
Link Analysis

Stony Brook University
CSE545, Spring 2019

The Web , circa 1998

The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended

Enter PageRank

...

PageRank

Key Idea: Consider the citations of the website.

PageRank

Key Idea: Consider the citations of the website.

Who links to it?
and what are

their citations?

PageRank

Key Idea: Consider the citations of the website.

Who links to it?
and what are

their citations?

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:
in-links as votes

D

A

FE

B C

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:
in-links as votes

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:

in-links (citations) as votes

but, citations from important pages should count more.

=> Use recursion to figure out if each page is important.

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A B

C D

r
A
/1

r
B
/4

r
C
/2 r

D
 = r

A
/1 + r

B
/4 + r

C
/2

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:
A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A System of Equations:

A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A System of Equations:

A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model: Solve
A B

C D

PageRank A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

View 2: Matrix Formulation A B

C D

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
To Start, all are equally likely at ¼

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
To Start, all are equally likely at ¼: ends up at D

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
 To Start, all are equally likely at ¼: ends up at D
C and B are then equally likely: ->D->B=¼*½; ->D->C=¼*½

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
To Start, all are equally likely at ¼: ends up at D
C and B are then equally likely: ->D->B=¼*½; ->D->C=¼*½
Ends up at C: then A is only option: ->D->C->A = ¼*½*1

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
...

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
...

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
...

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

A B

C D

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):

err_norm(v1, v2) = |v1 - v2| #L1 norm

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration: M(M·r) = M2·r = [15/48, 11/48, …]

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M.

x is an
eigenvector of A if:

A·x = 𝛌·x

finds the...

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = sum(|v1 - v2|)
#L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M.

x is an
eigenvector of A if:

A·x = 𝛌·x

𝛌 = 1 (eigenvalue for 1st principal eigenvector)

since columns of M sum to 1.
Thus, if r is x, then Mr=1r

finds the...

View 4: Markov Process

Where is surfer at time t+1? p(t+1) = M · p(t)

Suppose: p(t+1) = p(t), then p(t) is a stationary distribution
of a random walk.

Thus, r is a stationary distribution. Probability of being at
given node.

View 4: Markov Process

Where is surfer at time t+1? p(t+1) = M · p(t)

Suppose: p(t+1) = p(t), then p(t) is a stationary distribution
of a random walk.

Thus, r is a stationary distribution. Probability of being at
given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:
■ No “dead-ends”: a node can’t propagate its rank
■ No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:
■ No “dead-ends”: a node can’t propagate its rank
■ No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

A B

C D

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 0 0 0

What would r
converge to?

View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:
■ No “dead-ends”: a node can’t propagate its rank
■ No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r
converge to?

A B

C D

View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r
converge to?

A B

C D

 same node doesn’t repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

A B

C D

to \ from A B C D

A 0 0 1 0

B ⅓ 0 0 1

C ⅓ 0 0 0

D ⅓ 1 0 0

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

A B

C D

to \ from A B C D

A 0 0+.15*¼ 1 0+.15*¼

B ⅓ 0+.15*¼ 0 .85*1+.15*¼

C ⅓ 0+.15*¼ 0 0+.15*¼

D ⅓ .85*1
+.15*¼

0 0+.15*¼

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

A B

C D

to \ from A B C D

A 0+.15*¼ 0+.15*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 0+.15*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 0+.15*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ .85*1+.15*¼ 0+.15*¼ 0+.15*¼

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

to \ from A B C D

A 0 0 1 0

B ⅓ 0 0 1

C ⅓ 0 0 0

D ⅓ 0 0 0

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

to \ from A B C D

A 0 ¼ 1 0

B ⅓ ¼ 0 1

C ⅓ ¼ 0 0

D ⅓ ¼ 0 0

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

to \ from A B C D

A 0 .85*¼+.15*¼ 1 0

B ⅓ .85*¼+.15*¼ 0 1

C ⅓ .85*¼+.15*¼ 0 0

D ⅓ .85*¼+.15*¼ 0 0

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)
 (Teleport from a dead-end has probability 1)

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D

(Brin and Page, 1998)

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

A B

C D

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ .85*¼+.15*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

To apply:
run power
iterations over M’
instead of M.

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

Steps:
1. Compute M

2. Add 1/N to all
dead-ends.

3. Convert M to M’

4. Run Power
Iterations.

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

Steps:
1. Compute M

2. Add 1/N to all
dead-ends.

3. Convert M to M’

4. Run Power
Iterations.

In Practice, Just store 𝛽 M as
sparse matrix and distribute r
acoording to above.

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

Steps:
1. Compute M

2. Add 1/N to all
dead-ends.

3. Convert M to M’

4. Run Power
Iterations.

In Practice, Just store 𝛽 M as
sparse matrix and distribute r
acoording to above.

In other words, you only need
to store M (as a sparse matrix)
and r (as a vector), but never
store M’. Use this function
within the inner loop of power
iterations to achieve the same
result as if using M’.

Summary

● Flow View: Link Voting
● Matrix View: Linear Algebra

○ Eigenvectors View
● Markov Process View
● How to remove:

○ Dead Ends
○ Spider Traps

In practice, sparse matrix, implement teleportation
functionally rather than update M’

