Link Analysis

Stony Brook University
CSE545, Spring 2019

The Web , circa 1998

AltaVisfa
 View Mabimeda From Our Vantage Peint
 $A(1) \cdot 1+174$
 Car Buying \& Car In

Click here for abertising information-reach milligns enery manth:
Search the Web \sim and Diaplay the Results in Standard Form v
Submi
Search with Digital's Alta Vista [Advanced Search] [Add URL]
Make Me Laugh..

$$
\frac{5 \text { Creative Web }}{\text { Create a Site. }}
$$

e '1́cite $^{\prime}$	
- mimer ${ }^{\text {a }}$	people finder \qquad mops \qquad yellow poges \qquad news \qquad Excite Search: twice the power of the competition.
Owacer	What: \square
"Turbo Searchr" Download Excite Direct	Where: World Wide Web v [Helol
Take an	
ExciteSecing Tour	Excite Reviews: site reviens by the web's best editorial team.

\section*{© () YAHOO!
 Labed Mexeager
 (3) Knw whemiments areonine | (4) No |
| :---: |
| $\begin{array}{c}\text { Yabos Mail } \\ \text { free from arpmere }\end{array}$ |}

Souch staucedsench

Yahool Auctions			
Categaries			
dangus	Campuen	Sead	Dide Tambate
Canmes	Electamia	-9xCmas	
Camin	fatacind	, whd	Lenitares
Canklank	\%um	Teter	-2aces

Lexal Yibuets

Mare liatas

The Web , circa 1998

Arts 8 Humanibes
Businens 8 Economy

Computers \& internet
hume wuw strane
Education
Colkestindurimsie. K. 12
Entertainment

Government

Heallh
fith De News 8 Medin alcomuge Xexpquen. II Recreation 8 . Sports eant Imol detan Onticsn.

Reference

Regional Ceumith Bitans. US Sults
Science Srenth dumer Thenemay Social Science arherchere Exemanco Lenenun Society \& Culture 13i- Pesple Exixamme Bripen compha

- Atumr Bary Len保nide - DinEmbetilt *miligua - Wiatledan- Tesu de Frase Harkeplace Fancele-spensered by Pepai II Smax-becoser pat of Yhas siappieg. - IC Cersis - fod ajob, pestyee Derama - Matbe planes imikeylani ucceisetics Broadcast Events - ApeET POL WeysmOgm naw. Inside Yaboot - TManes - kadgaweson, wacte heans, chess, pieetle - 12 Mesia- Sary Xeme 2 Kia

Inali Yebows

Alare Tiseost

The Web , circa 1998

Arts 8 Humanities

Business 8 Economy道 Lumase Sapsury idn
Computers \& Internet hemet WWW Sthan Sm Efucation Colkstindivermic. K. 12
Entertainment News 8 Media Nalcompe Teapqum. In Recreation 8 Sports Sent Imal datal Ontasn
Reference Cen Detim Ontition Regional Ceumith Begoms. US Sutes Sclence

 Alamngrrylentrindten Mathota-Teradefrosa

Marketace

 aeppues - DCemsis font kjot, pestyer
 Broadcast Eventa paEt put weran er Andilli- Atrit of ter nexth

Time-consuming; Not open-ended

Enter PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page
Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure and produce much 1 text and hyperlink c

The PageRank Citation Ranking: Bringing Order to the Web

January 29, 1998

Abstract
The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively

PageRank

Key Idea: Consider the citations of the website.

PageRank

Key Idea: Consider the citations of the website.
Who links to it? and what are their citations?

PageRank

Key Idea: Consider the citations of the website.
Who links to it? and what are their citations?

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

 in-links as votes

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

 in-links as votesLeskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

in-links (citations) as votes
but, citations from important pages should count more.
=> Use recursion to figure out if each page is important.

