Similarity Search

Stony Brook University
CSE545, Spring 2019

Finding Similar "Items"

(http://www.datacommunitydc.org/blog/20 13/08/entity-resolution-for-big-data)

Finding Similar "Items": What we will cover

- Shingling
- Minhashing
- Locality-sensitive hashing
- Distance Metrics

Document Similarity

Challenge: How to represent the document in a way that can be efficiently encoded and compared?

Shingles

Goal: Convert documents to sets

Shingles

Goal: Convert documents to sets

步

k-shingles (aka "character n-grams")
 - sequence of k characters

E.g. $k=2$ doc="abcdabd"
singles(doc, 2) $=\{a b, b c, c d, d a, b d\}$

Shingles

Goal: Convert documents to sets

k-shingles (aka "character n-grams")
 - sequence of k characters

E.g. $k=2$ doc="abcdabd"
singles(doc, 2) $=\{a b, b c, c d, d a, b d\}$

- Similar documents have many common shingles
- Changing words or order has minimal effect.
- In practice use $5<\mathrm{k}<10$

Shingles

Goal: Convert documents to sets

Large enough that any given shingle appearing a document is highly unlikely (e.g. < .1\% chance)

Can hash large shingles to smaller (e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).

- In practice use $5<k<10$

Shingles

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes $=>4 x$ the size of the document).

Minhashing

Goal: Convert sets to shorter ids, signatures

Minhashing - Background

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix, X :

Element	S_{1}	S_{2}	S_{3}	S_{4}
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)
often very sparse! (lots of zeros)

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Minhashing - Background

Characteristic Matrix:

	S_{1}	S_{2}
ab	1	1
bc	0	1
de	1	0
ah	1	1
ha	0	0
ed	1	1
ca	0	1

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Minhashing - Background

Characteristic Matrix:

	S_{1}	S_{2}	
ab	1	1	$* *$
bc	0	1	$*$
de	1	0	$*$
ah	1	1	$* *$
ha	0	0	
ed	1	1	$* *$
ca	0	1	$*$

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Minhashing - Background

Characteristic Matrix:

	S_{1}	S_{2}	
ab	1	1	$* *$
bc	0	1	$*$
de	1	0	$*$
ah	1	1	$* *$
ha	0	0	
ed	1	1	$* *$
ca	0	1	$*$

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

$\operatorname{sim}\left(S_{1} S_{2}\right)=3 / 6$
\# both have / \# at least one has

Shingles

Problem: Even if hashing shingle contents, sets of shingles are large
e.g. 4 byte integer per shingle: assume all unique shingles, => $4 x$ the size of the document
(since there are as many shingles as characters and 1byte per char).

Minhashing

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature" for each set.

Minhashing

Characteristic Matrix: X

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature" for each set.

Minhashing

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature".

| | S_{1} | S_{2} | S_{3} | S_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ah | 0 | 1 | 0 | 1 |
| ca | 1 | 0 | 1 | 0 |
| ed | 1 | 0 | 1 | 0 |
| de | 0 | 1 | 0 | 1 |
| ab | 1 | 0 | 1 | 0 |
| bc | 1 | 0 | 0 | 1 |

Minhashing

Goal: Convert sets to shorter ids, "signatures"

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature".

| | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | S_{1} | S_{2} | S_{3} | S_{4} |
| ah | 0 | 1 | 0 | 1 |
| ca | 1 | 0 | 1 | 0 |
| ed | 1 | 0 | 1 | 0 |
| de | 0 | 1 | 0 | 1 |
| ab | 1 | 0 | 1 | 0 |
| bc | 1 | 0 | 0 | 1 |

signatures

S_{1}	S_{2}	S_{3}	S_{4}
1	3	1	2
2	1	2	1
\ldots	\ldots	\ldots	\cdots

Characteristic Matrix: X

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhashing

Characteristic Matrix: X

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature" for each set.

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhashing

Characteristic Matrix:
Minhash function: h

- Based on permutation of rows in the

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix: characteristic matrix, h maps sets to first row where set appears.

