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Review:
Feed Forward Network
(full-connected)

(skymind, AI Wiki)

Z



Review:
Convolutional NN

(Barter, 2018)



Review: 
Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)
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Can model computation (e.g. matrix operations for a single input) be parallelized?
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Can model computation (e.g. matrix operations for a single input) be parallelized?

Ultimately limits how complex the model can 
be (i.e. it’s total number of 
paramers/weights) as compared to a CNN.



The Transformer: “Attention-only” models

Can handle sequences and long-distance dependencies, 
but….

● Don’t want complexity of LSTM/GRU cells 

● Constant num edges between input steps

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.



The Transformer: “Attention-only” models

Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Kayla kicked the ball. 

The ball was kicked by kayla.
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The Transformer: “Attention-only” models

Challenge: 

● Long distance dependency when translating:

Attention came about for encoder decoder models.

Then self-attention was introduced:
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Self-Attention
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The Transformer: “Attention-only” models

(Eisenstein, 2018)

Attention as weighting a value 
based on a query and key:



The Transformer: “Attention-only” models

(Eisenstein, 2018)
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The Transformer: “Attention-only” models

(Eisenstein, 2018)

hi-1      hi                hi+1

self attention hi

hi-1 hi-1
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The Transformer: “Attention-only” models
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The Transformer: “Attention-only” models
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Attend to all hidden states 
in your “neighborhood”. 
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The Transformer: “Attention-only” models

Output
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X X X X

+

dot product
dp dp dp

Linear layer:
WTX

One set of weights for 
each of for K, Q, and V

ktq(k,q) (ktq) σ



The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words. 



The Transformer

Solution: Multi-head attention



Multi-head Attention
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Encoder-Decoder



Transformer for
Encoder-Decoder

sequence index (t)
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Transformer for
Encoder-Decoder

Residualized 
Connections



Transformer for
Encoder-Decoder

Residualized 
Connections

residuals enable 
positional 
information to be 
passed along
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Transformer for
Encoder-Decoder

essentially, a language 
model



Transformer for
Encoder-Decoder

essentially, a language 
model

Decoder blocks out
future inputs



Transformer for
Encoder-Decoder

essentially, a language 
model

Add conditioning of the LM 
based on the encoder



Transformer for
Encoder-Decoder



Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores: 



Transformer

● Utilize Self-Attention

● Simple att scoring function (dot product, scaled)

● Added linear layers for Q, K, and V

● Multi-head attention

● Added positional encoding

● Added residual connection

● Simulate decoding by masking

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcB

GAs/s640/image1.gif

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif
https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif


Transformer
Why?
● Don’t need complexity of LSTM/GRU cells 
● Constant num edges between words (or input 

steps)
● Enables “interactions” (i.e. adaptations) 

between words
● Easy to parallelize -- don’t need sequential 

processing.

Drawbacks:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)
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Produces contextualized embeddings 
(or pre-trained contextualized encoder)
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between words
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Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings 
(or pre-trained contextualized encoder)

● Bidirectional context by “masking” in the middle
● A lot of layers, hidden states, attention heads. 



BERT

Differences from previous state of the art:

● Bidirectional transformer (through masking)
● Directions jointly trained at once. 
● Capture sentence-level relations

(Devlin et al., 2019)

tokenize into “word pieces”



Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8


BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


BERT: Pre-training; Fine-tuning

12 or 24 layers
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BERT: Pre-training; Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)



The Transformer: “Attention-only” models

Can handle sequences and long-distance dependencies, 
but….

● Don’t want complexity of LSTM/GRU cells 

● Constant num edges between input steps

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.