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{aligned}
& \text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
& r_{j}=\sum_{i \in \text { inn Links }_{(j)}}^{\text {vote }_{i}}
\end{aligned}
$$

(n_{j} is |out-links|)

PageRank

View 1: Flow Model:

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{gathered}
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
r_{j}=\sum_{i \in \text { inLinks }(j)} v o t e_{i}
\end{gathered}
$$

$$
\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

How to compute?

Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{aligned}
& \text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
& { }_{j}=\sum_{i \in \text { inLinks }(j)} \text { vote }_{i}
\end{aligned}
$$

(n_{j} is |out-links|)

PageRank

View 1: Flow Model:

A System of Equations:

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1}
$$

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{gathered}
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
r_{j}=\sum_{i \in i n L i n k s(j)}^{v_{j}} \text { vote } e_{i}
\end{gathered}
$$

$$
\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

A System of Equations:

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \quad \text { How to compute? }
$$

Each page (j) has an importance (i.e. rank, r_{j})

$$
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \quad\left(n_{j} \text { is |out-links } \mid\right)
$$

PageRank

View 1: Flow Model: Solve

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \quad \text { How to compute? }
$$

$r_{B}=\frac{r_{A}^{2}}{3}+\frac{1}{r_{D}}$
$r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2}$
$r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}$
Each page (j) has an importance (i.e. rank, r_{j})

$$
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \quad\left(n_{j} \text { is } \mid \text { out-links } \mid\right)
$$

PageRank

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$: ends up at D

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$: ends up at D C and B are then equally likely: ->D->B=1/4*1/2; ->D->C=1/4*1/2

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$: ends up at D C and B are then equally likely: $->D->B=1 / 4 * 1 / 2 ;->D->C=1 / 4 * 1 / 2$ Ends up at C : then A is only option: $->D->C->A=1 / 4 * 1 / 2 * 1$ View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$,

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48$,
View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$

Power iteration algorithm

initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

while (err_norm(r[t],r[t-1])>min_err):
err_norm(v1, v2) = |v1 - v2| \#L1 norm

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

"Transition Matrix", M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$

Power iteration algorithm

initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

"Transition Matrix", M

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

Power iteration algorithm

$$
\begin{aligned}
& \text { initialize: } \quad r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0] \\
& \text { while (err_norm }(r[t], r[t-1])>\text { min_err }): \\
& \quad r[t+1]=M \cdot r[t] \\
& \quad t+=1
\end{aligned}
$$

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

We are actually just finding the eigenvector of M.

Power iteration algorithm

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N] \quad \text { eigenvector of } A \text { if: } \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

x is an

$$
A \cdot x=\lambda \cdot x
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

We are actually just finding the eigenvector of M.

Power iteration algorithm

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N] \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

while (err_norm $(r[t], r[t-1])>$ min_err) $A \cdot x=\lambda \cdot \mathbf{x}$ $r[t+1]=M \cdot r[t]$

$$
t+=1
$$

solution $=r[t]$
$\lambda=1$ (eigenvalue for 1 st principal eigenvector)
since columns of M sum to 1 . Thus, if r is \mathbf{x}, then $M r=1 r$
err_norm(v1, v2) $=\operatorname{sum}(|v 1-v 2|)$ \#L1 norm

View 4: Markov Process

Where is surfer at time $\mathrm{t}+1 ? \quad \mathrm{p}(\mathrm{t}+1)=\mathrm{M} \cdot \mathrm{p}(\mathrm{t})$
Suppose: $p(t+1)=p(t)$, then $p(t)$ is a stationary distribution of a random walk.
Thus, r is a stationary distribution. Probability of being at given node.

View 4: Markov Process

Where is surfer at time $t+1 ? \quad p(t+1)=M \cdot p(t)$
Suppose: $p(t+1)=p(t)$, then $p(t)$ is a stationary distribution of a random walk.
Thus, r is a statipnary distribution. Probability of being at given node.
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
- No "dead-ends": a node can't propagate its rank
- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	0	0	0

What would r converge to?
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:

■ No "dead-ends": a node can't propagate its rank

- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

What would r converge to?
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:

■ No "dead-ends": a node can't propagate its rank

- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

What would r converge to?

aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
same node doesn't repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node
Also known as being stochastic, irreducible, and aperiodic.