		S_{1}	S_{2}	S_{3}	S_{4}	permuted order
3	ab	1	0	1	0	1 ha
4	bc	1	0	0	1	2 ed
7	de	0	1	0	1	3 ab
6	ah	0	1	0	1	4 bc
1	ha	0	1	0	1	5 ca
2	ed	1	0	1	0	6 ah
5	ca	1	0	1	0	7 de

$$
\begin{aligned}
& h\left(\mathrm{~S}_{1}\right)=\text { ed \#permuted row } 2 \\
& h\left(\mathrm{~S}_{2}\right)=\text { ha \#permuted row } 1 \\
& h\left(\mathrm{~S}_{3}\right)=
\end{aligned}
$$

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix: characteristic matrix, h maps sets to first row where set appears.

		S_{1}	S_{2}	S_{3}	S_{4}	permuted order
3	ab	1	0	1	0	1 ha
4	bc	1	0	0	1	2 ed
7	de	0	1	0	1	3 ab
6	ah	0	1	0	1	4 bc
1	ha	0	1	0	1	5 ca
2	ed	1	0	1	0	6 ah
5	ca	1	0	1	0	7 de

$h\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2 $h\left(S_{2}\right)$ = ha \#permuted row 1
$h\left(S_{3}\right)=$ ed \#permuted row 2
$h\left(\mathrm{~S}_{4}\right)=$

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix: characteristic matrix, h maps sets to first row where set appears.

		S_{1}	S_{2}	S_{3}	S_{4}	permuted order
3	ab	1	0	1	0	1 ha
4	bc	1	0	0	1	2 ed
7	de	0	1	0	1	3 ab
6	ah	0	1	0	1	4 bc
1	ha	0	1	0	1	5 ca
2	ed	1	0	1	0	6 ah
5	ca	1	0	1	0	7 de

$h\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2 $h\left(S_{2}\right)$ = ha \#permuted row 1
$h\left(S_{3}\right)$ = ed \#permuted row 2
$h\left(S_{4}\right)=$ ha \#permuted row 1

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$h_{1}\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2
$h_{1}\left(\mathrm{~S}_{2}\right)=$ ha \#permuted row 1
$h_{1}\left(\mathrm{~S}_{3}\right)=$ ed \#permuted row 2
$h_{1}\left(\mathrm{~S}_{4}\right)=$ ha \#permuted row 1

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$$
h_{1}\left(S_{1}\right)=\text { ed } \# \text { permuted row }
$$

2

$$
h_{1}\left(\mathrm{~S}_{2}\right)=\text { ha \#permuted row }
$$

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$$
2 \begin{array}{|c|}
\hline h_{1}\left(\mathrm{~S}_{1}\right)=\text { ed \#permuted row } \\
h_{1}\left(\mathrm{~S}_{2}\right)=\text { ha \#permuted row }
\end{array}
$$

Minhashing

Characteristic Matrix:

			S_{1}	S_{2}	S_{3}	S_{4}
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}				

Minhashing

Characteristic Matrix:
Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}				

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2
\ldots				
\ldots				

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2
\ldots				
\cdots				

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$
Characteristic Matrix:
Thus, similarity of signatures S_{1}, S_{2} is the fraction of

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$
Characteristic Matrix:
Thus, similarity of signatures S_{1}, S_{2} is the fraction of

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

| | | | S_{1} | S_{2} | S_{3} | S_{4} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 3 | ab | 1 | 0 | 1 | 0 |
| 3 | 2 | 4 | bc | 1 | 0 | 0 | 1 |
| 7 | 1 | 7 | de | 0 | 1 | 0 | 1 |
| 6 | 3 | 6 | ah | 0 | 1 | 0 | 1 |
| 2 | 6 | 1 | ha | 0 | 1 | 0 | 1 |
| 5 | 7 | 2 | ed | 1 | 0 | 1 | 0 |
| 4 | 5 | 5 | ca | 1 | 0 | 1 | 0 | minhash functions (i.e. rows) in which they agree.

