goal: Generalize to new data

Training 
Data

Testing Data

Does the 
model hold up?

Model

Develo-
pment

Model
Set parameters



N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….



Summary
Hypothesis Testing:
A framework for deciding which differences/relationships matter. 

● Random Variables
● Distributions
● Hypothesis Testing Framework

Comparing Variables:
Metrics to quantify the difference or relationship between variables. 

● Simple Linear Regression, Correlation, Multiple Linear Regression, 
● Comparing Variables and Hypothesis Testing
● Regularized Linear Regression
● Multiple Hypothesis Testing