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$0+.15^{* 1 / 4}$	1	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$1 / 3$	$0+.15^{* 1 / 4}$	0	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$1 / 3$	$0+.15^{* 1 / 4}$	0	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$1 / 3$	$.85^{* 1}$ $+.15^{* 1} / 4$	0	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \from	A	B	C	D
A	0+.15*1/4	0+.15*1/4	$85^{*} 1+.15^{* 1 / 4}$	0+.15*1/4
B	. $85 * 1 / 3+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4	$.85 * 1+.15 * 1 / 4$
C	. $85^{* 1 / 3}+.15 * 1 / 4$	0+.15*1/4	$0+.15^{* 1 / 4}$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$. $85 * 1+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	0	0	0

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 4$	1	0
\boldsymbol{B}	$1 / 3$	$1 / 4$	0	1
\boldsymbol{C}	$1 / 3$	$1 / 4$	0	0
\boldsymbol{D}	$1 / 3$	$1 / 4$	0	0

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$.85^{* 1 / 4+.15^{* 1 / 4}}$	1	0
\boldsymbol{B}	$1 / 3$	$.85^{* 1 / 4+.15^{* 1 / 4}}$	0	1
\boldsymbol{C}	$1 / 3$	$.85^{* 1 / 4+.15^{* 1} / 4}$	0	0
\boldsymbol{D}	$1 / 3$	$.85^{* 1 / 4}+.15^{* 1 / 4}$	0	0

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)
(Teleport from a dead-end has probability 1)

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+3} .15^{* 1 / 4} 4$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{\substack{d_{i} \\ \text { (Brin and Page, 1998) }}}+(1-\beta) \frac{1}{N}
$$

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+3} .15^{* 1 / 4} 4$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 11 / 4}}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

to \backslash from	A	B	C	D
A	0+.15*1/4	. $85 * 1 / 4+.15 * 1 / 4$	$85^{* 1+.15 * 1 / 4}$	0+.15*1/4
B	. $85^{* 1 / 3+4.15 * 1 / 4}$. $85 * 1 / 4+.15 * 1 / 4$	$0+.15 \times 1 / 4$. $85 * 1+.15 * 1 / 4$
C	. $85^{* 1 / 3}+.15^{* 1 / 4}$. $85 * 1 / 4+.15 * 1 / 4$	$0+.15 * 1 / 4$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$. $85 * 1 / 4+.15 * 1 / 4$	$0+.15 * 1 / 4$	0+.15*1/4

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

$$
\begin{aligned}
& \text { Teleportation, } \\
& \text { as Matrix Model: }
\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]
$$

To apply:

run power
iterations over M' instead of M.

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{\star 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
 $$
M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

 $N \times N$

 $N \times N$}
Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

to \ from	A	B	C	D
A	0+.15*1/4	1*1/4	$85^{* 1+.15 * 1 / 4}$	0+.15*1/4
B	. $85^{* 1 / 3+4.15 * 1 / 4}$	1*1/4	$0+.15 \times 1 / 4$. $85 * 1+.15 * 1 / 4$
C	. $85 * 1 / 3+.15^{* 1 / 4}$	1*1/4	$0+.15 * 1 / 4$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$	1*1/4	$0+.15 * 1 / 4$	0+.15*1/4

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation,

Steps:

$$
\begin{aligned}
& \text { Teleportation, } \\
& \text { as Matrix Model: }
\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

In other words, you only need to store M (as a sparse matrix) and r (as a vector), but never store M'. Use this function within the inner loop of power iterations to achieve the same result as if using M'.

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

ation, as Matrix Model: $M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

Summary

- Flow View: Link Voting
- Matrix View: Linear Algebra
- Eigenvectors View
- Markov Process View
- How to remove:
- Dead Ends
- Spider Traps

In practice, sparse matrix, implement teleportation functionally rather than update M^{\prime}