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ Type a / $(a+b+c)=3 / 4$

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

		S_{1}	S_{2}	S_{3}	S_{4}		
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ Type a / $(\mathrm{a}+\mathrm{b}+\mathrm{c})=3 / 4$

Try $\operatorname{Sim}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

Error Bound?

Characteristic Matrix:

							S_{1}
S_{2}	S_{3}	S_{4}					
1	4	3	ab	1	0	1	0
3	2	4	bc	$\underline{1}$	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ Type a $/(a+b+c)=3 / 4$

Try $\operatorname{Sim}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}		
1	4	3	ab	1	0	1	0
3	2	4	bc	$\underline{1}$	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

Error Bound?

Expect error: $\mathrm{O}(\mathbf{1} / \sqrt{ } \boldsymbol{k})$ (k hashes)
Why? Each row is a random observation of 1 or 0 (match or not) with $P($ match=1) $=\operatorname{Sim}(S 1, S 2)$.

Estimated $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ Type a $/(a+b+c)=3 / 4$

Try $\operatorname{Sim}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

Characteristic Matrix:

			S_{1}	S_{2}	S_{3}	S_{4}	
1	4	3	ab	1	0	1	0
3	2	4	bc	$\underline{1}$	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

Error Bound?

Expect error: $\mathbf{O}(\mathbf{1} / \sqrt{ } \boldsymbol{k})$ (k hashes)
Why? Each row is a random observation of 1 or 0 (match or not) with $P($ match=1) $=\operatorname{Sim}(S 1, S 2)$. N = k observations
Standard deviation(std)? < 1 (worst case is 0.5)

Estimated $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$ Type a / $(a+b+c)=3 / 4$

Try $\operatorname{Sim}\left(S_{2}, S_{4}\right)$ and $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$

Minhashing

Characteristic Matrix:

			S_{1}	S_{2}	S_{3}	S_{4}	
1	4	3	ab	1	0	1	0
3	2	4	bc	$\underline{1}$	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

Error Bound?

Expect error: $\mathbf{O}(\mathbf{1} / \sqrt{ } \boldsymbol{k})$ (k hashes)
Why? Each row is a random observation of 1 or 0 (match or not) with $P($ match=1) $=\operatorname{Sim}(S 1, S 2)$. N = k observations
Standard deviation(std)? < 1 (worst case is 0.5) Standard Error of Mean $=s t d / \sqrt{ } \mathrm{N}$

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ Type a / $(a+b+c)=3 / 4$

Try $\operatorname{Sim}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

In Practice
Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Minhashing

In Practice
Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)
Solution: Use "random" hash functions.
- Setup:
- Pick ~100 hash functions, hashes
- Store M[i][s] = a potential minimum $h_{i}(r)$ \#initialized to infinity (num hashs x num sets)

Minhashing

Solution: Use "random" hash functions.

Setup:
hashes = [func(i) for i in rand(1, num=100)] \#100 hash functions, seeded random for i in hashes: for s in sets:

M[i][s] = np.inf \#represents a potential minimum $h_{i}(r)$; initially infinity
Algorithm ("efficient minhashing"):

```
for r in rows of cm: #cm is characteristic matrix
compute hi(r) for all i in hashes #precompute 100 values
for each set s in sets:
    if cm[r][s] == 1:
        for i in hashes: #check which hash produces smallest value
            if }\mp@subsup{h}{i}{}(r)<M[i][s]: M[i][s] = hi(r
```


Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes $=>4 x$ the size of the document).

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.
E.g. 1 m documents; $1,000,000$ choose $2=500,000,000,000$ pairs!

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.
E.g. 1 m documents; $1,000,000$ choose $2=500,000,000,000$ pairs!
(1 m documents isn't even "big data")

Document Similarity

Duplicate web pages (useful for ranking

Plagiarism

Cluster News Articles
Anything similar to documents: movie/music/art tastes, product characteristics

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to

 then test more precisely for similarity).Candidate pairs: pairs of elements to be evaluated for similarity.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

If we wanted the similarity for all pairs of documents, could anything be done?

