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The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended



Enter PageRank
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PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:

in-links (citations) as votes

but, citations from important pages should count more. 

=> Use recursion to figure out if each page is important. 
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How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model: Solve
A B

C D
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Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M. 

x is an 
eigenvector of A if: 

A·x = 𝛌·x

finds the...

(Leskovec at al., 2014; http://www.mmds.org/)
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Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = sum(|v1 - v2|) 
#L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M. 

x is an 
eigenvector of A if: 

A·x = 𝛌·x

𝛌 = 1 (eigenvalue for 1st principal eigenvector)

since columns of M sum to 1.
Thus, if r is x, then Mr=1r 

finds the...
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View 4: Markov Process - Problems for vanilla PI 

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r 
converge to?

A B

C D

                             same node doesn’t repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node
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No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)
      (Teleport from a dead-end has probability 1)
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B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D



Teleportation, as Flow Model: 
Goals: 
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D

(Brin and Page, 1998)



Teleportation, as Flow Model: 
Goals: 
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation, 
as Matrix Model: 

A B

C D



Teleportation, as Flow Model: 
Goals: 
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ .85*¼+.15*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation, 
as Matrix Model: 



Teleportation, as Flow Model: 
Goals: 
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation, 
as Matrix Model: 

To apply: 
run power 
iterations over M’
instead of M.
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to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼
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Teleportation, 
as Matrix Model: 

Steps:
1. Compute M

2. Add 1/N to all 
dead-ends.

3. Convert M to M’

4. Run Power 
Iterations.

In Practice, Just store 𝛽 M as 
sparse matrix and distribute r  
acoording to above.

In other words, you only need 
to store M (as a sparse matrix) 
and r (as a vector), but never 
store M’.  Use this function 
within the inner loop of power 
iterations to achieve the same 
result as if using M’. 



Summary

● Flow View: Link Voting
● Matrix View: Linear Algebra

○ Eigenvectors View
● Markov Process View
● How to remove:

○ Dead Ends
○ Spider Traps

In practice, sparse matrix, implement teleportation 
functionally rather than update M’