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.
Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.
Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix
\Longrightarrow Candidate pairs end up in the same bucket.

Locality-Sensitive Hashing

Step 1: Divide signature matrix into b bands

Signature matrix M

Step 1: Divide into b bands

Locality-Sensitive Hashing

Signature matrix M

Locality-Sensitive Hashing

Step 1: Divide into b bands Step 2: Hash columns within bands (one hash per band)

Locality-Sensitive Hashing

Step 1: Divide into b bands Step 2: Hash columns within bands (one hash per band)

Locality-Sensitive Hashing

Columns 2 and 6
are probably identical (candidate pair)

Columns 6 and 7 are surely different.

b bands

Step 2: Hash columns within bands (one hash per band)

Locality-Sensitive Hashing

Step 1: Divide into b bands
Step 2: Hash columns within bands (one hash per band)

Criteria for being
candidate pair:

- They end up in same bucket for at least 1 band.

Locality-Sensitive Hashing

Columns 2 and 6
are probably identical (candidate pair)

Columns 6 and 7 are surely different.
$r \underset{\downarrow}{\uparrow}$
b bands

Step 1: Divide into b bands Step 2: Hash columns within bands (one hash per band)

Simplification:

There are enough buckets compared to rows per band that columns must be identical in order to hash into same bucket.

Thus, we only need to check if identical within a band.

Document Similarity Pipeline

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows => if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
$=>$ still 100 k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band $=0.8^{5}=.328$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
$=>$ still 100 k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$P\left(S_{1}!=S_{2}\right)$: probability $S 1$ and $S 2$ do not agree in any band

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$P\left(S_{1}!=S_{2}\right)$: probability S 1 and S 2 do not agree in any band

$$
=.672^{20}=.00035
$$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
$=>$ still 100 k choose 2 is a lot (~ 5 billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$P\left(S_{1}!=S_{2}\right)$: probability $S 1$ and $S 2$ do not agree in any band

$$
=.672^{20}=.00035
$$

What if wanting 40\% Jaccard Similarity?

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1 - Jaccard Sim).

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

Typical properties of a

 distance metric, $d($ point1,point2)?

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

Typical properties of a

 distance metric, d :$$
\begin{aligned}
& d(a, a)=0 \\
& d(a, b)=d(b, a) \\
& d(a, b) \leq d(a, c)+d(c, b)
\end{aligned}
$$

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance
- Cosine Distance
- Edit Distance
- Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance

$$
\begin{aligned}
& \text { arity. e.g: } \\
& \text { distance }(X, Y)=\sqrt{\sum_{i}^{n}\left(x_{i}-y_{i}\right)^{2}}
\end{aligned}
$$

("L2 Norm")

- Cosine Distance
- Edit Distance
- Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

$$
\begin{aligned}
& \text { arity. e.g: } \\
& \text { distance }(X, Y)=\sqrt{\sum_{i}^{n}\left(x_{i}-y_{i}\right)^{2}} \quad \text { ("L2 Norm") }
\end{aligned}
$$

- Cosine Distance
- Edit Distance
- Hamming Distance

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.
E.g. for euclidean distance:

- Choose random lines (analogous to hash functions in minhashing)
- Project the two points onto each line; match if two points within an interval

Side Note on Generating Hash Functions:

What hash functions to use?

Start with 2 decent hash functions
e.g. $h_{a}(x)=$ ascii(string) \% large_prime_number
$h_{b}(x)=\left(3^{*}\right.$ ascii $($ string $\left.)+16\right) \%$ large_prime_number
Add together multiplying the second times i:

$$
\begin{aligned}
& h_{i}(x)=h_{a}(x)+i^{*} h_{b}(x) \% \text { |BUCKETS/ } \\
& \text { e.g. } h_{5}(x)=h_{a}(x)+5^{*} h_{b}(x) \% 100
\end{aligned}
$$

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf
Popular choices: md5 (fast, predistable); mmh3 (easy to seed; fast)

